Spatial for MIMO Wireless Systems

Marco Di Renzo(1), Harald Haas(2) and Ali Ghrayeb(3)

(1) Laboratory of Signals and Systems (L2S), CNRS – SUPÉLEC – University of Paris-Sud XI 3 rue Joliot-Curie, 91192 Gif-sur-Yvette, France marco.direnzo@@plss.supelec.fr

(2) The University of Edinburgh, Institute for Digital Communications (IDCOM) Mayfield Road, Edinburgh, EH9 3JL, UK hhh.haas @e d.ac.u k

(3) Concordia University, Department of Electrical and Computer Engineering 1455 de Maisonneuve West, Montreal, H3G 1M8, Canada [email protected] WCNC, EW, VTC-Spring, ICC, VTC-Fall, CAMAD 2013

IEEE Tutorial Presented at: http://www.fp7-greenet.eu 2 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 3 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 4 (1+SNR) 2 )log r ,N t -(NtNr) Array gain (beamforming), spatial division multiple access Spatial : Rate = min(N Reliability: BEP ~ SNR

Why MIMO?    , 5 y lexit number p py the with linearly Why? . decreases stems is the increased com : RF elements are expensive, bulky, no y complexity efficiency (IAS): Detection algorithms require that all (ICI): Introduced by coupling multiple symbols in energy (RF) chains y processing The : signal – space of conventional MIMO s consumption k and simple to implement, and do not follow Moore’s law. Inter-channel interference time Inter-antenna synchronization symbols are transmitted at the sameMultiple time. radio frequenc Energy of active antennas(>60%) (RF – chains) EARTH model. and it mostly depends on the Power Amplifiers Regardless of thedrawbac use as diversityincreased or power/energy spatial consumption, and multiplexing high system, cost. the main

Very Good, But… Very  6 IEEE Commun. ”, Single RF Front-End MIMO Transceivers , Vol. 49, No. 12, pp. 104-109, Dec. 2011. Conventional MIMO Single-RF MIMO Conventional vs. Single-RF MIMO Single-RF vs. Conventional A. Mohammadi and F. M. Ghannouchi, “ Mag. 7 , Vol. 13, No. 4, pp. 524-540, Nov. 2011. Green Cellular Networks: A Survey, Some Research IEEE Commun. Surveys & Tutorials ”,

The Energy Efficiency (EE) Challenge (1/3) Issues and Challenges Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “ 8 BS Power Consumption , Vol. 13, No. 4, pp. 524-540, Nov. 2011. Green Cellular Networks: A Survey, Some Research IEEE Commun. Surveys & Tutorials ”,

The Energy Efficiency (EE) Challenge (2/3) Issues and Challenges Z. Hasan, H. Boostanimehr, and V. K. Bhargava, “ : 9 IEEE VTC- ”, R2-094677 from Huawei ", 2011. y eNB power saving by changing antenna number Theoretical and Practical Considerations for the Design of Green Radio Networks , Budapest, Hungary, Ma g

The Energy Efficiency (EE) Challenge (3/3) http://www.3gpp.org/ftp/tsg_ran/WG2_RL2/TSGR2_67/Tdoclist/History/ADN_Tdoc_List_RAN2_67.htm. 3GPP TSG-RAN WG2 #67, " S. D. Gray, “ 2011 Sprin 10 , vol. 60 n. 5, pp. 1345-1356, May 2012. On the energy efficiency-spectral efficiency trade-off over the IEEE Trans. Commun. ”, MIMO Gain WITHOUT Considering Circuit Power

Static Power: How Much Is It Important How Power: ?(1/2) Static F.Heliot,M.A.Imran,andR.Tafazolli,“ MIMO rayleigh fading channel 11 , vol. 60 n. 5, pp. 1345-1356, May 2012. On the energy efficiency-spectral efficiency trade-off over the IEEE Trans. Commun. ”, MIMO Gain Considering Circuit Power

Static Power: How Much Is It Important How Power: ?(2/2) Static F.Heliot,M.A.Imran,andR.Tafazolli,“ MIMO rayleigh fading channel 12 ith the w ,vol.49,no.6, .Ithasbeen s: . g i . EE is the noise power e 0 h  scenarios y, t l SE   SE

SE  IEEE Commun. Mag. various  21  ”,  0 for onsequent N lead to transmittin Cl C s. y  0 b/ P NB  BR perspective R 2 2 = 2    21 hich ma  2 C w 0 s i N , y theoretic t i -  P CR 12 log 1 12  capac  l  EE constraints R anne information  r hl h the ec h owe p Fundamental Tradeoffs on Green Wireless Networks from e ore, t f g ere SE-oriented systems areavera designed to maximizemaximum the allowed power capacity for under long periods, peakEE thus is or deviate commonly from defined EEstudied as design. information bits per unitFor of an transmit additive energy whitegiven transmit Gaussian power, P, noise and system (AWGN) bandwidth, channel, B, it the channel is capacity well is: known that for a bits per real dimension or degrees ofTh freedom (DOF), where f N It follows that the EE decreases monotonically with R (i.e., with SE) spectral density. According to the Nyquist sampling theory, DOF per second is 2B.

SE vs. EE Tradeoff (1/2)      Y. Chen et al., “ pp. 30–37, June 2011. 13 IEEE ", , Vol. 18, No. 6, pp. 28-35, Dec. 2011. Energy-Efficient Wireless Communications: Tutorial, Survey, and Open Issues

SE vs. EE Tradeoff (2/2) G. Y. Li et al., " Wireless Commun. Mag. d 14 ng an i ormance f ex l er ty i p p i t lil l i ex li l e ibl g li ibl

or mu ) f ng comp neg SM di ( h t eco ih i ddi d ements w l (PSK) e-stream l ng atial Modulation t-antenna e on il i i i p p() s S at h l t ih i u dld i transm ll has the inherent potential to meet these goals ta i ope mo l o ormance w li l f er degradation Having one (orexp few) activetransmit-diversity RF gains chains but still being able to Offering Maximum-Likelihoodp (ML) optimumWorking decoding withoutmodulation schemes the (QAM)enve need or allowing of us to (power use constant- inefficient) linear

Now, Imagine a New Modulation for MIMOs: Now,    l l 15 a a i ti pa pat Stil S Sil S Diversity Transmit Modulation Multiplexing S1 S1 S1 S2 S2 0 1 * * S1 -S2 ime T Block - ace- p Time Vertical - Coding Spatial S2 = 0/1 Orthogonal ered S Modulation y yp Bell Laboratories Bell Laboratories La Space S1 S1 S1 S2 S2 SM – In a Nutshell S2 16 Re Tx0

) for

) ) 00 Re ( 00 00 ( ( 00 11 01 ) 00 ( Constellation Re

10 Tx3

Signal Constellation for Tx0 for )

) ) 11 ( Im 11 11 ( ( 00 11 01 Signal Constellation for Tx1 (Tx0) ) 11 00 ( Constellation

10 Im Spatial Modulation for Multiple-Antenna Wireless Systems - A , Vol. 49, No. 12, pp. 182-191, December 2011. Signal Constellation for Tx3 (Tx1) 01 (Tx2) 10 Im (Tx3) 11 Spatial Constellation IEEE Communications Magazine ”,

SM – (3D Constellation Diagram) It Works How Survey M. Di Renzo, H. Haas, and P. M. Grant, “ 17 Re Tx0

) for

) ) 00 Re ( 00 00 ( ( 00 11 01 ) 00 ( Constellation Re

10 Tx3

Signal Constellation for Tx0 for )

) ) 11 ( Im 11 11 ( ( 00 11 01 Signal Constellation for Tx1 (Tx0) ) 11 00 ( Constellation

10 Im Spatial Modulation for Multiple-Antenna Wireless Systems - A , Vol. 49, No. 12, pp. 182-191, December 2011. Signal Constellation for Tx3 (Tx1) 01 (Tx2) 10 Im (Tx3) 11 Spatial Constellation IEEE Communications Magazine ”,

SM – (1/3) It Works How … 1110 0001 … 0001 … 1110 Survey M. Di Renzo, H. Haas, and P. M. Grant, “ 18 Re Tx0

) for

) ) 00 Re ( 00 00 ( ( 00 11 01 ) 00 ( Constellation Re

10 Tx3

Signal Constellation for Tx0 for )

) ) 11 ( Im 11 11 ( ( 00 11 01 Signal Constellation for Tx1 (Tx0) ) 11 00 ( Constellation

10 Im Spatial Modulation for Multiple-Antenna Wireless Systems - A , Vol. 49, No. 12, pp. 182-191, December 2011. Signal Constellation for Tx3 (Tx1) 01 (Tx2) 10 Im 0001 … (Tx3) 11 10 Spatial Constellation IEEE Communications Magazine 11 ”,

SM – (2/3) It Works How … Survey M. Di Renzo, H. Haas, and P. M. Grant, “ 19 Re Tx0

) for

) ) 00 Re ( 00 00 ( ( 00 11 01 ) 00 ( Constellation Re

10 Tx3

Signal Constellation for Tx0 for )

) ) 11 ( Im 11 11 ( ( 00 11 01 Signal Constellation for Tx1 (Tx0) ) 11 00 ( Constellation

10 Im Spatial Modulation for Multiple-Antenna Wireless Systems - A , Vol. 49, No. 12, pp. 182-191, December 2011. Signal Constellation for Tx3 (Tx1) 01 … (Tx2) 10 01 Im 00 (Tx3) 11 Spatial Constellation IEEE Communications Magazine ”,

SM – (3/3) It Works How … 1110 Survey M. Di Renzo, H. Haas, and P. M. Grant, “ 20 (M) 2 og l + )l ) t Transmitter (BPSK) (N

2 SIGNAL 1(BPSK) 1 - SELECTION og l 1 001010100111010111 … 1 10 SM MAPPER BINARY SOURCE BINARY 10 … 100101011100110010 Tx2 ANTENNA SELECTION

SM – Transmitter 21 x3 Communication Channel T Tx3 Tx2 Tx2 Rx Tx1 Wireless Channel Tx1 Tx0 Tx0

SM – Wireless Channel } 22 (±) Di { Receiver Compute min ) 2) x x3 T2) T T +Tx1) - , , x,- Rx (R ( (, stance distance(Rx di (R

Detection = distance(Rx,+Tx0) = distance(Rx,+Tx2) = distance(Rx,+Tx3) = distance(Rx +Tx1) = distance(Rx,-Tx0) = = distance = distance(Rx,-Tx1) ) ) - + (+) (-) (+) ( (+) (-) ( () (-) D2 D0 D1 D1 D2 D3 D0 D3 Rx a priori CSI

SM – Receiver . 23 g) (M) 2 lexin tradeoff ? p pg) ? )+log t ons (N ractical? ti 2 -multi p l ca SE/EE iti? i atia p s good ( (p a p antennas for y ave commun en-loo Or W p mm- the end-to-end performance. In SM, t (M) bpcu – SM: log 2 MIMO? - ou .SMiso bt b y) a log t EE t a is SM more sensitive to channel estimation , For Wh t ? s MIMO? - MIMO ? transmit-diversit ( SE mechanism ve i p g for mass t (M) bpcu – MIMO: N ou 2 looking bt b a t we a AS is closed-loo antenna switching depends on the incoming bit-stream. T In TAS, antenna switching depends on Correct. Butconsumption, and what energy efficiency about (EE)? Are signal processing complexity, cost, total power What does fair mean? Same transmit-antennas?Wh Same RF t chains? No, it is as/more robust as/than MIMO and we have results proving it.        What is the difference with Transmit Antenna Selection (TAS)? SIMO: log SM needs manysame more SE. Is transmit-antennas the than comparison fair? conventional Is MIMO having so for man the Due to the encodin errors than conventional MIMO? bpcu. So, SM is spectral efficiency (SE) sub-optimal. Why using it?

Common Misunderstandings     : 24 MIMO d ze li (large–scale enera illars: Glid G p or . f number of active ” on i reducing the circuit increase both the SE at l y u , July 2013 (to appear). [Online]. d to o r MdlM i diagram l on two main a i p pat Sil S “ in orde anzo, H constellation . - increase the EE b L d elements Proceedings of the IEEE to – ”, r spatial ura, an “ i networks is based u r ug (single–RF MIMO principle). Si S the . in orde S , by b raye assive antenna p Gh b . , given some implementation and size constraints, the , given some performance constraints, the elements A of – r efficient cellula aas, introduced H gy . H power consumption numbe Minimize antenna Maximize and the EE byMIMO reducing principle). the This transmit isgain power realized consumption by capitalizing on the multiplexing enzo, 1) 2) R The rationale behind SM–MIMOand communications ener for the design of spectral Di

Our Proposal: Single-RF Large-Scale SM-MIMO Our Proposal: Single-RF .  M Challenges, Opportunities and Implementation Available: http://hal.archives-ouvertes.fr/docs/00/84/02/78/PDF/ProcIEEE_SM_FullPaper.pdf. , ”, 25 2011 Spring meeting . ”, imited Numbers of Base Station Antennas outube.com/watch?v=U3euDDr0uvo y . w http://ww , vol. 9, no. 11, pp. 3590-3600, Nov. 2010. vailable at: A Noncooperative Cellular Wireless with Unl GreenTouch Initiative: Large Scale Antenna Systems Demonstration

Massive MIMO (1/5) Massive G. Wright “ Seoul, South Korea. T. L. Marzetta, “ IEEE Trans. Wireless Commun. , a 26 es, y bl stem. ,sa y power ca y Scaling up l antennas a il i low ,vol.30,no.1, of ufvesson, “ built toda T affect the s . y g F arge coax l extremely as number h reciabl uses pp y stems bein IEEE Signal Proces. Mag. y unit ”, tems, suc i ould not a lky w antenna unprecedented u blk b .L.Marzetta,O.Edfors,and T d an each , ve an i entails systems expens l .Lau,E.G.Larsson, K MIMO MIMO nitude more elements than in s g a few of the antenna units r large large onus, severa of ma b r very sa of the order of mW. With very large MIMO,orde we think of systemshundred that antennas or use more. antenna arrays with an Very simultaneously serving a much smaller number of terminals. In A Very-large MIMO designs canof be one made o extremelyMalfunctioning robust individual antennas in may that be the hotswapped. failure can be eliminatedbase altogether. stations today (The are coaxial up to cables four used centimeters in for diameter). tower-mounted

Massive MIMO (2/5) Massive .Rusek,D.Persson,B.      http://www.commsys.isy.liu.se/~egl/vlm/vlm.html. F MIMO: Opportunities and Challenges with Very Large Arrays pp. 40–46, Jan. 2013. ”, 27 defeat all detection y neighboring user in . of pilots forms ould eventuall w transmitters using - r re simplest imited Numbers of Base Station Antennas from the , arising antennas interference from othe of y , vol. 9, no. 11, pp. 3590-3600, Nov. 2010. interference by number limited b y limited Noncooperative Cellular Wireless with Unl infinite an redominantl noise and fading, and eliminate both intra-and inter-cell interference. The main effectnoise of and scaling fast up fadingp the can dimensions be is averaged that out uncorrelated and thermalIf vanish so we that could thecell assign then system an large is orthogonal numbers pilot of sequence base to station every antennas terminal inBut every there are notsequences enough orthogonal have pilotbecomes to sequences for be allcells terminals. reused. (pilot Pilot contamination problem). The performanceWith of aand precoding, very i.e., matched largeoptimal. filtering (MF) array and eigenbeamforming, become Spectral efficiencytransmitted energy per is bit vanishes. independent of bandwidth, and the required

Massive MIMO (3/5) Massive      T. L. Marzetta, “ IEEE Trans. Wireless Commun. ”, 28 : cell x per imited Numbers of Base Station Antennas  x  kk users and const 1 K    K k NK  y  H mm and yhn h 1 N BS , vol. 9, no. 11, pp. 3590-3600, Nov. 2010. per Noncooperative Cellular Wireless with Unl antennas N ance. Uncorrelated interference and noise vanish The matched filter is optimal The transmit power can be made arbitrarily small i hus, with an unlimited number of BS antennas: ar    Consider a MIMOwith Multiple Access (MAC - UPLINK) system where channel and noisev are i.i.d. RVs with zeroBy mean the and strong unit law of large numbers: T

Massive MIMO (4/5) –Massive In Formulas    T. L. Marzetta, “ IEEE Trans. Wireless Commun. ”, 29 rovide the same vanish p is limited by pilot j receivers m  use the same pilot: estimation noise estimation j xx imited Numbers of Base Station Antennas estimation errors ion and and , j m  and const    noise NK , pilot contaminat pilot y  H mm ˆ h minimum mean square 1 N  , vol. 9, no. 11, pp. 3590-3600, Nov. 2010. mm and ˆ hh h n r Noncooperative Cellular Wireless with Unl contamination Uncorrelated interference The performance of the matchedMatched filte filter receiver limiting performance    Assume now that transmitter Thus, by the strong law of large numbers: Thus, with an unlimited number of BS antennas:

