Juno Mission Overview

Total Page:16

File Type:pdf, Size:1020Kb

Juno Mission Overview Juno Mission Overview Wil Santiago Juno Operations Team May 6, 2017 Wil’s Background Name: Wilfredo ‘Wil’ Santiago From: Puerto Rico College: Embry-Riddle Aeronautical University, Daytona Beach, Florida Degree: Bachelor of Science in Aerospace Engineering Projects: Past: Orion Multi-Purpose Crew Vehicle, Commercial Crew (CST-100 Starliner) Present: Juno, Mars Reconnaissance Orbiter, Mars Odyssey, Spitzer Space Telescope Current Engineering Role: Mission Operations Thermal Engineer Hobbies: Photography, hiking, traveling Jupiter: Into the Unknown Juno Mission Highlights • First solar-powered mission to Jupiter • Eight science instruments and an education / public outreach camera • Spinning, polar orbiting spacecraft – Launched on 8/5/11 – 5-year cruise to Jupiter, 7/4/16 – Expecting over 3 years of science operations – Passes very close to Jupiter (~5000km) once every 53 days, in a highly elliptical orbit Spacecraft & Payload 5 Juno’s Flight Plan or Trajectory • Five-year trek that loops once around the inner solar system before heading to Jupiter • Why does it take so long??? – A direct path would have required a much more powerful launch vehicle – Using Earth’s gravity for a boost makes the trip longer, but is energy efficient! Radiation To accomplish its science objectives, Juno orbits over Jupiter’s poles and passes very close to the planet. The elliptical orbit minimizes the exposure to the radiation belts early in the mission. Orbits 1, 16 and 31 pictured Juno’s Special Passengers Galileo, Juno and Jupiter JunoCam Recent Images Jupiter’s North Pole Jupiter’s South Pole JunoCam Recent Images Juno Orbit Insertion Fly along with Juno Juno is part of NASA’s 3D interactive, Eyes on the Solar System… solarsystem.nasa.gov/eyes For more information… Juno mission website: missionjuno.swri.edu JunoCam website: https://www.missionjuno. swri.edu/junocam (You can actively participate in the mission! Upload your images of Jupiter and help us decide what points of interest JunoCam will photograph.) .
Recommended publications
  • Mission to Jupiter
    This book attempts to convey the creativity, Project A History of the Galileo Jupiter: To Mission The Galileo mission to Jupiter explored leadership, and vision that were necessary for the an exciting new frontier, had a major impact mission’s success. It is a book about dedicated people on planetary science, and provided invaluable and their scientific and engineering achievements. lessons for the design of spacecraft. This The Galileo mission faced many significant problems. mission amassed so many scientific firsts and Some of the most brilliant accomplishments and key discoveries that it can truly be called one of “work-arounds” of the Galileo staff occurred the most impressive feats of exploration of the precisely when these challenges arose. Throughout 20th century. In the words of John Casani, the the mission, engineers and scientists found ways to original project manager of the mission, “Galileo keep the spacecraft operational from a distance of was a way of demonstrating . just what U.S. nearly half a billion miles, enabling one of the most technology was capable of doing.” An engineer impressive voyages of scientific discovery. on the Galileo team expressed more personal * * * * * sentiments when she said, “I had never been a Michael Meltzer is an environmental part of something with such great scope . To scientist who has been writing about science know that the whole world was watching and and technology for nearly 30 years. His books hoping with us that this would work. We were and articles have investigated topics that include doing something for all mankind.” designing solar houses, preventing pollution in When Galileo lifted off from Kennedy electroplating shops, catching salmon with sonar and Space Center on 18 October 1989, it began an radar, and developing a sensor for examining Space interplanetary voyage that took it to Venus, to Michael Meltzer Michael Shuttle engines.
