Sugars in Soil and Sweets for Microorganisms: Review of Origin, Content, Composition and Fate

Total Page:16

File Type:pdf, Size:1020Kb

Sugars in Soil and Sweets for Microorganisms: Review of Origin, Content, Composition and Fate Soil Biology & Biochemistry 90 (2015) 87e100 Contents lists available at ScienceDirect Soil Biology & Biochemistry journal homepage: www.elsevier.com/locate/soilbio Review paper Sugars in soil and sweets for microorganisms: Review of origin, content, composition and fate * Anna Gunina a, b, , Yakov Kuzyakov a, c a Department of Agricultural Soil Science, Georg-August-University of Gottingen,€ Germany b Department of Soil Biology and Biochemistry, Dokuchaev Soil Science Institute, Russian Federation c Department of Soil Science of Temperate Ecosystems, Georg-August-University of Gottingen,€ Germany article info abstract Article history: Sugars are the most abundant organic compounds in the biosphere because they are monomers of all Received 21 April 2015 polysaccharides. We summarize the results of the last 40 years on the sources, content, composition and Received in revised form fate of sugars in soil and discuss their main functions. We especially focus on sugar uptake, utilization 24 July 2015 and recycling by microorganisms as this is by far the dominating process of sugar transformation in soil Accepted 25 July 2015 compared to sorption, leaching or plant uptake. Moreover, sugars are the most important carbon (C) and Available online 8 August 2015 energy source for soil microorganisms. Two databases have been created. The 1st database focused on the contents of cellulose, non-cellulose, Keywords: Carbohydrates in soil hot-water and cold-water extractable sugars in soils (348 data, 32 studies). This enabled determining the Glucose primary (plant-derived) and secondary (microbially and soil organic matter (SOM) derived) sources of Microbial utilization carbohydrates in soil based on the galactose þ mannose/arabinose þ xylose (GM/AX) ratio. The 2nd 13 14 Biochemical transformation database focused on the fate of sugar C in soils (734 data pairs, 32 studies using Cor C labeled sugars). Low molecular weight organics 13Cand14C dynamics enabled calculating the: 1) initial rate of sugar mineralization, 2) mean residence time (MRT) of C of the applied sugars, and 3) MRT of sugar C incorporated into 3a) microbial biomass and 3b) SOM. The content of hexoses was 3e4 times higher than pentoses, because hexoses originate from plants and microorganisms. The GM/AX ratio of non-cellulose sugars revealed a lower contribution of hexoses in cropland and grassland (ratio 0.7e1) compare to forest (ratio 1.5) soils. À 13C and 14C studies showed very high initial rate of glucose mineralization (1.1% min 1) and much higher rate of sugars uptake by microorganisms from the soil solution. Considering this rate along with the glucose input from plants and its content in soil solution, we estimate that only about 20% of all sugars in soil originate from the primary source e decomposition of plant litter and rhizodeposits. The remaining 80% originates from the secondary source e microorganisms and their residues. The esti- mated MRT of sugar C in microbial biomass was about 230 days, showing intense and efficient internal recycling within microorganisms. The assessed MRT of sugar C in SOM was about 360 days, reflecting the considerable accumulation of sugar C in microbial residues and its comparatively slow external recycling. The very rapid uptake of sugars by microorganisms and intensive recycling clearly demonstrate the importance of sugars for microbes in soil. We speculate that the most important functions of sugars in soil are to maintain and stimulate microbial activities in the rhizosphere and detritusphere leading to mobilization of nutrients by accelerated SOM decomposition e priming effects. We conclude that the actual contribution of sugar C (not only whole sugar molecules, which are usually determined) to SOM is much higher than the 10 ± 5% commonly measured based on their content. © 2015 Elsevier Ltd. All rights reserved. 