Massive MIMO (5/5) –Massive In Formulas    T. L. Marzetta, “ IEEE Trans. Wireless Commun. 30 circuits power -active: multi-RF MIMO y transmit-antennas ) hundreds or more ( y transmit-antennas are simultaneousl l l Many (hundreds or more) transmit-antennas A but antennas are less expensive andEE: more reduction EE of than state-of-the-art transmit (RF) power Man One (or few) transmit-antennasRF are MIMO simultaneously-active: single- EE: reduction of transmit (RF) power and       Massive MIMO: SM-MIMO:

Massive MIMO vs. SM-MIMO (downlink) Massive   , . ut 31 p total This . source from the y ith filters and largest limited out w the differentl is , chains tion of a y p amplifier power MISO solution the some antennas in general are turned off under an assum hole radio frequenc w turn off antennas while operating optimally that . Amplifier–aware multiple–input multiple–output power agrees , is such that as maximized to turn off w eobservethatour y : W , vol. 17, no. 6, pp. 1112-1115, June 2013. literature ossibilit p schemes. information Message on: l i g scientific ut beneficial in cases where dissipated power per antenna is significant ib The mutua IEEE Commun. Lett. . However, in many applications it is desirable to instead limit the . ”, we utilize the analytic expression of amplifier losses to design MIMO ontr Motivation: …the power consumed power, consistingchain of bothof output losses power in the and transmitter. losses in theCibi C transmitter … traditional MRT beamforming Takeaway Theproposedprocedureallowsusto also gives us the mixers, which saves additional power which is beamformin

Power-Amplifier Aware MISO Design MISO Aware Power-Amplifier    allocation D. Persson, T. Eriksson, and E. Larsson, “ l r a i 32 and pat have Sil S ,“ d ave-vecto w element R. Prasa d RF as, an di active -field in the r .B.Papa single C a , i , and to encode independent ett hi h with compact parasitic architectures gains s, N. Marc li variations of the fa A novel approach to MIMO transmission using a single RF r .Ka , vol. 26, no. 6, pp. 972–980, Aug. 2008. A . The key idea is to change the radiation pattern ragas, , vol. 15, no. 2, pp. 178–180, Feb. 2011. T multiplexing . P ne, h enable varat to at each symbol time instance Di h . C , di IEEE Commun. Lett. a IEEE J. Select. Areas Commun. b ”, ”, ra proposed Al b di

Transmission Concepts Related to Concepts SM (1/5) Related Transmission .N. of the array New multiple antenna designsbeen based on many passive antenna elements information streams onto angula domain. front end A. Kalis, A. G. Kanatas, and C. B.O Papadias, “ multiplexing with a singleprototypes radio: Proof–of–concept experiments in an indoor environment with a 2.6 GHz . y to 33 b y data avoid to efficienc incorrect y of Incremental MIMO proposed case in been have transmitter , vol. 60, no. 9, pp. 2522-2533, Sep. 2012. and to improve the energ the y at feedback , thus enabling MIMO gains with a single RF (ARQ) antennas Incremental use of multiple transmitters for low-complexity diversity IEEE Trans. Commun. ,” reQuest available the Repeat . through he main idea is to reduce complexit Transmission Concepts Related to Concepts SM (2/5) Related Transmission chain and a single power amplifier. This solution is named New MIMO schemesAutomatic jointly combiningkeep multiple-antenna all transmission available antennas and on T having one active antennacycle at a time, butreception to exploit ARQ feedback to randomly P. Hesami and J. N. Laneman, “ transmission in wireless systems 34 an The . for subset of have been symbol communications received . The main idea in ASM is by driving only a the of , vol. 61, no. 8, pp. 3231-3245, Aug. 2013. wireless mm-Wave frequencies phase switching antenna subsets does not for y and Antenna subset modulation for secure millimeter-wave complexity - low and amplitude hile randoml W the . y secure IEEE Transactions on Communications Antenna Subset Modulation (ASM) “, enable randomizes to directional modulation schemes modulate the radiation pattern at the symbol rate

Transmission Concepts Related to Concepts SM (3/5) Related Transmission affect the symbol modulation for a desired receiver along the main direction, it New proposed solution is named antennas in the arra effectively eavesdropper along a sidelobe. to wireless communication N. Valliappan, A. Lozano, and R. W. Heath Jr., " 35 , vol. 61, no. 8, pp. 3231-3245, Aug. 2013. Antenna subset modulation for secure millimeter-wave IEEE Transactions on Communications “,

Transmission Concepts Related to Concepts SM (4/5) Related Transmission wireless communication N. Valliappan, A. Lozano, and R. W. Heath Jr., " – 36 low– cost of recoding in antenna . For this p one or a few sparse . large .Proposal: y Spatiall where , submitted, May 2013. [Online]. schemes .HeathJr.,“ W precoding Surra, Z. Pi, and R. IEEE Trans. Wireless Commun. – bu ”, A RF/baseband hybrid yach,S.Rajagopal,S. A

Transmission Concepts Related to Concepts SM (5/5) Related Transmission In Millimeter–wave Mobile Broadband (MMB)reason, system analog baseband design, beamforming the or RF beamformingcomplexity with arrays are driven by a limited number of transmit/receive chains implementing one RF chain per transmit–antenna canactive be RF prohibitive chains can be promising low–complexity solutions Available: http://arxiv.org/pdf/1305.2460.pdf. O. El millimeter wave MIMO systems : 37 MIMO d ze li enera Glid G or f on i at l u , July 2013 (to appear). [Online]. d o MdlM i l a i pat Sil S “ anzo, amplifiers H . y L l d Proceedings of the IEEE pp y ”, power ura, an i ug the Si S . S , ower su of b p raye Gh b . A aas, H efficiency . H enzo, R Higher throughput Simpler receiver design Simpler transmitter design Lower transmit Better Di

To Summarize: SM-MIMO Advantages… Summarize: To .      M Challenges, Opportunities and Implementation Available: http://hal.archives-ouvertes.fr/docs/00/84/02/78/PDF/ProcIEEE_SM_FullPaper.pdf. : 38 MIMO d ze li s) n enera o Glid G or ati f c on li i at l u pp c o s) , July 2013 (to appear). [Online]. d a o MdlM i l ve a i a pat Sil S W Wve “ anzo, H rmm . o L f d ( (o Proceedings of the IEEE ”, g ura, an i ug Si S rmin . S o , b raye amf Gh b be o g . A l overhead aas, na g H o . ti H ec o enzo, rainin R Spectral efficiency sub-optimality Fast antenna switching Time-limited pulse shaping Favorable propagation conditions T Dir Di

… and Some Disadvantages/Trade-Offs .       M Challenges, Opportunities and Implementation Available: http://hal.archives-ouvertes.fr/docs/00/84/02/78/PDF/ProcIEEE_SM_FullPaper.pdf. 39 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. , ” 40 Using Wireless Channels 3 Rate 201 / /3 MIMO Data Multiplexing 2012 for Data High by for , "Practical Implementation of 2011 Modulation Hopping 9 Efficiency - 200 Keying Spectral Channel Shift 2008 , “Spatial Modulation for Multiple-Antenna Wireless Space Guided . “ - , . Increasing , “Spatial modulation - A New Low Complexity Spectral “ Mag al , . et , “Spatial Modulation”, IEEE Trans. Veh. Technol. , Schultz Information “ . Commun , E A Ghrayeb , “Space Modulation on Wireless Fading Channels”, IEEE VTC-Fall . Jiao A . , “A Channel Hopping Technique I: Theoretical Studies on Band Efficiency IEEE , B Costa, , ” . E and IEEE ISC , ” Survey N. Serafimovski, A. Younis, M. Di Renzo, H. Haas, et al. y Haas, A Yang Jeganathan . - acit . . R. Y. Mesleh, H. Haas, et al. J p py, S. Song, et al. Y H M.DiRenzo,H.Haas,P.M.Grant R. Y. Mesleh, H. Haas, et al. Y. Chau, S.-H. Yu 2001 2002 2004 2006 ] ] ]

A Glimpse into the HistoryA Glimpse of SM 2002 2008 2009 IEEE Trans. Wireless Commun. [2011] and Ca [2001] [ Antennas Arrays”, IEEE PIMRC [2004] [2006] [ Communication”, IEEE Commun. Lett. [2008] [ Systems Efficiency Enhancing Technique”, ChinaCom Spatial Modulation", IEEE Trans. Veh. Technol., (to appear, IEEE Early Access) [2012/2013] 41 groups) y i) rc i Chockalingam) . anay A Pii) P . E and asar, Hari B . . S . (E V y . Bahrami) e . k (K R . ur other universities, China (man Tk T y (H India ty, i , US vers i and man n UiU i Science y Akron, l of ca of i n h of Southampton, UK (L. Hanzo) ec y Thil T l Institute u b University singhua Universit stan University of Edinburgh, UK (H. Haas) CNRS – SUPELEC – University ofConcordia Paris-Sud University, Canada XI, (A. France (M. Ghrayeb) Di Renzo) University of Tabuk, Saudi Arabia (R.Universit Y. Mesleh) Princeton University, US (V. Poor) Ibl I Tokyo University, Japan (S. Sugiura) Indian Québec University - INRS, CanadaThe (S. Aissa) Academia Sinica, Taiwan (a large group) T Le Quy Don Technical University, Vietnam (T.etc., X. etc., Nam) etc… Collaborations with: Univ.(UK), of Heriot-Watt Univ. L’Aquila (UK), EADS (Italy), (Germany), etc… CTTC (Spain), Univ. of Bristol

Research Groups Working on SM GroupsResearch Working                 42 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 43 IEEE Trans. Veh. ”, bpcu

3 bpcu Spatial modulation tt ls x Spatial Modulation (SM) Spatial Modulation , vol. 57, no. 4, pp. 2228-2241, July 2008.

Transmitter Design –Transmitter Encoding (1/7) R.Y.Mesleh,H.Haas,S.Sinanovic,C.W.Ahn,andS.Yun,“ Technol. 44 diagram Constellation - Space shift keying modulation for MIMO l Spatial the   t l by more efficient power amplifiers (no linearity Hx n h n , vol. 8, no. 7, pp. 3692-3703, July 2009.   only y Space Shift Keying (SSK) conveyed ) is IEEE Trans. Wireless Commun. No signal modulation Simplified demodulation Larger antenna-arrays are needed for the same spectral efficiency constraints ”,    Information

Transmitter Design –Transmitter Encoding (2/7)  J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “ channels 45 one n a th n more g in w llo in a b by off - ded a tr ded er time slots: p be n a cn c Generalized SM and SSK Generalized SSK ity r x o (M) bpcu for SM f 2 r rates are: i pcu e b hi h )+log ) comple it t t (N (N nd 2 2 a og log l Generalized SSK Generalized SM Variable Generalized SSK/SM te owever, t a      SM and SSK aregreatly simplifies appealing the because transmitter. ofH their single RF design which Rte R active antenna in eachnumbers time of instance, active as antennas well as by allowing different

Transmitter Design –Transmitter Encoding (3/7)    46   3bpcu t t = n N

   = 5 = 2 t 2 t n Rate N     Rate log Generalized space shift keying modulation for MIMO Generalized SSK (GSSK) Generalized , pp. 1–5, 2008. IEEE PIMRC ,”

Transmitter Design –Transmitter Encoding (4/7) J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “ channels 47  t t Asilomar n N M    ,”  cu 2 2 p log      = 5 = 2 t t n Rate = 4b = Rate N BPSK Rate log Generalized Spatial Modulation , Pacific Grove, CA, USA, 2010. Generalized SM (GSM) Generalized

Transmitter Design –Transmitter Encoding (5/7) A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “ Conference on Signals, Systems, and Computers   48 t (M)  2    = 4  = 1 and 2 t t t N MQAM/MPSK N Rate+ log = 3bpcu n     t N t t t N n N 2      1 t  t N  n      t t n N        0 t   N t  n    Variable Generalized SSK/SM (VGSM/VGSSK) Generalized Variable MMMN  g         VGSM 2VGSSK 2 2 2 2

Transmitter Design –Transmitter Encoding (6/7) Rate logRate log lo log 2 1 log 1        49 Complexity GSM Complexity SM  antennas 2 - R = transmit kh of Hx Hx number  t n Q  Reasoning on the Tradeoffs on the Reasoning chains) PEP SNR (RF active . vs Performance Signal processing complexity (detection) Total

Transmitter Design –Transmitter Encoding (7/7)    50 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 51 IEEE Trans. Veh. diagram) ”,   F 2 F 2 s l H l ˆ H l h hy      constellation - yh Spatial modulation  l (signal s arg max arg min   symbol ˆ s ˆ l modulated the of : Detection Detection Detection of the antenna index (spatial-constellationDetection diagram) antenna-index , vol. 57, no. 4, pp. 2228-2241, July 2008. modulated-symbol   The firstapproach proposed demodulator for SM is based on a two-step

Receiver Design –Receiver Demodulation (1/12)  R.Y.Mesleh,H.Haas,S.Sinanovic,C.W.Ahn,andS.Yun,“ Technol. 52 d e d eco ddd d   ly F 2 F 2 nt i o , jij l ls ls  yhx yHx  agrams are  di  Spatial modulation: Optimal detection and performance on , i ls  , at ls  ll i arg min arg min  SM  -conste l  ˆ , vol. 12, no. 8, pp. 545-547, Aug. 2008. , gna ˆ il i ls s  d -an l a i pat Sil S IEEE Commun. Lett. ”,  Maximum-Likelihood (ML) optimum decoding:

Receiver Design –Receiver Demodulation (2/12)  J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “ analysis s, 53 SNR Compressed ,vol.16,no.10, um di me / ow l/di l or f IEEE Commun. Lett. SM ", to Generalized Sphere Decoding for Spatial ormance f Sensing er p f egoo , Vol. 61, No. 7, pp. 2805–2815, July 2013. id Compressed rov of p y e . th 2. 01 application ct. 2 mes, O IEEE Trans. Commun. , ti 9 ”, The The application of Sphere Decoding to SM 55 19 1 - 6 ome   while they performance degrades for high SNRs. Many other sub-optimal demodulators have been proposed recently. In general,performance they offer aSti S trade-off between complexity and We consider two examples: 55 16 1

Receiver Design –Receiver Demodulation (3/12) p.     C.-M.Yu,S.-H.Hsieh,H.-W.Liang,C.-S.Lu,W.-H.Chung,S.-Y.Kuo,andS.-C.Pei," p Sensing Design for Space Shift Keying in MIMO Systems Modulation A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ e 54 h t on: i Compressed " at l ,vol.16,no.10, u dld i mo SSK f o .Kuo,andS.-C.Pei, IEEE Commun. Lett. y Y   t ", i t n aconvexprogramviaCS rt rtt  .-H. Chung, S.-  W erent spars ONN h ONNn n ih i instead of 2-norm of ML demodulation e h ML : CS:      .Liang,C.-S.Lu, W everage t l sto i ) Compressed Sensing (CS) Generalized Space Shift KeyingCompressedSensing (CS) Generalized ea t id

Receiver Design –Receiver Demodulation (4/12)     Sensing Detector Design for Spacepp. 1556-1559, Shift Oct. Keying 2012. in MIMO Systems C.-M. 55 the Compressed " ,vol.16,no.10,  .Kuo,andS.-C.Pei, IEEE Commun. Lett. Y  ", t 1 n  x .-H. Chung, S.- Φ 1 W   trt y NNN arg min  ˆ xx ,, , 11  ows: rr ll

 NN o .Liang,C.-S.Lu, fll f CR C C W     is a zero/one vector with one entries yHxn yxH n x        on, as i zat ) Compressed Sensing (CS) Generalized Space Shift KeyingCompressedSensing (CS) Generalized t i m i can be re-constructed with high probability by 1-norm