    [Show full text]
  • Juno Telecommunications
    The cover The cover is an artist’s conception of Juno in orbit around Jupiter.1 The photovoltaic panels are extended and pointed within a few degrees of the Sun while the high-gain antenna is pointed at the Earth. 1 The picture is titled Juno Mission to Jupiter. See http://www.jpl.nasa.gov/spaceimages/details.php?id=PIA13087 for the cover art and an accompanying mission overview. DESCANSO Design and Performance Summary Series Article 16 Juno Telecommunications Ryan Mukai David Hansen Anthony Mittskus Jim Taylor Monika Danos Jet Propulsion Laboratory California Institute of Technology Pasadena, California National Aeronautics and Space Administration Jet Propulsion Laboratory California Institute of Technology Pasadena, California October 2012 This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not constitute or imply endorsement by the United States Government or the Jet Propulsion Laboratory, California Institute of Technology. Copyright 2012 California Institute of Technology. Government sponsorship acknowledged. DESCANSO DESIGN AND PERFORMANCE SUMMARY SERIES Issued by the Deep Space Communications and Navigation Systems Center of Excellence Jet Propulsion Laboratory California Institute of Technology Joseph H. Yuen, Editor-in-Chief Published Articles in This Series Article 1—“Mars Global
    [Show full text]
  • Atlas V Juno Mission Overview
    Mission Overview Atlas V Juno Cape Canaveral Air Force Station, FL United Launch Alliance (ULA) is proud to be a part of NASA’s Juno mission. Following launch on an Atlas V 551 and a fi ve-year cruise in space, Juno will improve our understanding of the our solar system’s beginnings by revealing the origin and evolution of its largest planet, Jupiter. Juno is the second of fi ve critical missions ULA is scheduled to launch for NASA in 2011. These missions will address important questions of science — ranging from climate and weather on planet earth to life on other planets and the origins of the solar system. This team is focused on attaining Perfect Product Delivery for the Juno mission, which includes a relentless focus on mission success (the perfect product) and also excellence and continuous improvement in meeting all of the needs of our customers (the perfect delivery). My thanks to the entire ULA team and our mission partners, for their dedication in bringing Juno to launch, and to NASA making possible this extraordinary mission. Mission Overview Go Atlas, Go Centaur, Go Juno! U.S. Airforce Jim Sponnick Vice President, Mission Operations 1 Atlas V AEHF-1 JUNO SPACECRAFT | Overview The Juno spacecraft will provide the most detailed observations to date of Jupiter, the solar system’s largest planet. Additionally, as Jupiter was most likely the fi rst planet to form, Juno’s fi ndings will shed light on the history and evolution of the entire solar system. Following a fi ve-year long cruise to Jupiter, which will include a gravity-assisting Earth fl y-by, Juno will enter into a polar orbit around the planet, completing 33 orbits during its science phase before being commanded to enter Jupiter’s atmosphere for mission completion.
    [Show full text]
  • Lessons Learned from the Juno Project
    Lessons Learned from the Juno Project Presented by: William McAlpine Insoo Jun EJSM Instrument Workshop January 18‐20, 2010 © 2010 All rights reserved. Pre‐decisional, For Planning and Discussion Purposes Only Y‐1 Topics Covered • Radiation environment • Radiation control program • Radiation control program lessons learned Pre‐decisional, For Planning and Discussion Purposes Only Y‐2 Juno Radiation Environments Pre‐decisional, For Planning and Discussion Purposes Only Y‐3 Radiation Environment Comparison • Juno TID environment is about a factor of 5 less than JEO • Juno peak flux rate is about a factor of 3 above JEO Pre‐decisional, For Planning and Discussion Purposes Only Y‐4 Approach for Mitigating Radiation (1) • Assign a radiation control manager to act as a focal point for radiation related activities and issues across the Project early in the lifecycle – Requirements, EEE parts, materials, environments, and verification • Establish a radiation advisory board to address challenging radiation control issues • Hold external reviews for challenging radiation control issues • Establish a radiation control process that defines environments, defines requirements, and radiation requirements verification documentation • Design the mission trajectory to minimize the radiation exposure Pre‐decisional, For Planning and Discussion Purposes Only Y‐5 Approach for Mitigating Radiation (2) • Optimize shielding design to accommodate cumulative total ionizing dose and displacement damage dose and instantaneous charged particle fluxes near Perijove
    [Show full text]
  • Juno Spacecraft Description