1. Introduction e why sugars? * Corresponding author. Department of Agricultural Soil Science, Georg-August- Sugars are the most abundant organic compounds in the University of Gottingen,€ Büsgenweg 2, 37077 Gottingen,€ Germany. Tel.: þ49 biosphere because they are the basic components of all poly- 55139 33505. saccharides: cellulose, hemicellulose (polyoses), starch, pectin, E-mail address: [email protected] (A. Gunina). http://dx.doi.org/10.1016/j.soilbio.2015.07.021 0038-0717/© 2015 Elsevier Ltd. All rights reserved. 88 A. Gunina, Y. Kuzyakov / Soil Biology & Biochemistry 90 (2015) 87e100 fructanes, and glucanes as well as of chitin (consists from amino - estimating annual sugar production and its microbial recycling sugars) (Kogel-Knabner,€ 2002). Considering the dominance of in soil based on the cellulose and non-cellulose sugar content polysaccharides in plants (50e70% of dry mass), they are the most and their decomposition rates; important primarily input of organic carbon (C) in soil. With a mean - evaluating the role of sugars for aggregates formation, SOM residence time (MRT) of few weeks to months (Martin et al., 1974), accumulation and priming effects; and polysaccharides are decomposed by exoenzymes (cellulases, xyla- - providing an overall scheme of sugar transformation and recy- nases, glucosidases, hydrolases, chitinases) to oligo- and mono- cling in soil. saccharides (termed sugars). Cellulose is the most abundant biopolymer and, consequently, glucose is the most abundant It is beyond the scope of this review to provide methodological monomer released by its decomposition in soil. Sugars therefore details of carbohydrate extraction, purification and analysis dominate within low molecular weight organic substances (Cheshire, 1979; Amelung et al., 1996). (LMWOS) in all soils and affect various processes not only as a chemical compound group per se, but especially as C and an energy 2. Materials and methods source for microorganisms. All oligo- and monosaccharides are soluble, easily available for We use the term carbohydrates when we refer to mono- microorganisms, and are captured rapidly by microbes and used for saccharides, disaccharides, oligosaccharides and polysaccharides maintenance (both respiration and anabolism), growth and C without their differentiation. In some literature, ‘saccharides’ are storage. Because sugars dominate LMWOS and cell metabolism, used as a synonym of carbohydrates. For specification we use the their role for microbial life in soil cannot be overestimated. For respective terms (i.e. polysaccharides, monosaccharides, etc.). The example, sugar concentration in soil solution stimulates the tran- term ‘sugars’ is used for mono- and disaccharides. sition of microorganisms from dormant or potentially active to the For the review preparation, two sets of literature data were active stages (Blagodatskaya and Kuzyakov, 2013). This activation collected: 1) content and concentration of various groups of sugars contributes further to exoenzyme production, thus accelerating the in soils and soil solutions, respectively and 2) mineralization rates decomposition of soil organic matter (SOM) and the release of of sugars in soil and their participation in various fluxes including stored nutrients, mainly N, P and S. This makes sugars the most incorporation into microbial biomass (MB) and SOM. common and no doubt very efficient substance group to induce priming effects (Kuzyakov, 2010). Another important and frequently neglected relevance of car- 2.1. Sugar content and composition bohydrates is their contribution to aggregates formation e and thus to the formation of soils from parent materials. Poly-, oligo- and The first database is focused on sugar contents in soils and soil monosaccharides become sticky with increasing the concentra- solutions and contains 348 data from 32 studies. Articles were tions and drying, and bind mineral and organic particles, resulting searched in the Web of Knowledge and Scopus using the key in microaggregates formation (Oades, 1984; Six et al., 1999). Even words: “soil*” AND “carbohydrate*”, “sugar content” AND “soil*”. the role of particulate organic matter (POM) for aggregates for- Information was collected on total sugars