Receiver Design –Receiver Demodulation (5/12)   Sensing Detector Design for Spacepp. 1556-1559, Shift Oct. Keying 2012. in MIMO Systems C.-M. s y i 56 are est .If g y ea T . Φ id x Ф Compressed e " ,vol.16,no.10, Th . and the lar l ith zero mean and w can be obtained b (OMP) Ф t i . y .Kuo,andS.-C.Pei, IEEE Commun. Lett. Y ", ursu t orthonorma t Pi P n N y    ng robabilit 2 p py hi g h lo should be chosen as follows: g .-H. Chung, S.- atc by computing the correlation r is nearl robability, matrix W x p Mhi M     Ф l ith hi T w Ф  r rt ogona NOn ith high h then w correspond to the non-zero coefficients of rt , y .Liang,C.-S.Lu, OhO l that satisfies the Restricted Isometric Property (RIP). CS T elements from a Normal distribution . The RIP ensures that pairs of columns of t r W Ф ×N r says that, onal to each othe ors use g y h Compressed Sensing (CS) Generalized Space Shift KeyingCompressedSensing (CS) Generalized is an N : ortho theor variance 1/N Ф generating its The number of observations N eaut satisfies the RIP u, S.-H. Hsieh, H.- Y   where Th coefficients of find the non-zero elements of Ф

Receiver Design –Receiver Demodulation (6/12)   Sensing Detector Design for Spacepp. 1556-1559, Shift Oct. Keying 2012. in MIMO Systems C.-M. 57 real 8  requires 2 s ,   h  rr  y distance || Generalized Sphere Decoding for Spatial 1 r  y-h N r rinciple:  p     rt M M n t t i|i | N N 8  12 12 { , ,..., } { , ,..., } {1,2,..., } {1,2,..., } arg m     Euclidean   sss s sss s ML   CNNM , Vol. 61, No. 7, pp. 2805–2815, July 2013. each ss ML ML tt F ()() 2  Sphere Decoding (SD) Spatial Modulation [, ]argmin|||| evaluating IEEE Trans. Commun. ”, since Optimum detector based on the ML Computational complexity of ML (real multiplications): multiplications

Receiver Design –Receiver Demodulation (7/12)   A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation  2 58  rN 

  2   RN   examining only  y

 ,2 1 rr r NN N 

 Generalized Sphere Decoding for Spatial , Vol. 61, No. 7, pp. 2805–2815, July 2013. Sphere Decoding (SD) Spatial Modulation IEEE Trans. Commun. ”, he SD algorithm avoids an exhaustive search b those points that lie inside a sphere of radius R: T

Receiver Design –Receiver Demodulation (7/12)  A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 59 ace p     , s  ,  ,  h  yhs y yhs || 1 Generalized Sphere Decoding for Spatial   (,) 1 r r 1 r      (,) N r Ns  r r  the receive search s        Ns roposed and studied: }    R g M p t n  i N   R s  , ,...,  (,)  12  (,) (,) s {} { {1,2,..., } rr rr       arg m NsN (,) NsN  sss s   ] s , Vol. 61, No. 7, pp. 2805–2815, July 2013. s s , Tx-SD Tx-SD tt rr ()() 2 C-SD C-SD tt rr ()() 2  Rx-SD Rx-SD , ]rmn | [, ]argmin|  tt rr ()() 2 []i|| [  , ]rmn | [, ]argmin| Sphere Decoding (SD) Spatial Modulation , which aims at reducin , which aims at reducing the transmit search space , which aims at reducing both transmit and receive search IEEE Trans. Commun. Rx-SD Tx-SD C-SD spaces ”, hree sphere decoders for SM are 1. 2. 3. T

Receiver Design –Receiver Demodulation (8/12)  A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 60 s 22  (,) s as long as it is 21  (,) (l,s) oint p Generalized Sphere Decoding for Spatial aths leading to each , Vol. 61, No. 7, pp. 2805–2815, July 2013. p ) s , 12  () ( Sphere Decoding (SD) Spatial Modulation – Rx-SD IEEE Trans. Commun. ”, SD searches the s – 11  (,) Rx antenna still inside the sphere when adding up the signals at each receive-

Receiver Design –Receiver Demodulation (9/12)  A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 61 ,  hs y || 1 r  N r Generalized Sphere Decoding for Spatial     R  min ) s , g  () (  , Vol. 61, No. 7, pp. 2805–2815, July 2013. s Tx-SD Tx-SD tt rr ()() 2 Sphere Decoding (SD) Spatial Modulation – Tx-SD  [, ]ar IEEE Trans. Commun. ”,

Receiver Design –Receiver Demodulation (10/12) A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 62 ve i ece ve r e h  t te ,  educe hs r  to y || 1 used   (,) Generalized Sphere Decoding for Spatial r r  s  Ns is computed    R hm i Θ t  R ) ri min ,   g () ( go s l rr   a ago t NsN (,) orithm is used to reduce the transmit search computed in Step 1  g D R S , Vol. 61, No. 7, pp. 2805–2815, July 2013. Θ – step detector that works as follows: – SD al Rx – x e s h T t te d, Sphere Decoding (SD) Spatial Modulation – C-SD C-SD C-SD n tt rr ()() 2  SD is a two [, ]ar IEEE Trans. Commun. – First, the space. The subset of points Seco d, search space. Moresubset specifically, of Rx–SD points is applied only on the ”, . he C 1. 2 T

Receiver Design –Receiver Demodulation (11/12)  A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 63 ) , )  ( () ,   R Generalized Sphere Decoding for Spatial   s  M s  8 card{ } (,) 11 t 8   N    R 8() 8( R :   is     SD is: SD , Vol. 61, No. 7, pp. 2805–2815, July 2013. – – Rx SD r  Cx  CNs Tx SD r r CSD r CCN of Rx of CC Ns y Sphere Decoding (SD) Spatial Modulation – C-SD IEEE Trans. Commun. ”, complexity he complexit T The complexity of Tx–SD is: The

Receiver Design –Receiver Demodulation (12/12)    A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 64 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 65 IEEE Trans. Veh. ”, Spatial modulation 6bpcu – i.i.d. Rayleigh fading , vol. 57, no. 4, pp. 2228-2241, July 2008.

Error Performance –(1/24) Numerical Results R.Y.Mesleh,H.Haas,S.Sinanovic,C.W.Ahn,andS.Yun,“ Technol. 66 IEEE Trans. Veh. ”, Spatial modulation 8bpcu – i.i.d. Rayleigh fading , vol. 57, no. 4, pp. 2228-2241, July 2008.

Error Performance –(2/24) Numerical Results R.Y.Mesleh,H.Haas,S.Sinanovic,C.W.Ahn,andS.Yun,“ Technol. 67 IEEE Trans. Veh. ”, Spatial modulation 6bpcu – 3GPP channel model , vol. 57, no. 4, pp. 2228-2241, July 2008.

Error Performance –(3/24) Numerical Results R.Y.Mesleh,H.Haas,S.Sinanovic,C.W.Ahn,andS.Yun,“ Technol. 68 IEEE Trans. Veh. ”, Spatial modulation 8bpcu – 3GPP channel model , vol. 57, no. 4, pp. 2228-2241, July 2008.

Error Performance –(4/24) Numerical Results R.Y.Mesleh,H.Haas,S.Sinanovic,C.W.Ahn,andS.Yun,“ Technol. 69 =4 r Spatial modulation: Optimal detection and performance , vol. 12, no. 8, pp. 545-547, Aug. 2008. 3bpcu – i.i.d. Rayleigh fading – N IEEE Commun. Lett. ”,

Error Performance –(5/24) Numerical Results J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “ analysis 70 =4 r Space shift keying modulation for MIMO , vol. 8, no. 7, pp. 3692-3703, July 2009. 3bpcu – i.i.d. Rayleigh fading – N IEEE Trans. Wireless Commun. ”,

Error Performance –(6/24) Numerical Results J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “ channels 71 =2 r Space shift keying modulation for MIMO , vol. 8, no. 7, pp. 3692-3703, July 2009. 1bpcu and 3bpcu – i.i.d. Rayleigh fading – N IEEE Trans. Wireless Commun. ”,

Error Performance –(7/24) Numerical Results J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “ channels 72 =1, 2, 4 r Space shift keying modulation for MIMO , vol. 8, no. 7, pp. 3692-3703, July 2009. 1bpcu and 3bpcu – i.i.d. Rayleigh fading – N IEEE Trans. Wireless Commun. ”,

Error Performance –(8/24) Numerical Results J. Jeganathan, A. Ghrayeb, L. Szczecinski, and A. Ceron, “ channels 73 =4 r Generalized space shift keying modulation for MIMO 3bpcu – i.i.d. Rayleigh fading – N , pp. 1–5, 2008. IEEE PIMRC ,”

Error Performance –(9/24) Numerical Results J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “ channels 74 3 = t Asilomar , n M = 2 ,” , 12 = 8, M 2 t = = 8, M = 2 t t = 128 t N : SM: N GSM N VGSM: N SMX: N =4 Generalized Spatial Modulation r , Pacific Grove, CA, USA, 2010. 8bpcu – i.i.d. Rayleigh fading – N

Error Performance –(10/24) Numerical Results A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “ Conference on Signals, Systems, and Computers 75 3 = t Asilomar , n M = 2 ,” , 12 = 8, M 2 t = = 8, M = 2 t t = 128 t N : =4 r SM: N GSM N VGSM: N SMX: N =0.6) – N β Generalized Spatial Modulation , Pacific Grove, CA, USA, 2010.

Error Performance –(11/24) Numerical Results –8bpcu Rayleighcorrelation exponential fading, ( A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “ Conference on Signals, Systems, and Computers 76 3 = t Asilomar , n M = 2 ,” , 12 = 8, M 2 t = = 8, M = 2 t t = 128 t N : SM: N GSM N VGSM: N SMX: N Generalized Spatial Modulation =4 r , Pacific Grove, CA, USA, 2010. 8bpcu –8bpcu Rician fading i.i.d. – N

Error Performance –(12/24) Numerical Results A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “ Conference on Signals, Systems, and Computers 77 3 = t Asilomar , n M = 2 ,” , 12 = 8, M 2 t = = 8, M = 2 t t = 128 t N : =4 r SM: N GSM N VGSM: N SMX: N =0.6) – N β Generalized Spatial Modulation , Pacific Grove, CA, USA, 2010. 8bpcu – Rician exponential correlationfading, ( Error Performance –(13/24) Numerical Results A. Younis, N. Serafimovski, R. Mesleh, and H. Haas, “ Conference on Signals, Systems, and Computers 78 Compressed r ,vol.16,no.10, = 256 = 1 t arying N t n N V .Kuo,andS.-C.Pei," IEEE Commun. Lett. Y ", .-H. Chung, S.- W .Liang,C.-S.Lu, W i.i.d. Rayleigh fading u, S.-H. Hsieh, H.- Y

Error Performance –(14/24) Numerical Results C.-M. Sensing Detector Design for Spacepp. 1556-1559, Shift Oct. Keying 2012. in MIMO Systems 79 = 16 = 24 r r Compressed ,vol.16,no.10, = 2, N t = 3, N t : ” 2 2: “

= 256, n = 64, n t t Setup N Setup “3”: N .Kuo,andS.-C.Pei," IEEE Commun. Lett. Y ", .-H. Chung, S.- W .Liang,C.-S.Lu, W i.i.d. Rayleigh fading u, S.-H. Hsieh, H.- Y

Error Performance –(15/24) Numerical Results C.-M. Sensing Detector Design for Spacepp. 1556-1559, Shift Oct. Keying 2012. in MIMO Systems 80 = 16 = 20 = 24 = 30 r r r r : Compressed ” ,vol.16,no.10, = 2, N = 2, N 20 : - t t = 3, N = 3, N t t CS2 “

= 256, n = 256, n = 64, n = 64, n t t t t Setup “CS2-16”: N Setup N Setup “CS3-24”: N Setup “CS3-30”: N .Kuo,andS.-C.Pei," IEEE Commun. Lett. Y ", .-H. Chung, S.- W .Liang,C.-S.Lu, W i.i.d. Rayleigh fading u, S.-H. Hsieh, H.- Y

Error Performance –(16/24) Numerical Results C.-M. Sensing Detector Design for Spacepp. 1556-1559, Shift Oct. Keying 2012. in MIMO Systems 81 =4 r M=64 =4, N t Generalized Sphere Decoding for Spatial M=8 , Vol. 61, No. 7, pp. 2805–2815, July 2013. i.i.d. Rayleigh fading– N IEEE Trans. Commun. ”,

Error Performance –(17/24) Numerical Results A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 82 16 = M16 M =2 r =2, N t Generalized Sphere Decoding for Spatial 8 = M8 M , Vol. 61, No. 7, pp. 2805–2815, July 2013. i.i.d. Rayleigh fading– N IEEE Trans. Commun. ”,

Error Performance –(18/24) Numerical Results A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 83 64 = M64 M =4 r =4, N t Generalized Sphere Decoding for Spatial 8 = M8 M , Vol. 61, No. 7, pp. 2805–2815, July 2013. i.i.d. Rayleigh fading– N IEEE Trans. Commun. ”,

Error Performance –(19/24) Numerical Results A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 84 64 = M64 M =8 r =8, N t Generalized Sphere Decoding for Spatial 32 = M32 M , Vol. 61, No. 7, pp. 2805–2815, July 2013. i.i.d. Rayleigh fading– N IEEE Trans. Commun. ”,

Error Performance –(20/24) Numerical Results A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 85 3 = t , n M = 2 , 12 = 8, M 2 t = = 8, M = 2 t t = 128 t N : SM: N GSM N VGSM: N SMX: N Generalized Sphere Decoding for Spatial =4 r , Vol. 61, No. 7, pp. 2805–2815, July 2013. IEEE Trans. Commun. 8bpcu – i.i.d. Rayleigh fading – N ”,

Error Performance –(21/24) Numerical Results A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 86 , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. IEEE Trans. Veh. Technol. Bit Error Probability of Space Shift Keying MIMO over Multiple-Access ”, Single-RF vs. Multi-RF (SSK Spatial-Multiplexing MIMO) Single-RF

Error Performance –(22/24) Numerical Results M. Di Renzo and H. Haas, “ Independent Fading Channels 87 cu p =4 r i.i.d. Rayleigh fading 6 b N Generalized Sphere Decoding for Spatial , Vol. 61, No. 7, pp. 2805–2815, July 2013. IEEE Trans. Commun. Single-RF vs. Multi-RF (SM vs. Spatial-Multiplexing MIMO) Single-RF ”,

Error Performance –(23/24) Numerical Results A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation 88 cu p =4 r i.i.d. Rayleigh fading 8 b N Generalized Sphere Decoding for Spatial , Vol. 61, No. 7, pp. 2805–2815, July 2013. IEEE Trans. Commun. Single-RF vs. Multi-RF (SM vs. Spatial-Multiplexing MIMO) Single-RF ”,

Error Performance –(24/24) Numerical Results A.Younis,S.Sinanovic,M.DiRenzo,andH.Haas,“ Modulation , 89 John Wiley & Sons, Inc. , Digital Communication over Fading Channels

Error Performance – (1/38) Trends Main M. K. Simon and M.–S. Alouini, 2nd ed., 2005.   90

 22 12    ,vol.58,no.9, 21 m ii 2 12  d  0   2 4 00 mk mk 22 22 12 12      u  11 nalysis of Space Shift Keying (SSK) EN   2sin A 11 12 IEEE Trans. Commun.      i  ”,   Nii 2   1 M 12  2 i 2  0  i

  BC sB sB 11  tt 1  

 ;; NN 121 iii  1       m  1,2  k  2  2  log  tt 21 1,2  ii  NN 1 21 General Framework for Performance      m mk A 22 22 kkm mm 12 12     4 AC mk mk     CUB 1  122,2 1 mk  24 !    APEP TX TX 0 12 12    k  4 As    m   ssBsBG    1,2

  k A Ms s         Error Performance – (2/38) Trends Main         ABEP ABEP , APEP TX TX Modulation for MISO Correlatedpp. 2590-2603, Nakagami-m Sep. Fading 2010. Channels M. Di Renzo and H. Haas, “ 91

Error Performance – (3/38) Trends Main 92

Error Performance – (4/38) Trends Main 93

Error Performance – (5/38) Trends Main 94

Error Performance – (6/38) Trends Main 95

Error Performance – (7/38) Trends Main 96

Error Performance – (8/38) Trends Main 97

Error Performance – (9/38) Trends Main 98

Error Performance – (10/38) Trends Main 99 5 . 2

= 8 = = 1 t N m=25m Ω , Vol. 15, No. 10, pp. 1026-1028, Oct. 2011. Bit Error Probability of Space Modulation over Nakagami-m Fading: IEEE Commun. Lett. ”,

Error Performance – (11/38) Trends Main M. Di RenzoAsymptotic Analysis and H. Haas, “ , 100 John Wiley & Sons, Inc. , Digital Communication over Fading Channels

Error Performance – (12/38) Trends Main M. K. Simon and M.–S. Alouini, 2nd ed., 2005. 101 Error probability and SINR analysis of optimum , vol. 57, no. 3, pp. 676–687, Mar. 2009. IEEE Trans. Commun. ,”