    Juno Spacecraft Description By Bill Kurth 2012-06-01 Juno Spacecraft (ID=JNO) Description The majority of the text in this file was extracted from the Juno Mission Plan Document, S. Stephens, 29 March 2012. [JPL D-35556] Overview For most Juno experiments, data were collected by instruments on the spacecraft then relayed via the orbiter telemetry system to stations of the NASA Deep Space Network (DSN). Radio Science required the DSN for its data acquisition on the ground. The following sections provide an overview, first of the orbiter, then the science instruments, and finally the DSN ground system. Juno launched on 5 August 2011. The spacecraft uses a deltaV-EGA trajectory consisting of a two-part deep space maneuver on 30 August and 14 September 2012 followed by an Earth gravity assist on 9 October 2013 at an altitude of 559 km. Jupiter arrival is on 5 July 2016 using two 53.5-day capture orbits prior to commencing operations for a 1.3-(Earth) year-long prime mission comprising 32 high inclination, high eccentricity orbits of Jupiter. The orbit is polar (90 degree inclination) with a periapsis altitude of 4200-8000 km and a semi-major axis of 23.4 RJ (Jovian radius) giving an orbital period of 13.965 days. The primary science is acquired for approximately 6 hours centered on each periapsis although fields and particles data are acquired at low rates for the remaining apoapsis portion of each orbit. Juno is a spin-stabilized spacecraft equipped for 8 diverse science investigations plus a camera included for education and public outreach.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • A Possible Flyby Anomaly for Juno at Jupiter
    A possible flyby anomaly for Juno at Jupiter L. Acedo,∗ P. Piqueras and J. A. Mora˜no Instituto Universitario de Matem´atica Multidisciplinar, Building 8G, 2o Floor, Camino de Vera, Universitat Polit`ecnica de Val`encia, Valencia, Spain December 14, 2017 Abstract In the last decades there have been an increasing interest in im- proving the accuracy of spacecraft navigation and trajectory data. In the course of this plan some anomalies have been found that cannot, in principle, be explained in the context of the most accurate orbital models including all known effects from classical dynamics and general relativity. Of particular interest for its puzzling nature, and the lack of any accepted explanation for the moment, is the flyby anomaly discov- ered in some spacecraft flybys of the Earth over the course of twenty years. This anomaly manifest itself as the impossibility of matching the pre and post-encounter Doppler tracking and ranging data within a single orbit but, on the contrary, a difference of a few mm/s in the asymptotic velocities is required to perform the fitting. Nevertheless, no dedicated missions have been carried out to eluci- arXiv:1711.08893v2 [astro-ph.EP] 13 Dec 2017 date the origin of this phenomenon with the objective either of revising our understanding of gravity or to improve the accuracy of spacecraft Doppler tracking by revealing a conventional origin. With the occasion of the Juno mission arrival at Jupiter and the close flybys of this planet, that are currently been performed, we have developed an orbital model suited to the time window close to the ∗E-mail: [email protected] 1 perijove.
    [Show full text]
  • Design and Status of JUNO
    Design and Status of JUNO Hans Theodor Josef Steiger on behalf of the JUNO Collaboration Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching, Germany [email protected] Abstract. The Jiangmen Underground Neutrino Observatory (JUNO) is a 20 kton multi- purpose liquid scintillator detector currently being built in a dedicated underground laboratory in Jiangmen (PR China). JUNO’ s main physics goal is to determine the neutrino mass ordering using electron anti-neutrinos from two nuclear power plants at a baseline of about 53 km. JUNO aims for an unprecedented energy resolution of 3% at 1 MeV for the central detector, with which the mass ordering can be measured with 3 – 4 σ significance within six years of operation. Most neutrino oscillation parameters in the solar and atmospheric sectors can also be measured with an accuracy of 1% or better. Furthermore, being the largest liquid scintillator detector of its kind, JUNO will monitor the neutrino sky continuously for contributing to neutrino and multi-messenger astronomy. JUNO’s design as well as the status of its construction will be presented, together with a short excursion into its rich R&D program. 1. The JUNO Project – An Overview The Jiangmen Underground Neutrino Observatory (JUNO) is a Liquid Scintillator Antineutrino Detector currently under construction within a dedicated underground laboratory (~700 m deep) close to Jiangmen city (Guangdong province, PR China). After the completion, it will be the largest liquid scintillator detector ever built, consisting 20 kt target mass made of Linear Alkyl-Benzene (LAB) liquid scintillator (LS), monitored by about 18000 twenty-inch high-quantum efficiency (QE) photo- multiplier tubes (PMTs) and about 26000 three-inch PMTs providing a total photo coverage of ∼78%.
