Benefical Insects

Total Page:16

File Type:pdf, Size:1020Kb

Benefical Insects Benefical Insects A Field Guide for Natural Pest Management Table of Contents Pg. 3 - Parasitic Flies......... Pg. 5 - Parasitic Wasps.................. Pg. 8 - Predatory Beetles........................... Pg. 10 - Predatory Bugs.......................................... Pg. 13 - Predatory Flies........................................................ Pg. 16 - Stinging Wasps.................................................................... Pg. 18 - Spiders.............................................................................................. Pg. 20 - Other.............................................................................................................. Pg. 2 Parasitic Flies Help Manage: Aphids, bees, beetles, caterpillars, grasshoppers, insect eggs, grasshoppers, leafhoppers, mealybugs, spiders, true bugs, wasps, and whiteflies. Pg. 3 Bee Fly Have a large and fuzzy bee-like body and unlike wasps or bumblebees are harmless to people yet help to pollinate plants. They are brown and have a long black rigid proboscis (nose) which protrudes from the front of their head. Tachinid Fly (Bombyliopsis abrupta) An extremely small bodied fly similar in size to houseflies. Their bodies are colored black, grey or dark brown with a variety of markings which include combinations of red, yellow, orange, metallic green and blue. Their bodies are usually covered with long bristly hairs. Pg. 4 Parasitic Wasps Help Manage: Aphids, beetles, caterpillars, grasshoppers, insect eggs, leafhop- pers, mealybugs, true bugs, spiders, and whiteflies. Pg. 5 Bracoid Wasp Although highly variable in appearance, is usually less than one-half inch long and dark with trans- parent wings. Colors range from shades of black, brown, yellow, and red with a darker area at the edge of the forewing. Generally, their abdomen is longer than the head and thorax combined. Chalcid Wasp Is typically very small in size, dark in color featuring metallic blue or green with complex patterns on the body. This wasp also features a reduced wing vena- tion meaning the vein pattern across its translucent wings are not defined unlike other other wasps. Encyrtid Wasp An extremely small wasp with an enlarged pair of middle legs and wings covered with short hairs. Col- ors are typically grey or black for males while females can have tan colored heads and sides as well as white tipped antennae. Pg. 6 Ichneumon Wasp A slender wasp-like insect with long antennae that are sometimes half as long as their bodies. Colors range from black and brown with yellow or orange markings. One distinct feature on females is a long tail which looks like a stinger, but is actually an ovipositor – a reproductive organ that allows it to deposit eggs inside or on hosts. Pg. 7 Predatory Beetles Help Manage: Mites, aphids, insects, insect eggs, leafhoppers, mealybugs, scale insects, small larvae, thrips, and whiteflies. Pg. 8 Ground Beetle The body features a distinctive row of grooves which run down their wing covers. Most are predominately black with some reddish-brown coloring on anten- nae and legs. Two Spotted Lady Beetle (Adalia bipunctata) Most lady bugs that have been introduced to the west coast are non-native invasive species and do little to help control pests. The Two Spotted Lady Beetle is the only one endemic to the PNW. There are two coloration patterns: one features two black spots laid over red or orange on the body and the other features four red or orange spots over a black body. Rove Beetle (Dalotia coriaria) Has a body that is elongated and segmented into four visible parts. They sometimes curve their ab- domen upwards similar to scorpions and can run or fly. Colors range from black, dark brown and light brown. Pg. 9 Predatory Bugs Help Manage: Aphids, catapillars, insect eggs, leafhoppers, mealybugs, mites, leafhoppers, scale insects, and thrips. Pg. 10 Ambush Bug This insect is a relative of the much larger Assassin Bug and is highly camouflaged yet brightly colored. Its colors range typically match the flowers it hides in whether it be a bright yellow, cream, red or green. It features thick and powerful forelegs which it uses to kill its prey – similar to the ones found on preying mantises. Ambush bugs commonly wait for their prey for long periods of time and are able to catch prey 10 times their size. Assassin Bug (Reduviidae) Usually black, red or brown in color. Their narrow head slightly sticks out from their body and a strong beak can be found tucked in between their front legs. The Assassin Bug’s name comes from their signature kill, which involves using their strong beak to repeatedly stab prey to death. Beware of handling them as their bite is powerful and painful. Damsel Bug A soft bodied, slender insect with long legs and an- tennae and bulging eyes. Has two pairs of wings - a set of forewings and a set of hindwings covering its back. The most distinguishing feature of the Damsel Bug is the small group of cells that border each of its wings. Colors range