Error Performance – (13/38) Trends Main combining in Rician fading M. R. McKay, A. Zanella, I. B. Collings, and M. Chiani, “ r 102 L = 2N ,Vol.59,No.1, IEEE Trans. Commun. ”, -) MIMO over Correlated Rician Fading Channels: K Space Shift Keying (SS

Error Performance – (14/38) Trends Main M. Di Renzo, H. Haas, “ Performance Analysis and a New Method for Transmit-Diversity pp. 116-129, Jan. 2011. 103

Error Performance – (15/38) Trends Main 104

Error Performance – (16/38) Trends Main 105

Error Performance – (17/38) Trends Main 106 , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized IEEE Trans. Veh. Technol. ”,

Error Performance – (18/38) Trends Main M. Di Renzo andFading Channels H. Haas, “ 107 , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized IEEE Trans. Veh. Technol. ”,

Error Performance – (19/38) Trends Main M. Di Renzo andFading Channels H. Haas, “ 108  channels is: r channels is: , N rr Nm N   , the ABEP is dominated by the signal- r SM Nak N , the ABEP is dominated by the spatial- r , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. Nak Div  Rician fading Nakagami-m fading =N =m SM Nak SM for every m SM r agram N Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized Div min di diagram Nak Diversity Analysis ofDiversity Spatial Modulation order over on >1,Div y <1,Div ti =m a IEEE Trans. Veh. Technol. ll e Nak Nak ”, tllti t SIMO If m cons If m constellation Div he diversit    T The diversity order over

Error Performance – (20/38) Trends Main   M. Di Renzo andFading Channels H. Haas, “ 109 High-SNR , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. i.i.d. Rayleigh Fading Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized IEEE Trans. Veh. Technol. ”,

Error Performance – (21/38) Trends Main M. Di Renzo andFading Channels H. Haas, “ 110 ain of Y compared to X , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. g i.i.d. Rayleigh Fading : SNR : SNR Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized XY  SNR  IEEE Trans. Veh. Technol. ”,

Error Performance – (22/38) Trends Main M. Di Renzo andFading Channels H. Haas, “ 111 , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. i.i.d. Rayleigh Fading Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized IEEE Trans. Veh. Technol. ”,

Error Performance – (23/38) Trends Main M. Di Renzo andFading Channels H. Haas, “ 112 , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. i.i.d. Rayleigh Fading Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized IEEE Trans. Veh. Technol. ”,

Error Performance – (24/38) Trends Main M. Di Renzo andFading Channels H. Haas, “ 113 , Vol. 61, No. 3, pp. 1124-1144, Mar. 2012. i.i.d. Rayleigh Fading Bit Error Probability of Spatial Modulation (SM-) MIMO over Generalized IEEE Trans. Veh. Technol. ”,

Error Performance – (25/38) Trends Main M. Di Renzo andFading Channels H. Haas, “ 114

Error Performance – (26/38) Trends Main 115

Error Performance – (27/38) Trends Main 116

Error Performance – (28/38) Trends Main 117

Error Performance – (29/38) Trends Main 118

Error Performance – (30/38) Trends Main 119

Error Performance – (31/38) Trends Main 120

Error Performance – (32/38) Trends Main 121

Error Performance – (33/38) Trends Main 122

Error Performance – (34/38) Trends Main 123

Error Performance – (35/38) Trends Main 124

Error Performance – (36/38) Trends Main 125

Error Performance – (37/38) Trends Main 126

Error Performance – (38/38) Trends Main 127 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 128 2 2 r

 R n 2 2 ≥ Tk , no. 6, pp. 311-335, Mar. 1998. 2 2 t   n )] 2 2  Tn  

 [1 ] / 2  g

1  [1 ( / ) ] ( 2 [1 ] = 2 = n r  g 1 r T  g n 1 i lo  2 lo Tni g[ ( ) ] = n, n  = 1, n t t lo (1) T n  C   TR (1 / ) lo   Cn kn n On limits of wireless communication in a fading environment when using  Cn ty case: n i Cn vers Wireless Personal Commun.: Kluwer Academic Press Di ,” t i ransm Receiver Diversity case: n Diversity Receiver TiDii T n Diversity: Receiver and Combined Transmit using one transmitted at a time: Cycling

Achievable Capacity (1/5) Achievable     G. J. Foschini and M.multiple antennas J. Gans, “ ”, 129        2 22 y  2  mX N y h     m m  exp fyh     fyh        22 g  2 1 lo  m  2  m mX N t hd  h     

  1 fy         1 SM 1 2 1 t y   N g     m  CN CCC 1 t t lo  N 1 11 m t  N  N t m Information-guided channel-hopping for high data rate wireless communication  , vol. 12, no. 4, pp. 225–227, Apr. 2008.  1 t Nfy 1 N   22  fy 12 C            Ch

Achievable Capacity (2/5) Achievable Y. Yang and B. Jiao, “ IEEE Commun. Lett. ”, 130 Information-guided channel-hopping for high data rate wireless communication , vol. 12, no. 4, pp. 225–227, Apr. 2008.

Achievable Capacity (3/5) Achievable Y. Yang and B. Jiao, “ IEEE Commun. Lett. ”, 131 Information-guided channel-hopping for high data rate wireless communication , vol. 12, no. 4, pp. 225–227, Apr. 2008.

Achievable Capacity (4/5) Achievable Y. Yang and B. Jiao, “ IEEE Commun. Lett. ”, 132 Information-guided channel-hopping for high data rate wireless communication , vol. 12, no. 4, pp. 225–227, Apr. 2008.

Achievable Capacity (5/5) Achievable Y. Yang and B. Jiao, “ IEEE Commun. Lett. 133 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 134 rove the p im y  imbalance ma r 2 , Vol. 14, No. 6, June 2010. owe 2  p

  l and anne 2 and 1 4 hl h , 221 11 ng c  di EEE N a fdi f IEEE Commun. Lett. h ”, 12 statistics g i EE Improving the Performance of Space Shift Keying (SSK) Modulation via e 11 2 2 1 2 12 0  l l E ay   Rlih R 222 d ABEP , e   t      2 a l E =2 ≠ t 1 orre N Cltd C E ireless channe    The performancew of SSK/SMperformance modulation significantlyCan depends power imbalance be on created via the opportunistic power allocation? Assumptions:

Channel State Information at the Transmitter (1/22) Channel State Information at the Transmitter    M. Di Renzo,Opportunistic Power H. Allocation Haas, “ 135 0   2 2 2 M 2 1  σ σ  , 2 = =  2 2   M M 22 σ σ av  E     )and  g av ,0) and av  min ABEP , 12 12 EE g 22  EE ar dB   )=(2E )=(0,2E * * 2 2  SSK  OOSSK 1 2 1 2 , ,g , ,E ,E  * * 12 12 1 1 EE EE  subject to: SNR (E (E      SNR 2     2 2 1 2 gain 10 σ σ > > 2 2 1 2 SNR 10lo σ σ If If

Channel State Information at the Transmitter (2/22) Channel State Information at the Transmitter   136 SSK

Channel State Information at the Transmitter (3/22) Channel State Information at the Transmitter 137 OOSSK

Channel State Information at the Transmitter (4/22) Channel State Information at the Transmitter 138 ) ,vol.64,no.4,pp.1623– Space Modulation with CSI: ran, " T vectors airs of constellation vectors at p ) these of IEEE Trans. Veh. Technol. MSSK ", pairs ng: i ey no constraint on the structure of the transmit Ki K : how to design the transmit vectors using , Multi-Antenna Space Modulation: MSMod between Shift pace S d distance e difi o Mdifid M In the firstvectors is imposed method ( In the second method, the( transmit vectors have only one non-zero entry   The symbol errorEuclidean rate (SER) performance highlyOptimization depends problem onCSIT the such that the distance between Two methods are proposed: the receiver is larger

Channel State Information at the Transmitter (5/22) Channel State Information at the Transmitter    M.Maleki,H.R.Bahrami,S.Beygi,M.Kafashan,andN.H. Constellation Design and Performance1634, May Evaluation 2013. 139 ,vol.64,no.4,pp.1623– Space Modulation with CSI: ran, " T IEEE Trans. Veh. Technol. ", MSMod with Full-CSIT

Channel State Information at the Transmitter (6/22) Channel State Information at the Transmitter M.Maleki,H.R.Bahrami,S.Beygi,M.Kafashan,andN.H. Constellation Design and Performance1634, May Evaluation 2013. 140 H ) constellations ,vol.64,no.4,pp.1623– =H+N Space Modulation with CSI: error ran, " H PSK/QAM T IEEE Trans. Veh. Technol. conventional ", H from of value chosen be can singular k MSMod with Full-CSIT: Optimal Solution with Full-CSIT: MSMod θ : line largest the is the right singular vector related to the largest singular value of is a constant is 1 ’ 1 v ε λ Bottom Similar results apply to the imperfect CSIT case (

Channel State Information at the Transmitter (7/22) Channel State Information at the Transmitter      M.Maleki,H.R.Bahrami,S.Beygi,M.Kafashan,andN.H. Constellation Design and Performance1634, May Evaluation 2013. 141 ,vol.64,no.4,pp.1623– Space Modulation with CSI: ran, " T IEEE Trans. Veh. Technol. ", MSSK with Full-CSIT

Channel State Information at the Transmitter (8/22) Channel State Information at the Transmitter M.Maleki,H.R.Bahrami,S.Beygi,M.Kafashan,andN.H. Constellation Design and Performance1634, May Evaluation 2013. 142 ,vol.64,no.4,pp.1623– Space Modulation with CSI: ran, " T IEEE Trans. Veh. Technol. ", function is MINIMIZED: g MSSK with Full-CSIT: Optimal Solution MSSK with Full-CSIT: Find Such that the followin

Channel State Information at the Transmitter (9/22) Channel State Information at the Transmitter   M.Maleki,H.R.Bahrami,S.Beygi,M.Kafashan,andN.H. Constellation Design and Performance1634, May Evaluation 2013. 143 ,vol.64,no.4,pp.1623– Space Modulation with CSI: ran, " T IEEE Trans. Veh. Technol. ", MSSK with Full-CSIT: Optimal Solution MSSK with Full-CSIT: : =2 t N If with

Channel State Information at the Transmitter (10/22) Channel State Information at the Transmitter   M.Maleki,H.R.Bahrami,S.Beygi,M.Kafashan,andN.H. Constellation Design and Performance1634, May Evaluation 2013. 144 f error =2is rs o t i the a p that r : s-th minimum MSSK with Full-CSIT: Optimal Solution MSSK with Full-CSIT: introduced is solution for N l , a sub-optimal iterative guarantee >2 stance ove t computed In eachvectorswiths-thminimum iteration,distance the is pairoptima considered of and the To performance does not increase with thefunction iterations, an error Iteration over s di transmission vectors N    approach is proposed: If Channel State Information at the Transmitter (11/22) Channel State Information at the Transmitter  145

Channel State Information at the Transmitter (12/22) Channel State Information at the Transmitter 146

Channel State Information at the Transmitter (13/22) Channel State Information at the Transmitter 147

Channel State Information at the Transmitter (14/22) Channel State Information at the Transmitter 148

Channel State Information at the Transmitter (15/22) Channel State Information at the Transmitter 149

Channel State Information at the Transmitter (16/22) Channel State Information at the Transmitter 150 Link Adaptation for Spatial Modulation With Limited , vol. 61, no. 8, pp. 3808-3813, Oct. 2012. IEEE Trans. Veh. Technol. ",

Channel State Information at the Transmitter (17/22) Channel State Information at the Transmitter P.Yang,Y.Xiao,L.Li,Q.Tang,Y.Yu,andS.Li," Feedback 151 Link Adaptation for Spatial Modulation With Limited max The Approach , vol. 61, no. 8, pp. 3808-3813, Oct. 2012. IEEE Trans. Veh. Technol. ",

Channel State Information at the Transmitter (18/22) Channel State Information at the Transmitter P.Yang,Y.Xiao,L.Li,Q.Tang,Y.Yu,andS.Li," Feedback 152 Link Adaptation for Spatial Modulation With Limited , vol. 61, no. 8, pp. 3808-3813, Oct. 2012. The Proposed Adaptive Transmission Schemes Transmission TheProposed Adaptive : Adaptive Modulation Scheme Spatial Modulation : Optimal Hybrid Spatial Modulation : Concatenated Spatial Modulation IEEE Trans. Veh. Technol. : Adaptive Spatial Modulation ", AMS-SM ASM OH-SM C-SM

Channel State Information at the Transmitter (19/22) Channel State Information at the Transmitter     P.Yang,Y.Xiao,L.Li,Q.Tang,Y.Yu,andS.Li," Feedback 153

Channel State Information at the Transmitter (20/22) Channel State Information at the Transmitter 154

Channel State Information at the Transmitter (21/22) Channel State Information at the Transmitter 155

Channel State Information at the Transmitter (22/22) Channel State Information at the Transmitter 156 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. se 157 l mpu Il I l anne Ch l e h t s channel i b by d different channel knowledge to detect the mportant modulates the transmitted signal sconveye I i

h on i a priori uc naturally M ormat f n ifi i ow e HMhIH i h t f art o p us, Response (CIR), i.e., the channel/spatial signature The wireless environment Each transmit-receive wireless link has a The receiver employs the Th transmitted signal Channel State InformationChannel State for SSK/SM Modulation?

Imperfect Channel State Information (1/23) at the Receiver The working principle of SM/SSK1. is based on the following2. facts: 3. 4. 2 158

 mi  2 E ,Vol.58,No.   2 State Information: l  2 mi

 E 2 1 00 mi Channe  l NN E i      0 IEEE Trans. Commun. Ir ith Partia m  ”,     W Er  ln          tttststdt rtstdt  mm  TT       n l Re   ii iiii DD D   i Space Shift Keying (SSK) Modulation  i   1 t 1 t  N i  N i  i i m m   arg max ln arg max   Perfect CSI (channel gains and phases): F–CSI (SSK) Partial CSI (channel gains): P–CSI (SSK) ˆ ˆ mD mD

Imperfect Channel State Information (2/23) at the Receiver   Optimal Detector and Performance Analysis Over Fading Channels 11, pp. 3196-3210, Nov. 2010. M. Di Renzo and H. Haas, “   159

  2 12 12    2  mi  E     21  ii

i       1 t  N i  i  m  ln arg max ln    iimi 12 ˆ DDEr mD      Nii       11  tt    NN 121 iii      22 22    ,,Pr 2 212 112  112 212 2  00 00 g  

  00 00 mm mm NN NN mm m m NN NN lo ,E EE EE EE EE exp 12 ii tt hh  NN          ml l QQ QQ        22 2 11 1 m 22 2 11 1  T                 ABEP , APEP TX TX APEP E P 1, 2  rt E j wt nt rrtwtdt            E

Imperfect Channel State Information (3/23) at the Receiver P1,2 , , Pr 5 2 160 = = 2 2 =5 2 m

, m 2, m 5 = = ,Vol.58,No. 1 1 =2, m 1 m

, m State Information: 1, m 1 l = = 2 2 =1, m 2 Ω Ω Ω Ω

Ω , Channe l 10, 10 =1, = = 1 1 1 Scenario a: Ω Scenario b: Ω Scenario c: Ω IEEE Trans. Commun. ith Partia ”, W =0.64) Nakagami-mFading ρ Space Shift Keying (SSK) Modulation 2x1 MIMO, Correlated2x1 MIMO, (

Imperfect Channel State Information (4/23) at the Receiver Optimal Detector and Performance Analysis Over Fading Channels 11, pp. 3196-3210, Nov. 2010. M. Di Renzo and H. Haas, “ 161 4 - 4i

= 4 ,Vol.58,No. ,…, State Information: i=2 4 |i-j|) 0 l } i = 1 Ω Ω {

1, { Channe

i=1,…,4 l } = i =exp(-d = 0.22 1 ,j 0 i Ω Balanced: { Unbalanced: Ω Correlation: ρ d IEEE Trans. Commun. ith Partia ”, W Space Shift Keying (SSK) Modulation 4x1 MIMO, Correlated4x1 MIMO, (exponential) Nakagami-m Fading

Imperfect Channel State Information (5/23) at the Receiver Optimal Detector and Performance Analysis Over Fading Channels 11, pp. 3196-3210, Nov. 2010. M. Di Renzo and H. Haas, “ 162 CSI - P F-CSI ,Vol.58,No.  