as well as content of in- mation is mainly connected with the release of polysaccharides and dividual sugars extracted by various procedures. Based on the sugars due to POM decomposition. extractants and pre-treatments (e.g. various hydrolysis procedures, Within the three most abundant classes of LMWOS in soil e temperature and soil:solution ratios), all sugars were divided into sugars, carboxylic acids and amino acids e the concentration of the following groups: 1) total, 2) non-cellulose, 3) hot-water sugars is about 2e3 times higher than both other classes. The fate extractable and 4) cold-water extractable. The specific soil param- and significance of other LMWOS in soil were intensively reviewed eters (C and N contents, pH, texture), land use, experiment condi- earlier: carboxylic acids (Jones, 1998) and amino acids (Jones et al., tions, depth of soil sampling and climate were included in the 2005), and we refer the readers to these excellent reviews for database. Only articles with total C in soil <6% of dry weight were further information. No overview, however, focused on the included in order to consider mineral soils only. Soil texture was composition, fate and relevance of sugars in soil. The sole detailed classified according to clay content as: clayey (>25% clay), loamy review about carbohydrates in soils was published about 40 years (15e25% clay) and sandy (10e15% clay). We found no carbohydrate ago (Cheshire, 1979) and focused
Recommended publications
  • Characterisation and Enzymic Degradation of Non-Starch Polysaccharides in Lignocellulosic By-Products
    CHARACTERISATION AND ENZYMIC DEGRADATION OF NON-STARCH POLYSACCHARIDES IN LIGNOCELLULOSIC BY-PRODUCTS A study on sunflower meal and palm-kernel meal l( OC\ "i Promotoren: dr.ir. A.G.J. Voragen hoogleraar in de levensmiddelenchemie dr. W. Pilnik emeritus-hoogleraar in de levensmiddelenleer fifNOftZOl /S^3 E.-M. Dusterhoft CHARACTERISATION AND ENZYMIC DEGRADATION OF NON- STARCH POLYSACCHARIDES IN LIGNOCELLULOSIC BY­ PRODUCTS A study on sunflower meal and palm-kernel meal Proefschrift ter verkrijging van de graad van doctor in de landbouw- en milieuwetenschappen op gezag van de rector magnificus, dr. H.C. van der Plas in het openbaar te verdedigen op woensdag 24 februari 1993 des namiddags te vier uur in de Aula van de Landbouwuniversiteit te Wageningen 0000 0512 8810 u>n SJLJ^Q CIP-DATA KONINKLUKEBIBLIOTHEEK , DEN HAAG Dusterhoft, Eva-Maria Characterisation and enzymic degradation of non-starch polysaccharides in lignocellulosic by-products: a study on sunflower meal and palm-kernel meal / Eva-Maria Dusterhoft. - [S.l.:s.n.] Thesis Wageningen.- With ref.- With summary in Dutch. ISBN 90-5485-076-0 Subject headings: non-starch polysaccharides / Helianthus annuus / Elaeis guineensis BlliLi .i :.;.;.:. LANDBOUWLNiVLRiHiol; ffiAGEMNGEN The research described in this thesis was financially supported by BP Nutrition Nederland B.V. and by a grant of the Dutch Ministry of Economic Affairs (subsidiary agreement 'Programmatische Bedrijfsgerichte Technologie Stimulering' (PBTS). fJNO^W! i 1-5^3 STELLINGEN 1) Kennis van alleen de suikersamenstelling van een heterogeen substraat is niet voldoende voor een voorspelling van de benodigde enzymen voor de hydrolyse ervan. dit proefschrift 2) De vertaling, die Thibault en Crepeau (1989) geven van de suikersamenstelling van zonnepitdoppen naar de daarin aanwezige polysacchariden, is gedeeltelijk onjuist.
    [Show full text]
  • Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2009 Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids Stephen Reaume University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Reaume, Stephen, "Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids" (2009). Electronic Theses and Dissertations. 92. https://scholar.uwindsor.ca/etd/92 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids by Stephen Reaume A Thesis Submitted to the Faculty of Graduate Studies through the Environmental Engineering Program in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2009 © 2009 Stephen Reaume AUTHORS DECLARATION OF ORIGINALITY I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.