from Pale yellow to dull brown and grey. Pg. 11 Minute Pirate Bug (Anthocoridae) This insect has a flat and oval shaped body with antennae that are longer than the length of the head, which extends forward. They are mostly black in color and have white markings on their wings. They possess a piercing beak which they use to inject digestive enzymes into their prey. Pg. 12 Predatory Flies Help Manage: Aphids, bees, beetles, caterpillars, grasshoppers, insect eggs, leaf- hoppers, mealybugs, spiders, true bugs, wasps, and whiteflies. Pg. 13 Dance Fly Usually a small to medium sized fly with a spherical head and distinct neck that extends from the body. Its eyes are large taking up most of the surface area of its head while a well distinguished proboscis (nose) protrudes from its mouth. Some have large raptorial front legs for catching prey. Most are dark in color and never have a metallic gloss. Hoverfly The Hoverfly has a body that is covered with dense hair and can be dark colored with spots, bands, or stripes of yellow or brown. Most are difficult to iden- tify but typically, their wing venation features veins that radiate outward. Being able to hover in mid-air completely still is one of the Hoverflys distinguishing behaviors observed in nature. These flies are also pollinators. Long Legged Fly (Dolichopus spp) A small slender bodied fly with a metallic green, gold or blue hue coloration and bright red eyes. Pg. 14 Robber Fly (Laphria saffrana) A robust and bristly fly with prominent compound eyes that are apart of a divot on the top of their head. Their bodies are elongated and feature a tapered abdomen with yellow striped markings over black - imitating a wasp. Pg. 15 Stinging Wasps Help Manage: Beetles, caterpillars, mantids, and spiders. Pg. 16 European Paper Wasp (Polistes dominula) A long bodied wasp with a black and yellow marked abdomen. A distinguishing feature for this wasp is its “threaded waist” which describes the narrowing that occurs between the thorax and the abdomen. Is commonly mistaken for the common Yellow Jacket but is also capable of stinging. Hunting Wasp Features are mostly similar to and difficult to distin- guish from solitary wasps. Size varies from small to extremely large. Colors are typically dark colored with yellow banding across the abdomen. Although these wasps can sting, they rarely sting humans. Western Yellow Jacket (Vespula pensylvani- ca) A short and stocky bodied wasp with traditional yel- low and black banding. Differentiates itself from the paper wasps in that it usually lacks a slender body. Beware of the sting from this wasp. Pg.17 Spiders Help Manage: Aphids, bees, beetles, butterflies, caterpillars, flies, grasshoppers, leafhoppers, mealybugs, mites, moths, thrips, wasps, and whiteflies. Pg. 18 Bold Jumper (Phidippus audax) A hefty looking spider with short, thick legs and forward facing eyes. Colors are mainly black with white, red or orange patches lying at the center of the abdomen. However, coloration is highly variable as it differs with every molt. Crab Spider Has a short, wide, and flat body along with two large front legs that it uses to grab its prey. Its coloration is extremely variable, but tends to be extravagant for blending in with its environment. Crab Spiders are named for their crablike movement and appearance and tend to scuttle sideways with their four hind legs. Orb Weaver Spider (Araneidae) A rather large and stout spider with a rough triangu- lar abdomen and very long menacing looking legs. The body can be white or orang-ish brown and usu- ally has a mixed camouflage pattern at the abdomen along with striped legs. Pg. 19 Other Help Manage: Aphids, beetles, butterflies, caterpillars, centipedes, cockroach- es, earthworms, insect eggs, leafhoppers, mealybugs, millipedes, mites, moths, pill bugs, scale insects, slugs, small larvae, spiders, thrips, wasps, whiteflies. Pg. 20 Earwigs Earwigs are most recognized for their notorious pin- cers that are attached to the end of their abdomen. They are slender with elongated features and are dark reddish brown in color with lighter brown shade on their legs. Only some adopt a set of two pairs of wings and most lack them. The Earwigs name comes from an old myth that Earwigs would crawl and burrow into the ears of sleeping people. European Mantis (Mantis religiosa) A rather large elongated insect with modified front legs equipped with serrated blades and a head that can turn similar to humans. Males are the only species that can fly. Colors range from green, yellow, brown, pink, white or a mix of all of them. Green Lacewing (Chrysoperla carnea) A slender and frail looking pale green insect with copper colored eyes and long antennae. The dis- tinguishing features for this insect are the thin mint green transparent wings that have an intricate net vein structure and are folded over its body. Pg. 21 Harvestmen (Daddy Longlegs) Infamous for having extremely long legs that over- shadow the size of their bodies. Harvestmen or Daddy Longlegs are not actually spiders, but are closely related to them.