State Information: l …… ____ Channe l IEEE Trans. Commun. ith Partia ”, W Space Shift Keying (SSK) Modulation 2x1 MIMO, Uncorrelated2x1 MIMO, Nakagami-m Fading

Imperfect Channel State Information (6/23) at the Receiver Optimal Detector and Performance Analysis Over Fading Channels 11, pp. 3196-3210, Nov. 2010. M. Di Renzo and H. Haas, “ 163 CSI - P F-CSI ,Vol.58,No.  

State Information: l …… ____ Channe l IEEE Trans. Commun. ith Partia ”, W Space Shift Keying (SSK) Modulation 4x1 MIMO, Correlated4x1 MIMO, (exponential) Nakagami-m Fading

Imperfect Channel State Information (7/23) at the Receiver Optimal Detector and Performance Analysis Over Fading Channels 11, pp. 3196-3210, Nov. 2010. M. Di Renzo and H. Haas, “ 164   2 p  0 p N EN 0, Estimated     Antenna Index  N    ,, , tr qr tr

   Space Shift Keying (SSK-) MIMO with Practical 00  mm NN EE  ˆ      0 ML  r , Vol. 60, No. 4, pp. 998-1112, Apr. 2012. , SSK  0 N       ML-Detector q 1 r mt  N ˆ r  Channel Estimator       SSK with Mismatched Decoder   min   g IEEE Trans. Commun. for 1,2, , for 1,2, , arg min ar ”, tt tt mt N mt N   ˆ mDm Signal Received Received

Imperfect Channel State Information (8/23) at the Receiver Channel Estimates M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “ 165 2     1 r  N r     α     ,,, tq qr tr

     Space Shift Keying (SSK-) MIMO with Practical statistics)  l ABEP  , Vol. 60, No. 4, pp. 998-1112, Apr. 2012.  qq qq   ˆˆ ˆˆ , tq           IEEE Trans. Commun. Eexp q t mt mq mt mq ”, m m Dm Dm Dm Dm    q , APEP E Pr Pr 0 t  Union bound: the ABEP can be obtained from the APEP The (difference) decision(when variable conditioning is upon fading a channe quadratic-formThe PEP in is complex obtained by Gaussian using RVs the Gil-Pelaez inversion theorem Ms s

Imperfect Channel State Information (9/23) at the Receiver Methodology for computation: 1. 2. 3. Channel Estimates M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “ 166 ) . ) () ( (.) 1 2 w w ,vol.59,no.1,pp.116- TOSD-SSK ( r no mod. andwithasingleactive 0 1 IEEE Trans. Commun. ”, Diversity = 2N ) MIMO over Correlated Rician Fading Channels: – K  (t) 2 (conventional SSK) r 0 ”tow time-instance with no bandwidth expansion y t Space Space Shift Keying (SS AI-2 = Diversity = N Shift Keying at an  (t)

2 time-orthogonal (t) = w (t) is “ Time-Orthogonal Signal Design assisted SSK (TOSD-SSK) 1 1 AI-1 If w If w This is true fortransmit-antenna any N

Imperfect Channel State Information (10/23) at the Receiver AI-2    M.DiRenzoandH.Haas,“ Performance Analysis and a New Method for Transmit–Diversity 129, Jan. 2011. 167 2 p r 0 p N m 2 EN E 0, Estimated      Antenna Index N  

  Space Shift Keying (SSK-) MIMO with Practical 

  ˆ  EE  Estimator ˆˆ ˆ

   ML , Vol. 60, No. 4, pp. 998-1112, Apr. 2012. ,, , , , , qr tr m tq tr m tr tr 

   TOSD-SSK TOSD-SSK ML-Detector  q 11 r mt Channel Estimator  NN ˆ rr      TOSD-SSK with Mismatched Decoder TOSD-SSK   IEEE Trans. Commun.   ”, for 1,2, , for 1,2, , arg min arg min Re tt tt mt N mt N   ˆ Signal mDm Received Received

Imperfect Channel State Information (11/23) at the Receiver Channel Estimates M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “ ) 168 cs i 2 st iii )  quadratic- stat  l    anne  hl h 2 ng c  di a fdi f  11 rr  NN rr   ng upon i      on  i  t Space Shift Keying (SSK-) MIMO with Practical   di i i difference of two independent   ,,,  tq q qr t tr    en con  ABEP h  w (h ( , Vol. 60, No. 4, pp. 998-1112, Apr. 2012.  s qq qq ˆˆ ˆˆ RV    an i    , auss   tq 

 Gi G ex  l    IEEE Trans. Commun. q t mt mq mt mq ”,  m m Dm Dm Dm Dm  Eexp ncomp  i  APEP E Pr Pr 0  orms Union bound: the ABEP can be obtained from the APEP The (difference) decisionf variable is the The PEP is obtained by using the Gil-Pelaez inversion theorem  ,  tq 

Imperfect Channel State Information (12/23) at the Receiver Ms s Channel Estimates M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “ Methodology for computation: 1. 2. 3. 169 Space Shift Keying (SSK-) MIMO with Practical SSK OSD-SSK T , Vol. 60, No. 4, pp. 998-1112, Apr. 2012. Diversity Analysis (i.i.d. RayleighDiversity Fading) IEEE Trans. Commun. ”, order of SSK is: Nr y Diversit Diversity order of TOSD-SSK is: 2Nr

Imperfect Channel State Information (13/23) at the Receiver Channel Estimates M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “ With channel estimation errors: 1. 2. 170 Numerical Results (SSK) Numerical Results

Imperfect Channel State Information (14/23) at the Receiver 171 Numerical Results (TOSD-SSK) Numerical Results

Imperfect Channel State Information (15/23) at the Receiver 172 Single-Antenna MQAM Single-Antenna

Imperfect Channel State Information (16/23) at the Receiver 173 Alamouti MQAM

Imperfect Channel State Information (17/23) at the Receiver 174 e: g Messa y yg SSK vs. Single-Antenna MQAM (Nr=1 / Nr=2 Nr=4) MQAM SSK vs. Single-Antenna ake Awa ake SSK is better than single-antenna MQAM if is better MQAM than single-antenna SSK Rate>2bpcu and Nr>1 The robustness to channel estimation errors is the same T • •

Imperfect Channel State Information (18/23) at the Receiver 175 TOSD-SSK vs. Alamouti MQAM (Nr=1 / Nr=2) vs. Alamouti MQAM TOSD-SSK OSD-SSK is better than Alamouti MQAM ifis better OSD-SSK than Alamouti MQAM Rate>2bpcu T TOSD-SSK is more robustTOSD-SSK to channel estimation errors Take Away Message: Away Take • •

Imperfect Channel State Information (19/23) at the Receiver 176  2  2 s , s , 

2    rjr y rjr 2  y 1 r  N 1 r r   N r        , min 11 js N , g js   ar  ,   ˆ s   , ,g ˆ s j jy ˆ ,argmin j ˆ  , vol. 16, no. 2, pp. 176-179, Feb. 2012. Performance of Spatial Modulation in the Presence of  with 1 1 SM with Imperfect CSIR const and 1  IEEE Commun. Lett.   

22  ”,    AM modulation:      Q Channel estimation model: SM with MPSK modulation: SM with M

Imperfect Channel State Information (20/23) at the Receiver    Channel Estimation Errors E.Basar,U.Aygolu,E.Panayirci,andV.Poor,“ 177 4

=4 = r N , vol. 16, no. 2, pp. 176-179, Feb. 2012. Performance of Spatial Modulation in the Presence of IEEE Commun. Lett. ”,

Imperfect Channel State Information (21/23) at the Receiver Channel Estimation Errors E.Basar,U.Aygolu,E.Panayirci,andV.Poor,“ 178 4

=4 = r N , vol. 16, no. 2, pp. 176-179, Feb. 2012. Performance of Spatial Modulation in the Presence of IEEE Commun. Lett. ”,

Imperfect Channel State Information (22/23) at the Receiver Channel Estimation Errors E.Basar,U.Aygolu,E.Panayirci,andV.Poor,“ 179 4

=4 = r N , vol. 16, no. 2, pp. 176-179, Feb. 2012. Performance of Spatial Modulation in the Presence of IEEE Commun. Lett. ”,

Imperfect Channel State Information (23/23) at the Receiver Channel Estimation Errors E.Basar,U.Aygolu,E.Panayirci,andV.Poor,“ 180 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 181

facts: for Response

g used

Impulse be

Channel channel the channel

by different is based on the followin fading

K channel knowledge to detect the transmitted conveyed modulates the transmitted signal SS the

/ is of

apriori naturally le of SM p information the rinci p pp of randomness

g part the

Multiple-Access too rather than just forModulation? Multiple-Access too signal The wireless environment Each transmit-receive wireless link has a The receiver employs the Thus, (CIR), i.e., the channel/spatial signature Can the randomness of the fading channel be used for he workin

Multiple Access Interference (1/22) . T 1. 2. 3. 4 182 , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. IEEE Trans. Veh. Technol. Bit Error Probability of Space Shift Keying MIMO over Multiple-Access ”, Detector User -

Multiple Access Interference (2/22) Signal Model Single Multi-User Detector M. Di Renzo and H. Haas, “ Independent Fading Channels   183   uu    r 1 N 

  u  N u t  1 r N  r , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. Nr  r  r N      N 1 r 21  N    r   1 r r Nr \ N   0\ 0 

 << 1 (noise limited):  ξ  \ 22  IEEE Trans. Veh. Technol.  ABEP 2 SNR Bit Error Probability of Space Shift Keying MIMO over Multiple-Access ”, EN EN           

  SN 1SINR 1SINR     SSK with Single-User Detector (i.i.d. Rayleigh)with Single-User SSK t 2 2 2 SINR 2 2 SINR N SINR SNRSNR 1 INR and INR >> 1 and INR        ξ

 = 0 (no interference): framework reduces to single-user case u E SNR

Multiple Access Interference (3/22) ABEP 1 1   M. Di Renzo and H. Haas, “ Independent Fading Channels 184

   1

 u  N u    uu 22

    1

 u  N u  , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011.  >> 1 (interference limited): ξ \ r  N   tr \ tuu NQN /INR  NEE ξ 0\ 0   r  r   N 22 N 

21     EN EN IEEE Trans. Veh. Technol. 1  Bit Error Probability of Space Shift Keying MIMO over Multiple-Access r ”, ABEP 2 SINR N   

    SINR SNRSNR 1 INR and INR       SSK with Single-User Detector (i.i.d. Rayleigh)with Single-User SSK >> 1 and SIR = SNR ABEP 2 SIR with SIR ξ \ >> 1: r N INR

Multiple Access Interference (4/22)   M. Di Renzo and H. Haas, “ Independent Fading Channels 185     r N   2 Q 2. This occurs if    ≥        ,2

   > 4 a crossing point exists xy y x      t , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011.  H Ns s s s        (same bpcu) t 11 tt 

NN   xy =4.IfM=N M = N t  2 2 IEEE Trans. Veh. Technol. Bit Error Probability of Space Shift Keying MIMO over Multiple-Access ”, tt NN  =2andM=N PSK  SSK 2 t SSK vs. MPSK/MQAM (Single-User Detector, i.i.d. Rayleigh) Detector, (Single-User MPSK/MQAM vs. SSK ABEP log ABEP r M=N SSK will never be better than MPSK/MQAM if Q If Q

Multiple Access Interference (5/22)   M. Di Renzo and H. Haas, “ Independent Fading Channels 186  ta d r 2N N  ≤  limite ≠

ta N  r r ≤ N N 

 21    y , r

 N  x N     ta y , N , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011.

 x \ta

    SNR  ta ta antennas NN 21 INR 1   :  limited or SIR interference

active  IEEE Trans. Veh. Technol. of Bit Error Probability of Space Shift Keying MIMO over Multiple-Access y ”, SINR  

   performance x  number GSSK with Single-User Detector (i.i.d. Rayleigh)with Single-User GSSK SNR noise noise limited or SIR interference limite the is the number of different antenna indexes: 2   APEP is ≠      ta ta N N Asymptotic

Multiple Access Interference (6/22)    M. Di Renzo and H. Haas, “ Independent Fading Channels 187 r N  SSK o t , ta

 d N xy   2  ta N N      , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. 10 ta compare  diagram  GSSK  

 

SSK  xy  , GSSK is worse than SSK regardless of the  ta eworse 010log constellation - th 2N , GSSK IEEE Trans. Veh. Technol. APEP Bit Error Probability of Space Shift Keying MIMO over Multiple-Access ta ”, ≤ N ≠ spatial ta APEP N the arger l ≤ e SSK vs. GSSK (Single-User Detector, i.i.d. Rayleigh) SSK vs. GSSK (Single-User Detector, of th us, Since 2 choice The SNR gap is: th

Multiple Access Interference (7/22)   M. Di Renzo and H. Haas, “ Independent Fading Channels    188 0   →  0 ,  uu xy   1 0ifN r   r  →   Nr  , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011.       , , 1 r uu uu  N r   r  Nr 0  ta  N 1 Nxy  2 2 0ta   NN uu xy uu 2 E E        1 1 u u   N N u u    IEEE Trans. Veh. Technol.   Bit Error Probability of Space Shift Keying MIMO over Multiple-Access ”,       rSNR 1 2 2 AggrSNR 2 2 AggrSNR 1 AggrSNR 1 AggrSNR     gg AggrSNR A SSK and GSSK with Multi-User Detector (i.i.d. Rayleigh)    xy  SSK GSSK Unlike the single-user detector, APEP

Multiple Access Interference (8/22)    APEP 1 1 M. Di Renzo and H. Haas, “ Independent Fading Channels r      2 189   , uu rSNR gg       2 y

NxyE  uu xy

 E   ,

 1  u xy H  N r u   N 21   1,         ,

 t  xy N       r  r , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. 2 N N g 21 lo xy      1  ) r 1 u N NN 1  tt r  N NN 21 ,A  =        u  r (N  r N N 21 SULB     1  IEEE Trans. Veh. Technol. Bit Error Probability of Space Shift Keying MIMO over Multiple-Access bound ”, 

 ABEP 2 SNR

SULB   1 2 lower g ggg ABEP ABEP >>     u N tt xyH user - NN Nx   log log SNR rr  NN 10 10 1 gg  ASNR A Single SNR gap due to multiple-access interference SSK with Multi-User Detector (i.i.d. Rayleigh)SSK – Analysis Asymptotic SNR 10 10

Multiple Access Interference (9/22)    M. Di Renzo and H. Haas, “ Independent Fading Channels   ABEP lo  190   ) u ur t r y N      0 r N or ever  ,foreveryu) f 2SULB 2 , u  0  2 σ u u , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. σ u  SULB 2 E  << E  2 >> r w r   2 N σ b N w σ b 21 bb     r (E r N NEN N  1 21    IEEE Trans. Veh. Technol. r  Bit Error Probability of Space Shift Keying MIMO over Multiple-Access N u ”,  N  NEN 1   erence case r r f N wt www  NNNN  nter if i 10 log ABEP ABEP 10 1 log   k ABEP 2 ABEP bt bb  ea b Strong interference case (E Wk W SSK with Multi-User Detector (i.i.d. Rayleigh)SSK – Analysis Asymptotic SNR 10 10

Multiple Access Interference (10/22)   M. Di Renzo and H. Haas, “ Independent Fading Channels ABEP 2   191  g      r N r  N   , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. 2 0 2  uu 0  N E uu N    E    UL  r r  r N r N N 21 N    ABEP ABEP 10 1 lo 21 u     N IEEE Trans. Veh. Technol. Bit Error Probability of Space Shift Keying MIMO over Multiple-Access ”, N N g gg 1 1 r r  N N ruuurt     NNNN   10 lo   L U ut ut LU uuu u Generic user SNR 10 10 ABEP 2 ABEP 2 SSK with Multi-User Detector (i.i.d. Rayleigh)SSK – Analysis Asymptotic   ABEP ABEP  ABEP      

Multiple Access Interference (11/22)  M. Di Renzo and H. Haas, “ Independent Fading Channels r N   192 2 0 uu r N  2 r r 0 uu UU u r N ta ABEP  N r r t ta t N ta N N N    2    2 r log  log N ta    u u N N 1 t ta     N r N    N   2  , Vol. 60, No. 8, pp. 3694- 3711, Oct. 2011. log     UU LL U u r  .i.d. Rayleigh) – Analysis Asymptotic   ABEP 2 2 L  tr t r NN N N    ruu 10 10 2 N 0

  uu NN r EE 10 log ABEP ABEP N   IEEE Trans. Veh. Technol. 10log 10 log 2        Bit Error Probability of Space Shift Keying MIMO over Multiple-Access  ”, 2 u 0

  r uu NN r SNR 10 NN EE NN       21 21     LL u  t r ta r N N NN    ABEP NN 2 g 21 21 lo            u tu   N NN LU LU uu uuu 1 11 r r N NN      GSSK with Multi-User Detector (i  ABEPABEP SULB and ABEP ABEP ABEP weak interference case 22 Multiple Access Interference (12/22) 2ABEP22 M. Di Renzo and H. Haas, “ Independent Fading Channels                 193

Multiple Access Interference (13/22) 194

Multiple Access Interference (14/22) 195

Multiple Access Interference (15/22) 196

Multiple Access Interference (16/22) 197

Multiple Access Interference (17/22) 198

Multiple Access Interference (18/22) 199

Multiple Access Interference (19/22) 200

Multiple Access Interference (20/22) 201

Multiple Access Interference (21/22) ”, 202 shown

is

3-user scenario The ABEP of each user is shown Multiple Access Spatial Modulation , September 2012.