    [Show full text]
  • Acute and Chronic Effects of Dietary Lactose in Adult Rats Are Not Explained by Residual Intestinal Lactase Activity
    Nutrients 2015, 7, 5542-5555; doi:10.3390/nu7075237 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Article Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity Bert J. M. van de Heijning *, Diane Kegler, Lidewij Schipper, Eline Voogd, Annemarie Oosting and Eline M. van der Beek Danone Nutricia Research, PO Box 80141, TC Utrecht 3508, The Netherlands; E-Mails: [email protected] (D.K.); [email protected] (L.S.); [email protected] (E.V.); [email protected] (A.O.); [email protected] (E.M.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-30-2095-000. Received: 5 June 2015 / Accepted: 30 June 2015 / Published: 8 July 2015 Abstract: Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response.
    [Show full text]
  • Xylose Fermentation to Ethanol by Schizosaccharomyces Pombe Clones with Xylose Isomerase Gene." Biotechnology Letters (8:4); Pp
    NREL!TP-421-4944 • UC Category: 246 • DE93000067 l I Xylose Fermenta to Ethanol: A R ew '.) i I, -- , ) )I' J. D. McMillan I ' J.( .!i �/ .6' ....� .T u�.•ls:l ., �-- • National Renewable Energy Laboratory II 'J 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under task no. BF223732 January 1993 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­ pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con­ stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA22161 Price: Microfiche A01 Printed Copy A03 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern­ ment Reports Announcements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address.
    [Show full text]
  • GRAS Notice 735 for 2'-Fucosyllactose
    GRAS Notice (GRN) No. 735 https://www.fda.gov/Food/IngredientsPackagingLabeling/GRAS/NoticeInventory/default.htm GRAS Associates, LLC 27499 Riverview Center Blvd. Bonita Springs, FL 34134 GRifS T: 239.444.1724 J F: 239.444.1723 ASSOCIATES, LLC www.gras-associates.com September 29, 2017 GR N 0rf'rrl 3 5 Food and Drug Administration Center for Food Safety & Applied Nutrition Office of Food Additive Safety (HFS-255) 5001 Campus Drive College Park, MD 20740-3835 Attention: Dr. Paulette Gaynor Re: GRAS Notification-2'-Fucosyllactose Dear Dr. Gaynor: GRAS Associates, LLC, acting as the agent for Glycosyn, LLC (Woburn, MA) and FrieslandCampina Domo B.V. (The Netherlands) is submitting for FDA review Form 3667 and the enclosed CD, free of viruses, containing a GRAS notification for 2'-Fucosyllactose produced by microbial fermentation. Along with Glycosyn and FrieslandCampina's determination of safety, an Expert Panel of qualified persons was assembled to assess the composite safety information of the subject substance with the intended use as an ingredient in infant formulas, conventional foods, and medical foods at levels ranging from 0.24 to 4.0 grams 2'-fucosyllactose per serving. The attached documentation contains the specific information that addresses the safe human food uses for the subject notified substance as discussed in the GRAS guidance document. If additional information or clarification is needed as you and your colleagues proceed with the review, please feel free to contact me via telephone or email. We look forward to your feedback. Sincerely, (b) (6) Katrina V. Emmel, Ph.D. Senior Scientist/Associate GRAS Associates, LLC 27499 Riverview Center Blvd., Suite 212 Bonita Springs, FL 34134 OCT 2 2017 951-496-4178 OFFICE OF [email protected] FOOD ADDITIVE SAFETY Enclosure: GRAS Notification for Glycosyn and FrieslandCampina -2'-Fucosyllactose ., Form Approved: OMB No.