    [Show full text]
  • GRAIL: Achieving a Low Cost GDS Within a Multimission Environment
    Wallace Hu (JPL / Caltech) Patricia Liggett (JPL / Caltech) © 2013 by California Institute of Technology. Published by The Aerospace Corporation with permission. GRAIL : Gravity Recovery and Interior Laboratory . NASA Discovery Program . Two spacecrafts working in tandem to determine the structure and interior of Moon, and thermal evolution ▪ Spacecrafts provided by Lockheed Martin . Sally Ride Science (SRS) MoonKam ▪ Education Public Outreach ▪ Middle School students Identified points of interest on the moon ▪ 4 MoonKAM camera per spacecraft . Launched: September 10, 2011 . Completed: December 17, 2012 Successfully obtained gravity map of the Moon at a level of detail never obtained before GRAIL: Achieving a Low Cost GDS within a Multimission Env 2 . GRAIL ▪ MGSS (Multimission Ground System and Services) ▪ DSN (Deep Space Network) ▪ LM (Lockheed Martin) –External Partner GRAIL GDS (JPL) JPL LM MGSS DSN DSN ‐ Deep Space Network LM ‐ Lockheed Martin MOS ‐ Mission Operations System SDS ‐ Science Data Systems SRS ‐ Sally Ride Science GRAIL: Achieving a Low Cost GDS within a Multimission EnvDiagram courtesy of Glen Havens 3 MGSS (Multimission Ground System and Services ) . Shared Tools ▪ AMMOS (Advanced Multimission Operations System) ▪ Spacecraft Operations and Analysis ▪ Sequence generation ▪ Navigation . Shared Services (GRAIL / Odyssey / Juno) ▪ Delivery and Deployment ▪ Coordinated the deployment and delivery of AMMOS and Third Party Software to test and operational venues Planned and presented test and delivery review and ensure
    [Show full text]
  • Juno User Guide
    USER GUIDE Juno™ series Juno SB handheld Juno SC handheld NORTH & SOUTH AMERICA EUROPE & AFRICA ASIA-PACIFIC & MIDDLE EAST Trimble Navigation Limited Trimble GmbH Trimble Navigation 10355 Westmoor Drive Am Prime Parc 11 Singapore PTE Limited Suite #100 65479 Raunheim 80 Marine Parade Road Westminster, CO 80021 GERMANY #22-06 Parkway Parade USA Singapore, 449269 SINGAPORE www.trimble.com USER GUIDE Juno™ series Juno SB handheld Juno SC handheld Version 1.00 Revision B October 2008 F Trimble Navigation Limited Trimble; (ii) the operation of the Product under any specification other 10355 Westmoor Drive than, or in addition to, Trimble's standard specifications for its products; Suite #100 (iii) the unauthorized installation, modification, or use of the Product; Westminster, CO 80021 (iv) damage caused by: accident, lightning or other electrical discharge, USA fresh or salt water immersion or spray (outside of Product www.trimble.com specifications); or exposure to environmental conditions for which the Product is not intended; (v) normal wear and tear on consumable parts Legal Notices (e.g., batteries); or (vi) cosmetic damage. Trimble does not warrant or Copyright and Trademarks guarantee the results obtained through the use of the Product or Software, or that software components will operate error free. © 2008, Trimble Navigation Limited. All rights reserved. NOTICE REGARDING PRODUCTS EQUIPPED WITH TECHNOLOGY Trimble, the Globe & Triangle logo, and GPS Pathfinder are trademarks CAPABLE OF TRACKING SATELLITE SIGNALS FROM SATELLITE BASED of Trimble Navigation Limited, registered in the United States and in AUGMENTATION SYSTEMS (SBAS) (WAAS/EGNOS, AND MSAS), other countries. EVEREST, GeoBeacon, GeoXH, GeoXM, GeoXT, GPS OMNISTAR, GPS, MODERNIZED GPS OR GLONASS SATELLITES, OR Analyst, GPScorrect, H-Star, Juno, TerraSync, TrimPix, VRS, and Zephyr FROM IALA BEACON SOURCES: TRIMBLE IS NOT RESPONSIBLE FOR are trademarks of Trimble Navigation Limited.