Multiple Access Interference (22/22) EURASIP Journal on Wireless Communications and Networking N.Serafimovski,S.Sinanovic,M.DiRenzo,andH.Haas,“ 203 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 204 ower p on i ss ii i ower consumed p l east transm l e h An Energy Saving Base Station Employing the tota natt i a hi h c RF antenna of a BS to er p per on i ower p , Sep. 2012, Barcelona, Spain. power - transmit ower consumpt IEEE CAMAD p transmitted RF e ”, is the total power supplied to the BS h is the maximum transmit-power per antenna the is the number of RF chains at the BS st i is the slope of the load-depended power consumption is RF supply 0 t max G. Auer etMay 2011 al., “Cellular Energy Evaluation Framework,” IEEE VTC-Spring, P N P m P P        The EARTH powerrelates model the is a very simple and elegant model that

Energy Efficiency (1/26)  Spatial Modulation A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “ 205 An Energy Saving Base Station Employing , Sep. 2012, Barcelona, Spain. IEEE CAMAD ”,

Energy Efficiency (2/26) Spatial Modulation A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “ 206 2 2 m h 0 2 2 m h 2 2 1 t     h N m  g1 0 t An Energy Saving Base Station Employing o P N l1 l P 0 1 t  N NN m  t    NN WP 1    g lo , Sep. 2012, Barcelona, Spain.     supply P CSIT log 1 IEEE CAMAD  Capacity  ”,   MISO 2 SM 1STBC 2 1 STBC 2 2 EE CWR CCCC CW

Energy Efficiency (3/26) Spatial Modulation A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “ 207 An Energy Saving Base Station Employing , Sep. 2012, Barcelona, Spain. IEEE CAMAD ”,

Energy Efficiency (4/26) Spatial Modulation A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “ 208 An Energy Saving Base Station Employing , Sep. 2012, Barcelona, Spain. IEEE CAMAD ”,

Energy Efficiency (5/26) Spatial Modulation A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “ 209 An Energy Saving Base Station Employing , Sep. 2012, Barcelona, Spain. IEEE CAMAD ”,

Energy Efficiency (6/26) Spatial Modulation A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “ 210 An Energy Saving Base Station Employing , Sep. 2012, Barcelona, Spain. IEEE CAMAD ”,

Energy Efficiency (7/26) Spatial Modulation A. Stavridis, S. Sinanovic, M. Di Renzo, H. Haas, and P. Grant, “ y 211 and nerg E d MIMO of ormance an f er Pf P e h efficiency st - d owar Td T wavelength “ Energy “ s, ) the ki is the bit rate is the link margin l is b ou λ R ik M PAPR er ( () Bahai, Vikki V . . freqSynt C A d , Sep. 2012, Barcelona, Spain. +P and ra, an ower-ratio filters i e p Ni N e- +P g erez- P IEEE CAMAD mixer . ”, figure Goldsmith, A +P . J . are transmit and receive antenna gains DAC 1098, Aug. 2004 enzo, noise r eak-to-avera A R − p G =P the Di . is Cui, is the bit energy and f is the transmission distance M is the drain efficiency of the power amplifier t b is the circuit . S cooperative MIMO techniques inpp. sensor 1089 networks”, IEEE JSAC, vol. 22, no. 6, E d G N η ξ P n, i         tont The following energy-model is considered: Ni N .

Energy Efficiency (8/26)  K Efficiency ComparisonGeneralized of Fading Channels Spatial Modulation with Conventional Single-Antenna Transmission over y 212 nerg E d ormance an f er Pf P e h st d rate owar bit Td T “ the s, ki is is the link margin l is the wavelength b ou λ R ik M er (PAPR) Vikki V o . i freqSynt C d , Sep. 2012, Barcelona, Spain. +P ra, an ower-rat filters i e p Ni N +P erez- P IEEE CAMAD mixer . ”, A +P energy -to-average- k are transmit and receive antenna gains DAC enzo, bit r ea R p G =P e the Di h . is the noise figure is and st f is the transmission distance M is the drain efficiency of the power amplifier t b i circuit E d G N η ξ P n, i        tont The following energy-model is considered: Ni N .

Energy Efficiency (9/26)  K Efficiency ComparisonGeneralized of Fading Channels Spatial Modulation with Conventional Single-Antenna Transmission over y 213 nerg E d ormance an f er Pf P e h st d owar Td T “ s, ki ou ik er Vikki V . C d , Sep. 2012, Barcelona, Spain. ra, an i e Ni N erez- SM vs. Single-RF QAM – QAM SM vs. Single-RF bpcu 4 P IEEE CAMAD . ”, A enzo, R Di . M n, i tont Ni N

Energy Efficiency (10/26) . K Efficiency ComparisonGeneralized of Fading Channels Spatial Modulation with Conventional Single-Antenna Transmission over y 214 nerg E d ormance an f er Pf P e h st d owar Td T “ s, ki ou ik er Vikki V . C d , Sep. 2012, Barcelona, Spain. ra, an i e Ni N erez- SM vs. Single-RF QAM – QAM SM vs. Single-RF bpcu 4 P IEEE CAMAD . ”, A enzo, R Di . M n, i tont Ni N

Energy Efficiency (11/26) . K Efficiency ComparisonGeneralized of Fading Channels Spatial Modulation with Conventional Single-Antenna Transmission over y 215 nerg E d ormance an f er Pf P e h st d owar Td T “ s, ki ou ik er Vikki V . C d , Sep. 2012, Barcelona, Spain. ra, an i e Ni N erez- SM vs. Single-RF QAM – QAM SM vs. Single-RF bpcu 4 P IEEE CAMAD . ”, A enzo, R Di . M n, i tont Ni N

Energy Efficiency (12/26) . K Efficiency ComparisonGeneralized of Fading Channels Spatial Modulation with Conventional Single-Antenna Transmission over y 216 nerg E d ormance an f er Pf P e h st d owar Td T “ s, ki ou ik er Vikki V . C d , Sep. 2012, Barcelona, Spain. ra, an i e Ni N erez- SM vs. Single-RF QAM – QAM SM vs. Single-RF bpcu 4 P IEEE CAMAD . ”, A enzo, R Di . M n, i tont Ni N

Energy Efficiency (13/26) . K Efficiency ComparisonGeneralized of Fading Channels Spatial Modulation with Conventional Single-Antenna Transmission over y 217 nerg E d ormance an f er Pf P e h st d owar Td T “ s, ki ou ik er Vikki V . C d , Sep. 2012, Barcelona, Spain. ra, an i e Ni N erez- SM vs. Single-RF QAM – QAM SM vs. Single-RF bpcu 4 P IEEE CAMAD . ”, A enzo, R Di . M n, i tont Ni N

Energy Efficiency (14/26) . K Efficiency ComparisonGeneralized of Fading Channels Spatial Modulation with Conventional Single-Antenna Transmission over l y 218 where uentl on q qy ti a l u dlti d mo HSSK) - (EE d e mbols are used more fre y non-equiprobable signaling Aid d , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. e- d o Energy Efficient Transmission over Space Shift Keying Cd C ng i modulation s , where minimum achievable average symbo g amm IEEE Trans. Commun. Hi H t ", roblem p en i c Effi i t - y ower-consumin energy efficient modulation design is formulated as a convex p nerg less Energy efficiency is achieved by to transmit a given amount ofThe information optimization power consumption is derivedconstraints with rate, performance, and hardware E

Energy Efficiency (15/26)    Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " 219 diagram , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. Energy Efficient Transmission over Space Shift Keying =2) From GSSK … GSSK From constellation min - : spatial IEEE Trans. Commun. ", the GSSK of of Transmission rate Selection System performance (d    Limitations

Energy Efficiency (16/26)  Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " 220 of RF binary r utilized fully general, of 1’s in each is r (in chains Theindices set ofIt employsnumbe antenna amodulation different based on thecode Hamming symbol linearconstruction technique blockIncreased numbe code)    In HSSK:  , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. Energy Efficient Transmission over Space Shift Keying … to (EE)-HSSK IEEE Trans. Commun. ",

Energy Efficiency (17/26) Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " 221 rate M ≤ transmission transmitter the target design an alphabet and at minimum average symbol the chains while RF i , so that , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. constraint) are met of RF chains is restricted to i r Energy Efficient Transmission over Space Shift Keying requires consumes power equal to i achieved i i constraint), and the maximum required C is hardware in Problem Formulation constraint), the minimum Hamming distance } with the specified minimum distance property i IEEE Trans. Commun. ", element performance transmission each per that he objective of EE-HSSK modulation is to spectral-efficiency property ( the symbol a priori probabilities T power ( number of RF chains ( Given a code C = {C Given Given that each element in C Given that the maximum numbe Then…

Energy Efficiency (18/26)       Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " 222 et information g symbols in the formula l =0ifi>M he tar i The a prioriof probabilities al T rateofmbitsismet,as described byentropy Shannon’s alphabet sum toP one, and formulated as: y , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. Energy Efficient Transmission over Space Shift Keying Problem Formulation IEEE Trans. Commun. ", roblem is mathematicall p … the design

Energy Efficiency (19/27)  Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " 223 using found be associated to the i can P which , robabilities p , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. solution can be computed as follows: Energy Efficient Transmission over Space Shift Keying 2 λ Optimal Solution optimal and 1 λ roblem has a linear objective function subject to p IEEE Trans. Commun. riori transmission ", p globally a a l with tima p he optimization he o T convex the Lagrange multiplier method T Lagrange multipliers an affine equality and convex inequality constraints. Therefore, it is

Energy Efficiency (20/26)   Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " no 224 et: b in a a largest h y p lhb l the ea uentl However, h q qy t . r o have f to es i less fre t is coding r bili a ea -consuming are used less probabilities r bbilii b cost pp ro p owe i sa p priori The Huffman g or : ii i a . r p a rate l , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. bit strin symbol ma il i r Energy Efficient Transmission over Space Shift Keying e y g probabilities eopt h Optimal Solution optimal information priori nes t the a i IEEE Trans. Commun. .Sincelon r ", highest eterm di d owe unequal , only the least power-consuming codewords in C are included provides β p the + , all codewords in C are included in the alphabet equiprobably to f =0 with =1 ue o β β l mbol y solution frequently to achieve energy efficiency If achieve average symbol power consumption If in the alphabet equiprobabl The length ofs the bitrandom strings input is sequence, symbols roughly more reversely proportional to the eva    Th The information iscoding given for is accomplishingsymbols proposed the for bit creating mapping. an Variable-length efficient bit-string representation of

Energy Efficiency (21/26)   Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " 225 , vol. 60, no. 10, pp. 2950-2959, Oct. 2012. Energy Efficient Transmission over Space Shift Keying Implementation IEEE Trans. Commun. ",

Energy Efficiency (22/26) Modulated MIMO Channels R. Y. Chang, S.-J. Lin, and W.-H. Chung, " 226 7 = t N

Energy Efficiency (23/26) 227 = 10 t N

Energy Efficiency (24/26) 228 7 = r N = t N (Single RF-SIMO) (Single

Energy Efficiency (25/26) 229 = 10 r = N t N (Single RF-SIMO) (Single ( Two-RF-MIMO)

Energy Efficiency (26/26) 230 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 231 IEEE J. Sel. Areas ”, S2 S1 * * S1 -S2 Block - Time - Coding Orthogonal The Alamouti Scheme [dB]

Space SNR [dB]

S1

A simple transmit diversity technique for wireless communications

EP S S A S2 , vol. 16, no. 8, pp. 1451–1458, Oct. 1998.

Transmit-Diversity for SM (1/61) Transmit-Diversity S. M. Alamouti, “ Commun. 232 , vol. 17, no. 3, pp. 451–460, Mar. 1999. Space–time block coding for wireless communications: IEEE J. Sel. Areas Commun. ”, Orthogonal Space-Time Block Codes (OSTBCs)

Transmit-Diversity for SM (2/61) Transmit-Diversity V. Tarokh, H. Jafarkhani, and A. R. Calderbank, “ Performance results 233 S1 S1 S2 S2 * * * * S2 S1 S1 -S2 - STBC STBC Alamouti Alamouti ith rate greater than one and single-stream w 0 1 y OpportunitiesChallenges for and SM Transmit-diversity with rate greater than one ransmit-diversity T S1 S2 Opportunity: Challenge: decoding complexit AI Transmit-Diversity for SM (3/61) Transmit-Diversity    234                   

   exp  exp    2 1 2 1    exp exp                 11 11       22 nn 22 2 0 11 1 0 22 nn htht j j t t nm n nm n            mm mm    TT  TT        2222     1111   stmstm E E j stm j stm      Re Re     2222 1111 D rts tdtD s ts tdt rts tdt s ts tdt             , pp. 1–6, May 2010.       2122 2 2 11121 1  Performance comparison of different spatial modulation schemes in correlated    rtm s tmrtm s tm s tm nt s s t tm nt nt s t nt      if if 221 112 IEEE Int. Conf. Commun. mDD mDD    ”,  ˆ m

Transmit-Diversity for SM (4/61) Transmit-Diversity SSK SS M. Di Renzo and H. Haas, “ fading channels , 235  power 4 no m m  nt EN 2  2 20  IEEE Veh. Technol. Conf. – Fall

  radiates ”, j 1 2   TX 11 are both active  and  2 E   nt   active  and TX is j 1 1 j    0 p TX   : exp exp ex 

   mm m   2 2 21 1112 2 2

stm stm stm stm          020 m  NEN 21122 transmitted 111 E 42214 be       rtm E rtm E to Space Modulation on Wireless Fading Channels Q       needs to be transmitted: TX needs BEP ABEP 1 2 m m If If   Transmitted Signal: Received Signal: Error Probability:

Transmit-Diversity for SM (5/61) Transmit-Diversity    Y. Chau and S.-H. Yu, “ vol. 3, pp. 1668-1671, Oct. 2001. 236 , pp. 1–6, May 2010. Performance comparison of different spatial modulation schemes in correlated IEEE Int. Conf. Commun. ”,

Transmit-Diversity for SM (6/61) Transmit-Diversity M. Di Renzo and H. Haas, “ fading channels  0 237 0 IEEE ”, 4 m m EN  EN 2 

2 

  power 2 is active 2 no  221 4 11  12 12  radiates  2 222  ABEP

nt   nt      TX 0  1     and j j   p   exp ex active



radiates no power and TX  is   2 m 1 m 1  

 Space Shift Keying Modulation for MIMO Channels TX :       112 2 1221 , vol. 8, no. 7, pp. 3692-3703, July 2009. 222 111 stm stm stm stm     

   rtm E rtm E      

transmitted  jj  be to exp exp 2211   0 m needs to be transmitted: TX needs N E 1 2 4 m m     If If Q    Transmitted Signal: Received Signal: Error Probability:

Transmit-Diversity for SM (7/61) Transmit-Diversity BEP    J.Jeganathan,A.Ghrayeb,andL.Szczecinski,“ Transactions on Wireless Communications 238 , pp. 1–6, May 2010. Performance comparison of different spatial modulation schemes in correlated IEEE Int. Conf. Commun. ”,

Transmit-Diversity for SM (8/61) Transmit-Diversity M. Di Renzo and H. Haas, “ fading channels 239 1 

power  is active 2 no  0  2 4  m  EN radiates 2sin 2      22 2222  12 12  Md

TX   2  

  0  wt nt wt nt and  1  12 41        j     j   active  exp radiates no power and TX is exp Ms s s ABEP 1 1 and 0          m ): m TX : 0      2222 1111 m  t       TOSD-SSK rtm E rtm E transmitted         be :    22 : 12

to  ms  tm wt wt wt dt tt 0    m 22 2 1 122 11 1 1221 N stm wt s st E Signal 4  needs to be transmitted: TX       needs 1 2     m m Probability Q If If    Transmitted Signal ( Received Error BEP Transmit-Diversity for SM (9/61) Transmit-Diversity    240 ) . (.) ( () 1 2 ) w w no mod. TOSD-SSK 0 1 SSK) Diversity=2(  entional v (t) 2 (con entional 1 , pp. 1–6, May 2010. = ”tow ace ersity Sp v AI-2 = 0 Di ersit Shift Keying Performance comparison of different spatial modulation schemes in correlated  (t)