    [Show full text]
  • Enhanced Trehalose Production Improves Growth of Escherichia Coli Under Osmotic Stress† J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2005, p. 3761–3769 Vol. 71, No. 7 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.7.3761–3769.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress† J. E. Purvis, L. P. Yomano, and L. O. Ingram* Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, Florida 32611 Downloaded from Received 7 July 2004/Accepted 9 January 2005 The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. http://aem.asm.org/ Bacteria have a remarkable capacity for adaptation to envi- and lignocellulose (6, 7, 10, 28, 30, 31, 32, 45). Biobased pro- ronmental stress (39). A part of this defense system involves duction of these renewable chemicals would be facilitated by the intracellular accumulation of protective compounds that improved growth under thermal stress and by increased toler- shield macromolecules and membranes from damage (9, 24).
    [Show full text]
  • Mannoside Recognition and Degradation by Bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese
    Mannoside recognition and degradation by bacteria Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese To cite this version: Simon Ladeveze, Elisabeth Laville, Jordane Despres, Pascale Mosoni, Gabrielle Veronese. Mannoside recognition and degradation by bacteria. Biological Reviews, Wiley, 2016, 10.1111/brv.12316. hal- 01602393 HAL Id: hal-01602393 https://hal.archives-ouvertes.fr/hal-01602393 Submitted on 26 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Biol. Rev. (2016), pp. 000–000. 1 doi: 10.1111/brv.12316 Mannoside recognition and degradation by bacteria Simon Ladeveze` 1, Elisabeth Laville1, Jordane Despres2, Pascale Mosoni2 and Gabrielle Potocki-Veron´ ese` 1∗ 1LISBP, Universit´e de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France 2INRA, UR454 Microbiologie, F-63122, Saint-Gen`es Champanelle, France ABSTRACT Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein–protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them.
    [Show full text]
  • Brazilian Potential for Biomass Ethanol: Challenge of Using Hexose and Pentose Co- Fermenting Yeast Strains
    Journal of Scientific & Industrial Research 918Vol. 67, November 2008, pp.918-926 J SCI IND RES VOL 67 NOVEMBER 2008 Brazilian potential for biomass ethanol: Challenge of using hexose and pentose co- fermenting yeast strains Boris U Stambuk1*, Elis C A. Eleutherio2, Luz Marina Florez-Pardo3 Ana Maria Souto-Maior4 and Elba P S Bon5 1Laboratório de Biologia Molecular e Biotecnologia de Leveduras, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil 2Laboratório de Investigação de Fatores de Estresse, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil 3Departamento Sistemas de Produccion, Universidad Autonoma de Occidente, Cali, Colombia 4Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brasil 5Laboratório de Tecnologia Enzimática, Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil Received 15 July 2008; revised 16 September 2008; accepted 01 October 2008 This paper reviews Brazilian scenario and efforts for deployment of technology to produce bioethanol vis-à-vis recent international advances in the area, including possible use of hexose and pentose co-fermenting yeast strains. Keywords: Biomass ethanol, Brazilian ethanol production, Ethanologenic yeasts, Hexose-pentose co-fermentation Introduction ethanol, 109 produce only ethanol and 16 produce only Brazil produces annually 5 x 109 gallons of ethanol sugar. Brazil will produce around 27 billion litre of ethanol from sugarcane grown on 5 million ha. Sugarcane is in 2008, and plans to build 41 new distilleries before 2010, processed in 365 sugar/ethanol producing units, and it and 45 more until 20156. Land use for energy crops as is forecasted that 86 new distilleries will be built before compared to food crops has been opted for renewable 2015.