    [Show full text]
  • Galileo Telecommunications
    Chapter 4 Galileo Telecommunications Jim Taylor, Kar-Ming Cheung, and Dongae Seo 4.1 Mission and Spacecraft Description This chapter describes how the Galileo orbiter received and transmitted data with the Deep Space Network (DSN). The relay communications subsystems and the link between the Galileo probe and the orbiter are also described briefly. The chapter is at a functional level, intended to illuminate the unique mission requirements and constraints that led to both design of the communications system and how the mission had to be modified and operated in flight. Augmenting the spacecraft downlink design and the supporting ground system for science return with only the low-gain antenna (LGA) was a particular challenge for the Galileo planetary mission. The Galileo orbiter was designed and built at the Jet Propulsion Laboratory (JPL) in Pasadena, California, and the Galileo probe was designed and built at the NASA Ames Research Center (ARC) in Sunnyvale, California. The orbiter flight team was located at JPL, as was the probe flight team during that portion of the mission. 4.1.1 The Mission The Galileo spacecraft was launched in 1989 aboard the Space Shuttle Atlantis (STS [Space Transportation System]-34). Its primary objective was to study the Jovian System. The Galileo launch delay after the Challenger Space Shuttle 81 82 Chapter 4 accident in 1986 necessitated a change in the strategy to get Galileo to Jupiter.1 The original strategy was a relatively direct flight to Jupiter with a single gravity assist at Mars. The new mission plan had to work with less propulsion, so it made use of a longer, much less direct flight, with gravitational assists from Venus once and Earth twice, to give the spacecraft enough energy to get to Jupiter.
    [Show full text]
  • Activity 2. Starry Messenger: Close Reading. Teacher's Version
    Activity 2. Starry Messenger: Close Reading. Teacher’s Version Preliminary Notes • This close reading is divided into seven sections of varying length in the left-hand column. Directed questions and explanatory text are found in the right-hand column along with focus questions that respond to CCSS.ELA-Literacy.RST.6-8.4, 7, and 9. • The Launchpad does not contain the question answers or the supplementary comments. It is suggested that the student version of the questions, which appears in the Launchpad version of the handout, be distributed after the close reading of the section(s) at the discretion of the teacher. • Academic vocabulary is bolded only in the teacher’s version; see the Teacher’s and Student version worksheets of the complete lists of vocabulary items. • Call-outs for the handouts of Galileo’s drawings of Orion and the Pleiades are introduced in Section 5 of both the Teacher’s and student version, and in the Launchpad. ****************************************************************************** Suggested Sequence for Close Reading Reading 1 The teacher will model a reading of the entire first section with the class. Instruct them as they read to highlight unfamiliar words or passages. For each chunk of text, have students briefly note what they think it means. Reading 2 Read again the first section aloud to the class, modeling the types of questions that students will be answering when they read the rest of the sections on their own. Individual Readings If feasible, divide the class into small groups of 3 students each and have each group read aloud the six remaining passages to the class, finding answers to the focus questions (right hand column and on their graphic organizer).
    [Show full text]