2 time-orthogonal w IEEE Int. Conf. Commun. ”, = (t) (t) is “ 1 1 AI-1 w If If w

Transmit-Diversity for SM (10/61) Transmit-Diversity AI-2   M. Di Renzo and H. Haas, “ fading channels 241 , pp. 1–6, May 2010. Performance comparison of different spatial modulation schemes in correlated IEEE Int. Conf. Commun. ”,

Transmit-Diversity for SM (11/61) Transmit-Diversity M. Di Renzo and H. Haas, “ fading channels 242 me- Ti u Y d : SM - :Meslehetal. au an n assisted SM ] g 5 [ Ch - ] ] 1 3 OrthogonalDesi Signal [ [ and Jeganathan et al. TOSD , pp. 1–6, May 2010. Performance comparison of different spatial modulation schemes in correlated IEEE Int. Conf. Commun. ”,

Transmit-Diversity for SM (12/61) Transmit-Diversity M. Di Renzo and H. Haas, “ fading channels 243 ) ) . . ) () ( () ( 1 2 ,vol.59,no.1, w w > 1 r TOSD-SSK ( no mod. r andwithasingleactive rrelated Rician Fading Channels: 0 1 IEEE Trans. Commun. > 2, and N t ”, Diversity = 2N  (t) j (conventional SSK) r ”tow time-instance with no bandwidth expansion y t Space AI-2 = 0 Space Shift Keying (SSK–) MIMO over Co Shift Keying Diversity = N at an  (t) j time-orthogonal Generalization to Rician Fading, N Rician Fading, Generalization to (t) = w (t) is “ i i AI-1 If w If w This is true fortransmit-antenna any N

Transmit-Diversity for SM (13/61) Transmit-Diversity AI-2    Performance Analysis andpp. a 116-129, New Jan. 2011. Method for Transmit–Diversity M. Di Renzo and H. Haas, “ 244 pr. 2012. A p. 998-1112, p Space Shift Keying (SSK-) MIMO with Practical ol. 60, No. 4, Spectrally efficient UWB pulse shaping with application in V , , vol. 55, no. 2, pp. 313–322, Feb. 2007. rans. Commun. T IEEE ”, IEEE Trans. Commun. ,” Orthogonal Waveforms Design with Bandwidth Constraint Orthogonal Waveforms Estimates l

Transmit-Diversity for SM (14/61) Transmit-Diversity J.A.NeydaSilvaandM.L.R.deCampos,“ orthogonal PSM M. Di Renzo, D. DeChanne Leonardis, F. Graziosi, and H. Haas, “ 245 Space Shift Keying (SSK-) MIMO with Practical , Vol. 60, No. 4, pp. 998-1112, Apr. 2012. IEEE Trans. Commun. ”,

Transmit-Diversity for SM (15/61) Transmit-Diversity Channel Estimates M. Di Renzo, D. De Leonardis, F. Graziosi, and H. Haas, “ 246

Transmit-Diversity for SM (16/61) Transmit-Diversity 247

Transmit-Diversity for SM (17/61) Transmit-Diversity 248

Transmit-Diversity for SM (18/61) Transmit-Diversity 249

Transmit-Diversity for SM (19/61) Transmit-Diversity 250

Transmit-Diversity for SM (20/61) Transmit-Diversity 251 the Full it? at  This is too  antenna achieving ual to 2 ) t q e ? (N 2 y 2 active onl scheme 1 than y just SSK a greater , June 2011. with =2 t design gain to diversity ons - ti how diversity ca - li ti achieves transmit-diversit Space Shift Keying (SSK) Modulation: On the Transmit- transmit eapp IEEE Int. Commun. Conf. K t diversity), ”, transmit a ara t a (rate, dt d achieves OSD-SS h T g , pair achieve hi h SSK - a r o we f ow TOSD transmitter However transmit-diversity is possible only if N Furthermore, the datal rate of SSK is only Rate=log Can At the same time, can weGiven increase the rate?       In summary: Questions:

Transmit-Diversity for SM (21/61) Transmit-Diversity   Diversity/Multiplexing Trade-Off M. Di Renzo and H. Haas, “ 252 ) t t a N N    (N 2 2 log    D={1; 2; 3; 4; 5} 2   )>log H H N Generalized space shift keying modulation for MIMO (N D={(1,2); (1,3); (1,4); (1,5); (2,3); (2,4);D={(1,2,3); …} (1,2,4); (1,2,5); (1,3,4); …} 2   ) t =1 (i.e., SSK) =2 =3 a a a >N N N N H    Increasing the Rate via GSSK Size(N of the spatial-constellation diagram Rate = log Spatial-constellation diagram:    , pp. 1-5, Sep. 2008. t N 1 2 3 4 5 IEEE PIMRC a TX TX TX TX TX ”, N

Transmit-Diversity for SM (22/61) Transmit-Diversity J. Jeganathan, A. Ghrayeb, and L. Szczecinski, “ channels e h 253 t d yze such that ld l antennas - H ~ N ≤ H ave ana h transmit d active the   be , June 2011. agram an t a a di N N N    2 log on    i and 2 at ll i  H  N antennas -conste l - Space Shift Keying (SSK) Modulation: On the Transmit- a il i IEEE Int. Commun. Conf. ”, is Div y transmit espat h the nt i be t N nts i o transmit-diversit transmit-diversity order of each of them Let Then, the largest possible size of the spatial-constellation diagram is: Find the actual spatial constellation diagram ofUnderstand size the N role played by the TOSD principle for transmit-diversity We have computed thep PEP (Pairwise Error Probability) of any pair of      Problem statement Objectives Methodology

Transmit-Diversity for SM (23/61) Transmit-Diversity    Diversity/Multiplexing Trade-Off M. Di Renzo and H. Haas, “ if 254 ) H =1 if the a ) (N H 2 if N (N 2 K R=log 1 = rate a OSD-SS T N and if 2 SSK Div= to , June 2011. Div=1 and rate R=log y and reduces to K reduces diversity - and OSD-GSS transmit GSSK T Space Shift Keying (SSK) Modulation: On the Transmit- IEEE Int. Commun. Conf. ”, called is achieves Main Result: Transmit-Diversity 1 and 2 Transmit-Diversity Main Result: transmit-antennas have orthogonal shaping filters t scheme system transmit-antennas have the same shaping filter t he system achieves transmit-diversit his scheme is called N T This The the N T     Result 1 (Div=1) Result 2 (Div=2)

Transmit-Diversity for SM (24/61) Transmit-Diversity   Diversity/Multiplexing Trade-Off M. Di Renzo and H. Haas, “ 255 filters distinct a and rate a N shaping · transmit-antennas t a Div=2 N orthogonal have , June 2011. tradeoff antennas - artition of the set of N t a p each subset of the partition has N N N     transmit 2 Space Shift Keying (SSK) Modulation: On the Transmit- t a IEEE Int. Commun. Conf. N N · ”, ٣ H the  if =N t ) Main Result: Transmit-Diversity > 2 Transmit-Diversity Main Result: Rlog Div2 ٣ H be the size of the ٣ (N 2 H log = antenna-elements and the subsets are pairwise disjoint Let N such that N Then, theR Rlog system achievesThis scheme transmit-diversity isset called partitioning (TOSD-GSSK-SP) TOSD-GSSK with mapping by pairwise disjoint    Result 3 (Div>2)

Transmit-Diversity for SM (25/61) Transmit-Diversity  Diversity/Multiplexing Trade-Off M. Di Renzo and H. Haas, “ 256 (.) (.) (.) (.) 1 3 2 4 w w w w no mod. no mod. no mod. no mod. 1 0 , June 2011. =2, R=1, Div=4 a SP - Space Shift Keying (SSK) Modulation: On the Transmit- =4, N t IEEE Int. Commun. Conf. N GSSK ”, - AI-1 = 1 AI-2 = 0 TOSD 1 - AI 2 - Transmit-Diversity for SM (26/61) Transmit-Diversity Diversity/Multiplexing Trade-Off M. Di Renzo and H. Haas, “ AI 257 a N · 2 v= (.), the spatial- i Di , t N (.), Div=2 i f (.), Div=2 i on o , June 2011. i t ii i orthogonal w art t p orthogonal w sa t i orthogonal w (.), Div=1 i t >1, N a (.), Div=1 i N Space Shift Keying (SSK) Modulation: On the Transmit- >1, N a IEEE Int. Commun. Conf. (.)=w agram =1, N 0 ”, a N (.)=w di 0 N on >1, w i a =1, w at a N ll i N SSK: GSSK: TOSD-SSK: TOSD-GSSK: TOSD-GSSK-SP: conste      Five schemes are studied:

Transmit-Diversity for SM (27/61) Transmit-Diversity  Diversity/Multiplexing Trade-Off M. Di Renzo and H. Haas, “ 258 [dB] 0 /N m E R=4] , Div = 1 and Div = = 2 1 and Div Div Na=3 , [Nt=6

GSSK [Nt=5, Na=2, R=3] Na=2, [Nt=5, GSSK GSSK [Nt=6 Na=3 R=3] Na=2, [Nt=5, R=4] TOSD-GSSK R=4] Na=3, [Nt=6, TOSD-GSSK 10 15 20 25 30 35 40 45 50 -1 -2 -3 -4 -5

10 10 10 10 10

EP B B A

Transmit-Diversity for SM (28/61) Transmit-Diversity 259 4] v= Di , 2 a= N , 4 = [Nt 4 N Div=6] Na=3, [Nt=6, 2 Div=8] Na=4, Di[Nt=8, 4] [dB] 0 /N m E R = 1 - TOSD-GSSK-SP - = 1 R 5 10152025 -1 -2 -3 -4 -5

10 10 10 10 10

EP B B A

Transmit-Diversity for SM (29/61) Transmit-Diversity 260

6] v= Di , 3 a= N , 6 = Div=1] , [Nt

SP - Na=1 , GSSK - [Nt=2

[dB] 0 SSK [Nt=2 Na=1 Div=2] Na=1, [Nt=2, Div=1] TOSD-SSK Div=4] Na=2, TOSD-GSSK-SP[Nt=4, TOSD GSSK SP [Nt Div=8] Na=4, [Nt=8, 6TOSD-GSSK-SP N 3 Di 6] /N R = 1 m E 0 5 10 15 20 25 30 35 40 45 50 0 -1 -2 -3 -4 -5

10 10 10 10 10 10

EP B B A

Transmit-Diversity for SM (30/61) Transmit-Diversity 261

6] v= Di , 3 a= N , 1] 12 v= = Di , [Nt

1 = SP - Na , 4 = GSSK - [Nt

[dB] 0 /N R = 2 SSK [Nt 4 Div=2] Na=1, [Nt=4, NaTOSD-SSK 1 Div=4] Na=2, [Nt=8, DiTOSD-GSSK-SP 1] TOSD GSSK SP [Nt 12 N 3 Di 6] m E 0 5 10 15 20 25 30 35 40 45 50 0 -1 -2 -3 -4 -5

10 10 10 10 10 10

EP B B A

Transmit-Diversity for SM (31/61) Transmit-Diversity 262

SSK [Na=1, R=3, Div=1] R=3, SSK [Na=1, TOSD-SSK [Na=1, R=3, Div=2] Div=1] R=6, [Na=4, GSSK Div=2] R=6, [Na=4, TOSD-GSSK Div=4] R=2, [Na=2, TOSD-GSSK-SP Div=8] R=1, [Na=4, TOSD-GSSK-SP [dB] 0 /N Nt = 8 m E 0 5 10 15 20 25 30 35 40 45 50 2 0 -1 - -3 -4 -5

10 10 10 10 10 10

EP B B A

Transmit-Diversity for SM (32/61) Transmit-Diversity 263 ]

Nt=7, R=5, Div=2 [ [] GSSK [Nt=6, R=4, Div=1] R=4, [Nt=6, GSSK Div=1] R=5, [Nt=7, GSSK Div=2] R=4, [Nt=6, TOSD-GSSK TOSD-GSSK Div=6] R=1, [Nt=6, TOSD-GSSK-SP Div=6] R=2, [Nt=12, TOSD-GSSK-SP [dB] 0 /N Na = 3 m E 0 5 10 15 20 25 30 35 40 45 50 0 -1 -2 -3 -4 -5

10 10 10 10 10 10

EP B B A

Transmit-Diversity for SM (33/61) Transmit-Diversity 264 ode) ti c SM ou S1 S1 S2 S2 for fAlam * * , June 2011. o * * n S1 S1 -S2 -S2 diversity o - i s n e xt (e e s o transmit 2 o of STBC STBC lamouti al t Alamouti A IEEE Int. Commun. Conf. equ ”, y it s challenges r e 0 1 iv d desy design mit- s the Transmit-Diversity for Spatial Modulation (SM): Towards the Design of High- in tran ed t S1 es r e eesed S2 Understanding Generalizing the TOSD approach to SMInt (TOSD-SM)    From SSK to SM Challenges (…let us start, e.g., from Alamouti…) AI Transmit-Diversity for SM (34/61) Transmit-Diversity   M. Di Renzo and H.Rate Haas, Spatially-Modulated “ Space-Time Block Codes H 265 N ≤ h diversity - antennas - transmit transmit , June 2011. active analyzed the have   be t a a N N N    and 2 log    IEEE Int. Commun. Conf. and 2 ”, 2  = a symbol) - H N N for antennas 2 - is modulated , Transmit-Diversity for Spatial Modulation (SM): Towards the Design of High- transmit diversity - the index . Find the actual spatial constellation diagram of size N - ogy l be t o d N Transmit Transmit-diversity can be achieved with single-stream decoding complexity o hdl h   Let Then, the largest possible size of the spatial-constellation diagram is: Objective such that: We have computed the(antenna PEP (Pairwise Errorand Probability) single-stream decoding of optimality of any pair each of of them     Problem statement Met

Transmit-Diversity for SM (35/61) Transmit-Diversity   M. Di Renzo and H.Rate Haas, Spatially-Modulated “ Space-Time Block Codes e a of , h 266 t r f transmit- the spatial- . However is of the orde , June 2011. So, no single-stream y lexit component on top o p py are all the same, sets of antennas g r SS SSK com in e r h pp g ing t IEEE Int. Commun. Conf. dd ”, esame,a h t ram into non-overla ll g Transmit-Diversity for Spatial Modulation (SM): Towards the Design of High- are a r Main Result: Same Shaping FiltersMain Result: at Tx can be used and the receive correlations r Na M · h Whatever the spatial-constellation diagram is,transmitte if the shaping filters at the N If the shaping filters at themulti-stream transmitte receiverdecoding is needed at the destination for ML-optimum Alamouti code destroys its inherent orthogonality. decode diversity equal to 2 can be guaranteed by partitioning constellation dia   Result 1 (receiver complexity) Result 2 (transmit-diversity)

Transmit-Diversity for SM (36/61) Transmit-Diversity   M. Di Renzo and H.Rate Haas, Spatially-Modulated “ Space-Time Block Codes 267 S1 S1 S2 S2 * * , June 2011. * * S1 S1 -S2 -S2 STBC STBC Alamouti Alamouti IEEE Int. Commun. Conf. ”, 0 1 Transmit-Diversity for Spatial Modulation (SM): Towards the Design of High- Same Shaping Filters at Tx – Example S1 S2 FromResult1andResult2,itfollowsthatthisschemeachieves transmit-diversity equal to 2 but multi-stream decoding is needed AI Transmit-Diversity for SM (37/61) Transmit-Diversity  M. Di Renzo and H.Rate Haas, Spatially-Modulated “ Space-Time Block Codes 268 the ea b at the ld both ou zero cross- hld h guaranteed s of be m a r can ag choice , June 2011. di r m n o ti a decoding ll e adequate t s ntlltin n an stream -co l - via a ti IEEE Int. Commun. Conf. a ptil p ”, s single ) e and the spatial-constellation diagram ty th i guaranteed nd vers ,a be n di i ) complexity - o on t- i ti i c can low Transmit-Diversity for Spatial Modulation (SM): Towards the Design of High- n 2 u In particular, some pairs of filters should have unct fntin f fi f . In particular, some pairs of filters must have zero cross- n of on o transm i ti (i ( at a li l l 4 optimum e - t rr l ti n l Main Result: Time-OrthogonalMain Result: Shaping Filters at Tx partition of the transmit-antenna array ML via antransmitter. adequate choicecorre of the (precoding) shaping filters atML-optimum the low-complexitydiversity single-stream decodingprecoding with shaping filters transmit- co transmitter esu   Result 3 (receiver complexity) Rl R