    [Show full text]
  • Enzymatic Synthesis of L-Fucose from L-Fuculose Using a Fucose Isomerase
    Kim et al. Biotechnol Biofuels (2019) 12:282 https://doi.org/10.1186/s13068-019-1619-0 Biotechnology for Biofuels RESEARCH Open Access Enzymatic synthesis of L-fucose from L-fuculose using a fucose isomerase from Raoultella sp. and the biochemical and structural analyses of the enzyme In Jung Kim1†, Do Hyoung Kim1†, Ki Hyun Nam1,2 and Kyoung Heon Kim1* Abstract Background: L-Fucose is a rare sugar with potential uses in the pharmaceutical, cosmetic, and food industries. The enzymatic approach using L-fucose isomerase, which interconverts L-fucose and L-fuculose, can be an efcient way of producing L-fucose for industrial applications. Here, we performed biochemical and structural analyses of L-fucose isomerase identifed from a novel species of Raoultella (RdFucI). Results: RdFucI exhibited higher enzymatic activity for L-fuculose than for L-fucose, and the rate for the reverse reaction of converting L-fuculose to L-fucose was higher than that for the forward reaction of converting L-fucose to L-fuculose. In the equilibrium mixture, a much higher proportion of L-fucose (~ ninefold) was achieved at 30 °C and pH 7, indicating that the enzyme-catalyzed reaction favors the formation of L-fucose from L-fuculose. When biochemical analysis was conducted using L-fuculose as the substrate, the optimal conditions for RdFucI activity were determined to be 40 °C and pH 10. However, the equilibrium composition was not afected by reaction temperature in the range 2 of 30 to 50 °C. Furthermore, RdFucI was found to be a metalloenzyme requiring Mn + as a cofactor. The comparative crystal structural analysis of RdFucI revealed the distinct conformation of α7–α8 loop of RdFucI.
    [Show full text]
  • 406-3 Wood Sugars.Pdf
    Wood Chemistry Wood Chemistry Wood Carbohydrates l Major Components Wood Chemistry » Hexoses – D-Glucose, D-Galactose, D-Mannose PSE 406/Chem E 470 » Pentoses – D-Xylose, L-Arabinose Lecture 3 » Uronic Acids Wood Sugars – D-glucuronic Acid, D Galacturonic Acid l Minor Components » 2 Deoxy Sugars – L-Rhamnose, L-Fucose PSE 406 - Lecture 3 1 PSE 406 - Lecture 3 2 Wood Chemistry Wood Sugars: L Arabinose Wood Chemistry Wood Sugars: D Xylose l Pentose (5 carbons) CHO l Pentose CHO l Of the big 5 wood sugars, l Xylose is the major constituent of H OH arabinose is the only one xylans (a class of hemicelluloses). H OH found in the L form. » 3-8% of softwoods HO H HO H l Arabinose is a minor wood » 15-25% of hardwoods sugar (0.5-1.5% of wood). HO H H OH CH OH 2 CH2OH PSE 406 - Lecture 3 3 PSE 406 - Lecture 3 4 1 1 Wood Chemistry Wood Sugars: D Mannose Wood Chemistry Wood Sugars: D Glucose CHO l Hexose (6 carbons) CHO l Hexose (6 carbons) l Glucose is the by far the most H OH l Mannose is the major HO H constituent of Mannans (a abundant wood monosaccharide (cellulose). A small amount can HO H class of hemicelluloses). HO H also be found in the » 7-13% of softwoods hemicelluloses (glucomannans) H OH » 1-4% of hardwoods H OH H OH H OH CH2OH CH2OH PSE 406 - Lecture 3 5 PSE 406 - Lecture 3 6 Wood Chemistry Wood Sugars: D Galactose Wood Chemistry Wood Sugars CHO CHO l Hexose (6 carbons) CHO H OH H OH l Galactose is a minor wood D Xylose L Arabinose HO H HO H monosaccharide found in H OH HO H H OH certain hemicelluloses CH2OH HO H CHO CH2OH CHO CHO » 1-6% of softwoods HO H H OH H OH » 1-1.5% of hardwoods HO H HO H HO H HO H HO H H OH H OH H OH H OH H OH H OH CH2OH CH2OH CH2OH CH2OH D Mannose D Glucose D Galactose PSE 406 - Lecture 3 7 PSE 406 - Lecture 3 8 2 2 Wood Chemistry Sugar Numbering System Wood Chemistry Uronic Acids CHO 1 CHO l Aldoses are numbered l Uronic acids are with the structure drawn HO H 2 polyhydroxy carboxylic H OH vertically starting from the aldehydes.