Recommended publications
  • Nora M. Bello, Phd
    Nora M. Bello, PhD, DVM Curriculum Vitae updated as of 08/14/2020 002 Dickens Hall E-mail: [email protected] Department of Statistics http://www.k-state.edu/stats/people/bello.html Kansas State University https://norabello.weebly.com Manhattan, KS 66506, USA EDUCATION Doctor of Philosophy 2010 Department of Animal Science, Michigan State University, East Lansing, MI Dissertation title: “Hierarchical Bayesian Modeling of Heterogeneity in the Relationship between Milk Production and Reproductive Performance in Dairy Cows”. Emphasis on methodological development and implementation of hierarchical Bayesian multivariate statistical models for heterogeneous covariances. Advisor: Dr. Robert J. Tempelman, Professor Master of Science, Applied Statistics 2008 Department of Statistics and Probability Michigan State University, East Lansing, MI Master of Science, Animal Science 2006 Department of Animal Science Michigan State University, East Lansing, MI Thesis Title: “Optimizing ovulation to first GnRH improved outcomes to each hormonal injection of Ovsynch in lactating dairy cows”. Emphasis in reproductive physiology and management of cattle Advisor: Dr. J. Richard Pursley, Associate Professor Veterinary Medicine Doctor 2003 Catholic University of Cordoba, Cordoba, Argentina Junior Computer Science and Database Management Technician 1997 Cervantes Institution for Computer Sciences, Cordoba, Argentina PROFESSIONAL EMPLOYMENT EXPERIENCE Full Professor 2020 – Present Associate Professor 2015 – 2020 Assistant Professor 2010 – 2015 Department of Statistics,
    [Show full text]
  • Spiders of the Hawaiian Islands: Catalog and Bibliography1
    Pacific Insects 6 (4) : 665-687 December 30, 1964 SPIDERS OF THE HAWAIIAN ISLANDS: CATALOG AND BIBLIOGRAPHY1 By Theodore W. Suman BISHOP MUSEUM, HONOLULU, HAWAII Abstract: This paper contains a systematic list of species, and the literature references, of the spiders occurring in the Hawaiian Islands. The species total 149 of which 17 are record­ ed here for the first time. This paper lists the records and literature of the spiders in the Hawaiian Islands. The islands included are Kure, Midway, Laysan, French Frigate Shoal, Kauai, Oahu, Molokai, Lanai, Maui and Hawaii. The only major work dealing with the spiders in the Hawaiian Is. was published 60 years ago in " Fauna Hawaiiensis " by Simon (1900 & 1904). All of the endemic spiders known today, except Pseudanapis aloha Forster, are described in that work which also in­ cludes a listing of several introduced species. The spider collection available to Simon re­ presented only a small part of the entire Hawaiian fauna. In all probability, the endemic species are only partly known. Since the appearance of Simon's work, there have been many new records and lists of introduced spiders. The known Hawaiian spider fauna now totals 149 species and 4 subspecies belonging to 21 families and 66 genera. Of this total, 82 species (5596) are believed to be endemic and belong to 10 families and 27 genera including 7 endemic genera. The introduced spe­ cies total 65 (44^). Two unidentified species placed in indigenous genera comprise the remaining \%. Seventeen species are recorded here for the first time. In the catalog section of this paper, families, genera and species are listed alphabetical­ ly for convenience.
    [Show full text]
  • Common Greenhouse Insects and Mites Identification and Management the List of Common Greenhouse Insects and Mites in Colorado Is a Fairly Short One
    Common Greenhouse Insects and Mites Identification and Management The list of common greenhouse insects and mites in Colorado is a fairly short one: • Aphids (several species) • Whiteflies (one species) • Thrips (two common species) • Twpspotted spider mite • Fungus gnats • Tomato/potato psyllid Aphids Hemiptera: Aphididae Primary aphid species found in greenhouses Green peach aphid Cotton-melon aphid Potato aphid Body plan of a typical, wingless aphid All aphids go through three feeding stages, each punctuated with a molting event “Cast skins”, the discarded remnants of the exoskeleton after molting Diagnostic: “Cast Skins” remain after aphids molt Live birth and asexual reproduction are the norm with aphids Aphid populations can increase rapidly Adults may be winged or wingless Wing pads of late stage aphid nymph Adults may be winged or wingless Piercing-sucking mouthparts of Hemiptera (aphids, whiteflies, mealybugs, leafhoppers, etc.) Probocis (primarily the labium) of an aphid Stylet bundle (mandibles and maxillae) meandering through plant en route to phloem Aphids use their mouthparts to access the fluids of the phloem Little, if any, cell injury is produced by most aphids Important Note: Presence of aphids does not always equate to occurrence of plant injury! Honeydew production Uptake of phloem fluids here Emergence of “honeydew” here Leaf with sparkles of honeydew – and cast skins The leaf above the honeydew – an aphid colony Leaf with sparkles of honeydew – and cast skins Some non-aphid honeydew producing insects Whiteflies Mealybugs
    [Show full text]
  • Further Screening of Entomopathogenic Fungi and Nematodes As Control Agents for Drosophila Suzukii
    insects Article Further Screening of Entomopathogenic Fungi and Nematodes as Control Agents for Drosophila suzukii Andrew G. S. Cuthbertson * and Neil Audsley Fera, Sand Hutton, York YO41 1LZ, UK; [email protected] * Correspondence: [email protected]; Tel.: +44-1904-462-201 Academic Editor: Brian T. Forschler Received: 15 March 2016; Accepted: 6 June 2016; Published: 9 June 2016 Abstract: Drosophila suzukii populations remain low in the UK. To date, there have been no reports of widespread damage. Previous research demonstrated that various species of entomopathogenic fungi and nematodes could potentially suppress D. suzukii population development under laboratory trials. However, none of the given species was concluded to be specifically efficient in suppressing D. suzukii. Therefore, there is a need to screen further species to determine their efficacy. The following entomopathogenic agents were evaluated for their potential to act as control agents for D. suzukii: Metarhizium anisopliae; Isaria fumosorosea; a non-commercial coded fungal product (Coded B); Steinernema feltiae, S. carpocapsae, S. kraussei and Heterorhabditis bacteriophora. The fungi were screened for efficacy against the fly on fruit while the nematodes were evaluated for the potential to be applied as soil drenches targeting larvae and pupal life-stages. All three fungi species screened reduced D. suzukii populations developing from infested berries. Isaria fumosorosea significantly (p < 0.001) reduced population development of D. suzukii from infested berries. All nematodes significantly reduced adult emergence from pupal cases compared to the water control. Larvae proved more susceptible to nematode infection. Heterorhabditis bacteriophora proved the best from the four nematodes investigated; readily emerging from punctured larvae and causing 95% mortality.