    [Show full text]
  • Carbohydrates: Occurrence, Structures and Chemistry
    Carbohydrates: Occurrence, Structures and Chemistry FRIEDER W. LICHTENTHALER, Clemens-Schopf-Institut€ fur€ Organische Chemie und Biochemie, Technische Universit€at Darmstadt, Darmstadt, Germany 1. Introduction..................... 1 6.3. Isomerization .................. 17 2. Monosaccharides ................. 2 6.4. Decomposition ................. 18 2.1. Structure and Configuration ...... 2 7. Reactions at the Carbonyl Group . 18 2.2. Ring Forms of Sugars: Cyclic 7.1. Glycosides .................... 18 Hemiacetals ................... 3 7.2. Thioacetals and Thioglycosides .... 19 2.3. Conformation of Pyranoses and 7.3. Glycosylamines, Hydrazones, and Furanoses..................... 4 Osazones ..................... 19 2.4. Structural Variations of 7.4. Chain Extension................ 20 Monosaccharides ............... 6 7.5. Chain Degradation. ........... 21 3. Oligosaccharides ................. 7 7.6. Reductions to Alditols ........... 21 3.1. Common Disaccharides .......... 7 7.7. Oxidation .................... 23 3.2. Cyclodextrins .................. 10 8. Reactions at the Hydroxyl Groups. 23 4. Polysaccharides ................. 11 8.1. Ethers ....................... 23 5. Nomenclature .................. 15 8.2. Esters of Inorganic Acids......... 24 6. General Reactions . ............ 16 8.3. Esters of Organic Acids .......... 25 6.1. Hydrolysis .................... 16 8.4. Acylated Glycosyl Halides ........ 25 6.2. Dehydration ................... 16 8.5. Acetals ....................... 26 1. Introduction replacement of one or more hydroxyl group (s) by a hydrogen atom, an amino group, a thiol Terrestrial biomass constitutes a multifaceted group, or similar heteroatomic groups. A simi- conglomeration of low and high molecular mass larly broad meaning applies to the word ‘sugar’, products, exemplified by sugars, hydroxy and which is often used as a synonym for amino acids, lipids, and biopolymers such as ‘monosaccharide’, but may also be applied to cellulose, hemicelluloses, chitin, starch, lignin simple compounds containing more than one and proteins.
    [Show full text]
  • Fibre - Chemistry and Functions in Poultry Nutrition
    Jueves, 29 de octubre, 12:30 h Fibre - Chemistry and Functions in Poultry Nutrition M. CHOCT School of Environmental and Rural Science University of New England, Armidale, NSW 2351, Australia email: [email protected] The word “fibre” used in the animal nutrition context is broad, confusing and chemically ill- defined. It is broad because fibre has traditionally been referred to as the organic residue remaining after a series of acid, alkaline and/or detergent extractions. It is confusing because various terms are used to describe fibre, such as Crude Fibre, Acid Detergent Fibre, Neutral Detergent Fibre and Dietary Fibre. These terms refer to a proportion of the same chemical entities or all of some entities but none of the other entities. They also do not correspond or relate to each other in a meaningful manner. It is chemically ill-defined because of the way in which all these fibres, except Dietary Fibre, are obtained, and relies on solvent extractions that do not distinguish specific chemical entities. As animal nutrition is becoming more about producing “more from less” sustainably, every nutrient that takes up the nutrient matrix in feed has to be scrutinised. In recent years, a great deal of interest has emerged in knowing what fibre does in poultry feed. To achieve this, the chemical entities that make up fibre need to be elucidated, and their physical and functional properties properly understood. This paper discusses the terms used to describe fibre, their chemical and physical characteristics, and their functions in relation to poultry nutrition. Keywords: fibre; NSP; nutrition; feed formulation Introduction A typical feed for broiler chickens, for instance, contains 65% cereal grains, i.e., corn or wheat, 25% soybean meal and some other minor ingredients which make up the rest.
    [Show full text]