    [Show full text]
  • Checklist of Non-Insect Invertebrates of Steele Creek Park
    Checklist of Non-Insect Invertebrates of Steele Creek Park Harvestmen (Order Opiliones) __ Leiobunum aldrichi __ Leiobunum vittatum (Eastern Harvestman) __ Odiellus nubivagus __ Odiellus pictus __ Vonones sayi (Ornate Harvestman) Centipedes (Class Chilopoda) __ Geophilus vittatus (Diamondback Soil Centipede) __ Hemiscolopendra marginata (Florida Blue Centipede, Eastern Bark Centipede) __ Scolopocryptops nigridius __ Scolopocryptops sexspinosus (Eastern Fire Centipede) __ Strigamia bothriopus __ Theatops posticus (Smooth-tailed Forceps Centipede) __ Cryptops leucopodus Millipedes (Class Diplopoda) __ Apheloria montana (Cherry Millipede) __ Brachycybe lecontii (Feather Millipede) __ Cambala annulata __ Oxidus gracilis (Greenhouse Millipede)* __ Pseudopolydesmus canadensis __ Abacion magnum __ Abacion tesselatum __ Euryurus leachii __ Andrognathus corticarius (Cope’s Noodle Millipede) __ Narceus americanus-annularis (American Giant Millipede) Spiders (Order Araneae) __ Agelenopsis sp. (Grass Spider) __ Araneus marmoreus (Marbled Orbweaver) __ Araniella displicata (Six-spotted Orbweaver) __ Dolomedes albineus (White-striped Fishing Spider) __ Dolomedes tenebrosus (Dark Fishing Spider) __ Dolomedes triton (Six-spotted Fishing Spider) __ Dolomedes vittatus (Banded Fishing Spider) __ Larinioides cornutus (Furrow Orbweaver) __ Leucage venusta (Orchard Orbweaver) __ Micrathena gracilis (Spiny Micrathena) __ Micrathena mitrata (White Micrathena) __ Micrathena sagitatta (Arrow-shaped Micrathena) __ Misumenoides formosipes (White-banded Crab Spider) __ Neoscona crucifera (Spotted Orbweaver) __ Phidippus audax (Bold Jumping Spider) __ Phidippus otiosus (Canopy Jumping Spider) __ Phidippus putnami (Putnam’s Jumping Spider) __ Platycryptus undatus (Tan Jumping Spider) __ Pardosa sp. (Thin-legged Wolf Spider) __ Pirata sp. (Pirate Wolf Spider) __ Rabidosa rabida (Rabid Wolf Spider) __ Schizocosa crassipes (Brush-footed Wolf Spider) __ Synema parvulum (Black-banded Crab Spider) __ Tetragnatha sp.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • Arthropods of Elm Fork Preserve
    Arthropods of Elm Fork Preserve Arthropods are characterized by having jointed limbs and exoskeletons. They include a diverse assortment of creatures: Insects, spiders, crustaceans (crayfish, crabs, pill bugs), centipedes and millipedes among others. Column Headings Scientific Name: The phenomenal diversity of arthropods, creates numerous difficulties in the determination of species. Positive identification is often achieved only by specialists using obscure monographs to ‘key out’ a species by examining microscopic differences in anatomy. For our purposes in this survey of the fauna, classification at a lower level of resolution still yields valuable information. For instance, knowing that ant lions belong to the Family, Myrmeleontidae, allows us to quickly look them up on the Internet and be confident we are not being fooled by a common name that may also apply to some other, unrelated something. With the Family name firmly in hand, we may explore the natural history of ant lions without needing to know exactly which species we are viewing. In some instances identification is only readily available at an even higher ranking such as Class. Millipedes are in the Class Diplopoda. There are many Orders (O) of millipedes and they are not easily differentiated so this entry is best left at the rank of Class. A great deal of taxonomic reorganization has been occurring lately with advances in DNA analysis pointing out underlying connections and differences that were previously unrealized. For this reason, all other rankings aside from Family, Genus and Species have been omitted from the interior of the tables since many of these ranks are in a state of flux.
    [Show full text]
  • Visual Reactions to Auditory Stimulus by the Jumping Spider Phidippus Princeps (Araneae, Salticidae)
    Visual reactions to auditory stimulus by the jumping spider Phidippus princeps (Araneae, Salticidae) Philip Denbaum Degree project in biology, Master of science (2 years), 2019 Examensarbete i biologi 45 hp till masterexamen, 2019 Biology Education Centre, Uppsala University, and Elizabeth Jakob lab, University of Massachusetts Supervisors: Elizabeth Jakob and Anders Berglund External opponent: Emilie Laurent & Julian Baur Table of contents Abstract 2 Introduction 3 Methods and Materials 5 Spider collection and care 5 General experimental setup 5 Overview of the eyetracker 5 Securing the spider 6 Aligning spider and finding retinas 6 Experiment 7 Data analysis 8 Statistical analyses 9 Results 10 Analysis 1 10 Analysis 2 13 Discussion 14 Future studies 15 Conclusions 16 Acknowledgements 16 References 17 Appendix 19 !1 Abstract Jumping spiders (Family Salticidae) are known for their exceptional vision, including color vision and spatial acuity. Salticids use their vision in many behaviors, including predation and courtship. Recently evidence of their ability to sense airborne vibrations, i.e. sound, was published. I used a specialized jumping-spider-specific eyetracker to study the visual reaction of the retinas of the jumping spider Phidippus princeps when exposed to the sound of a predator. I used a generic wasp sound, previously shown to induce a startle response, as stimulus and played it from different directions. The spiders showed strong reactions to the sound stimulus by large increases in retinal movement when exposed to the stimulus, and they showed no habituation to the stimulus over three rounds of exposure. However, I found no indication that the direction of retinal movement corresponded to the location of the sound source.
    [Show full text]
  • Natural Prey of the Jumping Spider Menemerus Semilimbatus (Hahn, 1827) (Araneae: Salticidae), with Notes on Its Unusual Predatory Behaviour
    EUROPEAN ARACHNOLOGY 2003 (LOGUNOV D.V. & PENNEY D. eds.), pp. 93100. © ARTHROPODA SELECTA (Special Issue No.1, 2004). ISSN 0136-006X (Proceedings of the 21st European Colloquium of Arachnology, St.-Petersburg, 49 August 2003) Natural prey of the jumping spider Menemerus semilimbatus (Hahn, 1827) (Araneae: Salticidae), with notes on its unusual predatory behaviour Åñòåñòâåííàÿ äîáû÷à ïàóêà ñêàêóí÷èêà Menemerus semilimbatus (Hahn, 1827) (Araneae: Salticidae) ñ çàìåòêàìè î åãî íåîáû÷íîì õèùíè÷åñêîì ïîâåäåíèè E.F. GUSEINOV Ý.Ô. ÃÓÑÅÉÍΠInstitute of Zoology, Azerbaijan Academy of Sciences, block 504, passage 1128, Baku 370073, Azerbaijan. email: [email protected] Èíñòèòóò çîîëîãèè ÍÀÍ Àçåðáàéäæàíà, êâàðòàë 504, ïðîåçä 1128, Áàêó 370073, Àçåðáàéäæàí. email: [email protected] ABSTRACT. Prey composition and the hunting behaviour of the jumping spider, Menemerus semilimbatus, which inhabits stone walls was studied. Less than 10% of the specimens in the population studied were observed feeding. Adult males fed significantly less frequently than adult females and juveniles. Diptera, the dominant prey group, accounted for more than 70% of all prey consumed. No other single prey type was present in significant numbers. M. semilimbatus adopts a specialized predatory behaviour towards flies that is unusual for salticids. This behaviour depends on how the fly is orientated towards the spider. If the fly is facing away from the spider, M. semilimbatus approaches it directly. When the fly is facing the spider, M. semilimbatus keeps its distance and encircles it until the prey is facing away from the spider. Only then, will the spider start to approach the fly directly. The specific habitat of M.
    [Show full text]
  • Ecology and Role of the Rove Beetle, Dalotia Coriaria, and Insidious Flower Bug, Orius Insidiosus, in Greenhouse Biological Control Programs
    Advances in Entomology, 2017, 5, 115-126 http://www.scirp.org/journal/ae ISSN Online: 2331-2017 ISSN Print: 2331-1991 Ecology and Role of the Rove Beetle, Dalotia coriaria, and Insidious Flower Bug, Orius insidiosus, in Greenhouse Biological Control Programs Raymond A. Cloyd*, Nathan J. Herrick Department of Entomology, Kansas State University, Manhattan, KS, USA How to cite this paper: Cloyd, R.A. and Abstract Herrick, N.J. (2017) Ecology and Role of the Rove Beetle, Dalotia coriaria, and Insidious Greenhouse production systems typically involve growing multiple crop types Flower Bug, Orius insidiosus, in Greenhouse simultaneously, including ornamentals and vegetables. Therefore, greenhouse Biological Control Programs. Advances in producers commonly deal with multiple pest complexes. Two important insect Entomology, 5, 115-126. https://doi.org/10.4236/ae.2017.54012 pests of greenhouse-grown horticultural crops are fungus gnats (Bradysia spp.) and western flower thrips (Frankliniella occidentalis). A plant protection Received: July 6, 2017 strategy that can be used to manage both pests is biological control. The rove Accepted: August 7, 2017 Published: August 10, 2017 beetle (Dalotia coriaria) and insidious flower bug (Orius insidiosus) are generalist predators commercially available for use in greenhouse production Copyright © 2017 by authors and systems targeting fungus gnats and the western flower thrips. This article Scientific Research Publishing Inc. describes the biology, behavior, ecology, and role of both natural enemies in This work is licensed under the Creative Commons Attribution International greenhouse production systems, and discusses the direct and indirect effects License (CC BY 4.0). of pesticides (insecticides, miticides, and fungicides) on D.
    [Show full text]
  • Carpophilus Mutilatus) (Coleoptera: Nitidulidae) in Relation to Different Concentrations of Carbon Dioxide (CO2) - 6443
    Nor-Atikah et al.: Evaluation on colour changes, survival rate and life span of the confused sap beetle (Carpophilus mutilatus) (Coleoptera: Nitidulidae) in relation to different concentrations of carbon dioxide (CO2) - 6443 - EVALUATION OF COLOUR CHANGES, SURVIVAL RATE AND LIFE SPAN OF THE CONFUSED SAP BEETLE (Carpophilus mutilatus) (COLEOPTERA: NITIDULIDAE) IN DIFFERENT CONCENTRATIONS OF CARBON DIOXIDE (CO2) NOR-ATIKAH, A. R. – HALIM, M. – NUR-HASYIMAH, H. – YAAKOP, S.* Centre for Insect Systematics, Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia *Corresponding author e-mail: [email protected]; phone: +60-389-215-698 (Received 8th Apr 2020; accepted 13th Aug 2020) Abstract. This study conducted in a rearing room (RR) (300-410 ppm) and in an open roof ventilation greenhouse system (ORVS) (800-950 ppm). No changes observed on Carpophilus mutilatus colouration after treatment in the ORVS. The survival rate increased from 61.59% in the F1 to 73.05% in the F2 generation reared in the RR. However, a sharp decline was observed from 27.05% in F1 to 1.5% in F2 in the ORVS. There was significant difference in number of individuals between RR and ORVS in F1 and F2 (F 12.76 p= 0.001< 0.05). The life span of F1 and F2 in the RR took about 46 days to complete; 7-21 days from adult to larvae stage, 5-15 days from the larval to pupal stage and 3-10 days from adult to pupal stage. Whereas in ORVS, F1 and F2 took about 30 and 22 days, respectively to complete their life cycles; that is 7-14, 7-14 days (adult to larval stage), 5-10, 0-5 days (larval to pupal stage) and 3-6, 0-3 days (pupal to adult stage), respectively.
    [Show full text]
  • Life History of Phidippus Johnsoni (Araneae, Salticidae )
    Jackson, R . R . 1978 . The life history of Phidippus johnsoni (Araneae : Saltiicidae) . J. Arachnol. 6 :1-29 . LIFE HISTORY OF PHIDIPPUS JOHNSONI (ARANEAE, SALTICIDAE ) Robert R. Jackson ' Department of Zoology University of California, Berkeley Berkeley, California 9472 0 ABSTRACT In the laboratory, P. johnsoni oviposit successive batches of eggs with a trend toward a decrease i n both number of eggs and proportion of eggs that hatch in later batches . Approximately one month elapses between copulation and the first oviposition, and another month elapses between each succes- sive oviposition . Eggs hatch three weeks after oviposition, and spiderlings disperse from the materna l nest after another three weeks. Males mature earlier, pass through fewer molts, reach smaller adult siz e and have lesser adult longevity than females . There is considerable intrasexual variability in adult size , maturation time, and number of instars before reaching maturity . Males mature in 5 to 7 molts; females, 6 to 8 . Instar duration and variability in instar duration is greater in later than in earlier instars. Morphometric data from the laboratory were employed for estimating the number of molt s that spiders undergo in the Coastal Range of California . Spiders in nature matured later in the year an d probably passed through more molts before reaching maturity (6 to 8 for males ; 7 to 9 for females) than was the case for laboratory-reared spiders . Phenology and density were investigated in six popula- tions : two from the Coastal Range of California, two from Beach habitats (sea level, next to th e ocean) in California, and two from Alpine habitats (Sierra Nevada, California ; Rocky Mountains, Wyoming) .
    [Show full text]