Transmit-Diversity for SM (38/61) Transmit-Diversity   M. Di Renzo and H.Rate Haas, Spatially-Modulated “ Space-Time Block Codes 269 ) ) . . (.) (.) () ( () ( 1 1 2 2 w w w w g S1 S1 S2 S2 , June 2011. * * * * S2 S1 S1 - -S2 le-stream decodin g IEEE Int. Commun. Conf. STBC STBC ”, Alamouti Alamouti to 2 with sin l 0 1 ua q e y Transmit-Diversity for Spatial Modulation (SM): Towards the Design of High- S1 Time-OrthogonalFilters Shaping at Tx – Example S2 From Result 3transmit-diversit and Result 4, it follows that this scheme achieves

Transmit-Diversity for SM (39/61) Transmit-Diversity  M. Di Renzo and H.Rate Haas, Spatially-Modulated “ Space-Time Block Codes AI 270 sa d TOSD- nee ( different d g ) an 1 usin o y t STBC l - , June 2011. SM ( equa nts ity i o p vers f di it hisisobtainedb - it T at the transmitter along with a spatial- ng sets o i ransm tit t IEEE Int. Commun. Conf. ”, app li l eves hi over ac h t ih h wi c hi h whi which achieves transmit-diversity equal to 2 and needs a in all the antennas at the transmitter along with a spatial- agram Transmit-Diversity for Spatial Modulation (SM): Towards the Design of High- up, t di on ) i at ll i -case se t le-stream decoder at the destination. g ors lamouti code (rate=1) SM-STBC multi-stream decoder at the destination. It is obtained by using the same Wt W shaping filters conste Best-case setup, and time-orthogonal shapingconstellation filters diagram composed by non-overlapping sets of points SM A H3 and H4 OSTBCs (rate=3/4) sin      Case studies Baseline schemes

Transmit-Diversity for SM (40/61) Transmit-Diversity   M. Di Renzo and H.Rate Haas, Spatially-Modulated “ Space-Time Block Codes 271

M=4] , Nh=4 , [Nt=4

[M=8]

STBC - Alamouti [M=8] [Nt=2,SM M=4] [Nt=4,SM M=2] SM STBC [Nt=4 M=2] Nh=4 Nh=16, [Nt=7, SM-STBC M=4] TOSD-SM-STBC [Nt=8, Nh=4, M=4] [dB] 0 /N m 3 bits/s/Hz 3 E 0 5 10 15 20 25 30 35 40 45 50 0 -1 -2 -3 -4 -5

10 10 10 10 10 10

EP B B A

Transmit-Diversity for SM (41/61) Transmit-Diversity 272

[dB] 0 16] /N = m M 5 bits/s/Hz 5 E , 4 = Nh , 4 = [Nt

STBC - lamouti [M=32] lamouti A [Nt=2,SM M=16] [Nt=8,SM M=4] SM STBC [Nt M=8] Nh=16, 4 [Nt=7, SM-STBC Nh 4 M Nh=4, [Nt=8, M=16] TOSD-SM-STBC 16] 0 5 10 15 20 25 30 35 40 45 50 0 -1 -2 -3 -4 -5

10 10 10 10 10 10

EP B B A

Transmit-Diversity for SM (42/61) Transmit-Diversity 273

M=2] , Nh=2 , [Nt=4

STBC [M=4] -

SM H3 - - STBC H3 [M=4] STBC-H4 [M=4] SM-STBC [Nt=3, Nh=2, M=2] TOSD SM STBC [Nt=4 Nh=2 M=2] [dB] 0 /N m E 1.5 bits/s/Hz 1.5 0 5 10 15 20 25 30 35 40 45 50 2 0 -1 - -3 -4 -5

10 10 10 10 10 10

BEP A

Transmit-Diversity for SM (43/61) Transmit-Diversity 274

[dB] 0 16] /N = m M E , 4.5 bits/s/Hz 4.5 2 = Nh , 3 = [Nt

STBC - STBC-H3 [M=64] STBC-H3 [M=64] STBC-H4 SM STBC [Nt M=8] Nh=8, 3 [Nt=5, SM-STBC Nh 2 M Nh=2, [Nt=4, M=16] TOSD-SM-STBC 16] 0 5 10 15 20 25 30 35 40 45 50 2 0 -1 - -3 -4 -5

10 10 10 10 10 10

BEP A

Transmit-Diversity for SM (44/61) Transmit-Diversity 275 IEEE ”, Space–time block coded spatial modulation , vol. 59, no. 3, pp. 823–832, Mar. 2011.

Transmit-Diversity for SM (45/61) Transmit-Diversity Trans. Commun. E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “ 276 IEEE ”, Space–time block coded spatial modulation , vol. 59, no. 3, pp. 823–832, Mar. 2011. Example: - Nt = 4 - BPSK Alamouti - = 2 bpcu R

Transmit-Diversity for SM (46/61) Transmit-Diversity Trans. Commun. E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “ 277 IEEE ”, Space–time block coded spatial modulation , vol. 59, no. 3, pp. 823–832, Mar. 2011.

Transmit-Diversity for SM (47/61) Transmit-Diversity Trans. Commun. E. Basar, U. Aygolu, E. Panayirci, and H. V. Poor, “ 278

Transmit-Diversity for SM (48/61) Transmit-Diversity 279

Transmit-Diversity for SM (49/61) Transmit-Diversity 280

Transmit-Diversity for SM (50/61) Transmit-Diversity 281

Transmit-Diversity for SM (51/61) Transmit-Diversity 282 time code with – rate space – l 2×2ful A , vol. 51, no. 4, pp. 1432–1436, Apr. 2005. he golden code: T iterbo/perfect_codes/Golden_Code.html The Golden Code iterbo, “ V IEEE Trans. Inform. Theory ”, C. Belfiore, G. Rekaya, and E.

Transmit-Diversity for SM (52/61) Transmit-Diversity – J. nonvanishing determinants http://www.ecse.monash.edu.au/staff/ev 283 ,pp. eme: h sc d e dd d co k oc bl k me i t – rate space h IEEE Wireless Commun. Netw. Conf. g ”, Hi h “ , idl m h c ShS idl . M . T d ,an k a b a DbkD . G . A , i Double Space-Time Transmit Diversity (DSTTD) Diversity Double Space-Time Transmit nggosanus Oi O . N

Transmit-Diversity for SM (53/61) Transmit-Diversity . E Performance and improvement in194–199, correlated Mar. 2002. fading channels 284

Transmit-Diversity for SM (54/61) Transmit-Diversity 285

Transmit-Diversity for SM (55/61) Transmit-Diversity 286 QAM x   2 IQ IQ arctan 2 j    p   ex 22,1, 11,2,    ss js ss js sj       2  0  s , Nov. 2012. 1  Modulation diversity for spatial modulation using complex interleaved 0 s       channel uses channel    IEEE TENCON ”, SM-CIOD: Transmit-Diversity with a Single-RF Chain with a Single-RF Transmit-Diversity SM-CIOD:

Transmit-Diversity for SM (56/61) Transmit-Diversity antennas R. Rajashekar and K. V. S. Hari, “ orthogonal design 287 used

is used t N

mod

(l+1) mod N

is used l antenna

use:

channel

Second channel use: antenna - Firstantenna channel use: - , Nov. 2012. Modulation diversity for spatial modulation using complex interleaved IEEE TENCON ”, SM-CIOD: Transmit-Diversity with a Single-RF Chain with a Single-RF Transmit-Diversity SM-CIOD:

Transmit-Diversity for SM (57/61) Transmit-Diversity R. Rajashekar and K. V. S. Hari, “ orthogonal design 288 antennas

1

CBS + 1 antennas 2 t t N - -N , Nov. 2012. Modulation diversity for spatial modulation using complex interleaved IEEE TENCON ”, SM-CIOD: Transmit-Diversity with a Single-RF Chain with a Single-RF Transmit-Diversity SM-CIOD:

Transmit-Diversity for SM (58/61) Transmit-Diversity R. Rajashekar and K. V. S. Hari, “ orthogonal design 289 Phase Rotations , Nov. 2012. Modulation diversity for spatial modulation using complex interleaved IEEE TENCON ”,

Transmit-Diversity for SM (59/61) Transmit-Diversity R. Rajashekar and K. V. S. Hari, “ orthogonal design 290

Transmit-Diversity for SM (60/61) Transmit-Diversity 291

Transmit-Diversity for SM (61/61) Transmit-Diversity 292 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 293 ehicular V ransactions on T IEEE ots l ”, me-s i active transmit-antennas t α s ransmitter N T 75/74/PDF/Correction_TransmitDiversitySM.pdf On Transmit–Diversity for Spatial Modulation MIMO: Impact of Spatial– ve-antennas i , Vol. 62, No. 6, pp. 2507–2531, July 2013. – See “Correction Paper” too: rece transmit-antennas N t r N N

Spatially-Modulated Space-Time-Coded MIMO (1/23)   M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Technology http://hal.archives-ouvertes.fr/docs/00/84/ – 294 IEEE Transactions on Vehicular ”, for Spatial Modulation MIMO: Impact of Spatial y Diversit – ransmit T On , Vol. 62, No. 6, pp. 2507–2531, July 2013

Spatially-Modulated Space-Time-Coded MIMO (2/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology – 295 IEEE Transactions on Vehicular ”, for Spatial Modulation MIMO: Impact of Spatial y Diversit – ransmit T On , Vol. 62, No. 6, pp. 2507–2531, July 2013

Spatially-Modulated Space-Time-Coded MIMO (3/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology – 296 IEEE Transactions on Vehicular ”, for Spatial Modulation MIMO: Impact of Spatial y Diversit – ransmit T On , Vol. 62, No. 6, pp. 2507–2531, July 2013

Spatially-Modulated Space-Time-Coded MIMO (4/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology – 297 IEEE Transactions on Vehicular ”, for Spatial Modulation MIMO: Impact of Spatial y Diversit – ransmit T On , Vol. 62, No. 6, pp. 2507–2531, July 2013

Spatially-Modulated Space-Time-Coded MIMO (5/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology – 298 IEEE Transactions on Vehicular ”, for Spatial Modulation MIMO: Impact of Spatial y Diversit – ransmit T On , Vol. 62, No. 6, pp. 2507–2531, July 2013

Spatially-Modulated Space-Time-Coded MIMO (6/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology 299

Spatially-Modulated Space-Time-Coded MIMO (7/23) 300

Spatially-Modulated Space-Time-Coded MIMO (8/23) 301 SWOSF – SetPart – SMSTT – M2 T and OSF – SetPart – ML-Optimum Single-Stream Decoding: SMSTT – M2 T

Spatially-Modulated Space-Time-Coded MIMO (9/23) – 302 SWOSF – SetPart – IEEE Transactions on Vehicular ”, SMSTT – M2 T for Spatial Modulation MIMO: Impact of Spatial y and Alamouti Diversit – OSF – ransmit T On SetPart – ML-Optimum Single-Stream Decoding: SMSTT – , Vol. 62, No. 6, pp. 2507–2531, July 2013 M2 T

Spatially-Modulated Space-Time-Coded MIMO (10/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology – 303 IEEE Transactions on Vehicular ”, for Spatial Modulation MIMO: Impact of Spatial y Diversit – ransmit T On , Vol. 62, No. 6, pp. 2507–2531, July 2013

Spatially-Modulated Space-Time-Coded MIMO (11/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology – 304 SWOSF – SetPart – IEEE Transactions on Vehicular H3 ”, - SMSTT kh – aro T M2

T for Spatial Modulation MIMO: Impact of Spatial y and OSTBC Diversit e: – l OSF – ransmit xamp T ElOSTBCTkh E On SetPart – ML-Optimum Single-Stream Decoding: SMSTT – , Vol. 62, No. 6, pp. 2507–2531, July 2013 M2 T

Spatially-Modulated Space-Time-Coded MIMO (12/23) M. Di Renzo andConstellation H. Diagram Haas, “ and Shaping Filters at the Transmitter Technology 305 = 1 –= 1 = 4 bpcu) R r Diversity Analysis (N Diversity

Spatially-Modulated Space-Time-Coded MIMO (13/23) 306 = 2 – = 4 bpcu) R r Diversity Analysis (N Diversity

Spatially-Modulated Space-Time-Coded MIMO (14/23) 307 Multi vs. Single-Stream Multi vs. Single-Stream (R = 4 bpcu) Decoding

Spatially-Modulated Space-Time-Coded MIMO (15/23) 308 = 1 r N R = 4 bpcu

Spatially-Modulated Space-Time-Coded MIMO (16/23) 309 = 1 r N R = 6 bpcu

Spatially-Modulated Space-Time-Coded MIMO (17/23) 310 = 2 r N R = 6 bpcu

Spatially-Modulated Space-Time-Coded MIMO (18/23) 311 = 4 r N R = 6 bpcu

Spatially-Modulated Space-Time-Coded MIMO (19/23) 312 = 1 r N R = 8 bpcu

Spatially-Modulated Space-Time-Coded MIMO (20/23) 313 = 2 r N R = 8 bpcu

Spatially-Modulated Space-Time-Coded MIMO (21/23) 314 = 4 r N R = 8 bpcu

Spatially-Modulated Space-Time-Coded MIMO (22/23) 315 = 2 r R = 8 bpcu OSF-MIMO N

Spatially-Modulated Space-Time-Coded MIMO (23/23) 316 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 20 317 18 16 single-hop 14 multi-hop 12 10 8 Signal-to-Noise-Ratio [dB] 6 4 2 0 0 -1 -2 -3

10 10 10 10

ility b b Proba Error Time-Slot 1 Time-Slot 2 : additional : better performance, -duplex constraint… f resources (relays, time-slots, frequencies), capacity reduction, hal extended coverage… Advantages Disadvantages

Relay-Aided SM (1/24) Relay-Aided Multi-Hop Networks:   318 20 18 16 cooperative 14 non-cooperative 12 10 8 6 Signal-to-Noise-Ratio [dB] 4 2 … 0 3

0 -1 -2 - -4 -5

10 10 10 10 10 10 ty t Probabili Error constraint x ple u dple d - half , : additional resources (relays, time-slots, frequencies), ction u : better performance, (macro) diversity… Time-Slot 1 red ction Advantages Disadvantages capacit capacity

Relay-Aided SM (2/24) Relay-Aided Cooperative Networks:   ”, 319 Dual–hop spatial modulation (Dh–SM) , pp. 1–5, May 2011. Demodulate-and-Forward (DemF) Demodulate-and-Forward Dual-Hop Spatial Modulation

Relay-Aided SM (3/24) Relay-Aided N.Serafimovski.,S.Sinanovic.,M.DiRenzo,andH.Haas,“ IEEE Veh. Technol. Conf. – Spring 320

Relay-Aided SM (4/24) Relay-Aided 321

Relay-Aided SM (5/24) Relay-Aided 322

Relay-Aided SM (6/24) Relay-Aided 323

Relay-Aided SM (7/24) Relay-Aided 324

Relay-Aided SM (8/24) Relay-Aided no for 325 or a distributed activated f multiple is rocess conveys p so PSK) the role o relay and or y relays. Each symbol has , la R p py the s y (QAM occur -activation y then bits ) , may R ID (N 2 hus, the rela he rela In TS-1, MS broadcaststo its a own group infolog symbol of N The relayswithout any coordination decode among them theEach relay received isthe assigned symbol symbol received an from individualthe MS ID. coincides with If transmission T spatial constellation diagram T Errors relays may wake up information       BS Virtual SM-MIMO for the Uplink R1 R2 R3 R4 Distributed

Relay-Aided SM (9/24) Relay-Aided MS spatial-constellation diagram 326 Demodulator

Conventional SSK Demodulator Distributed Space Shift Keying for the Uplink of , Sep. 2012. IEEE CAMAD ”, Virtual SM-MIMO for the Uplink

Relay-Aided SM (10/24) Relay-Aided S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “ Relay-Aided Cellular Networks 327 Distributed Space Shift Keying for the Uplink of , Sep. 2012. IEEE CAMAD ”, Optimal (Error-Aware) Demodulator

Relay-Aided SM (11/24) Relay-Aided S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “ Relay-Aided Cellular Networks 328 Distributed Space Shift Keying for the Uplink of , Sep. 2012. IEEE CAMAD ”, Optimal (Error-Aware) Demodulator

Relay-Aided SM (12/24) Relay-Aided S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “ Relay-Aided Cellular Networks 329

Relay-Aided SM (13/24) Relay-Aided 330 BS R1 R2 BS  R2(R2) A new relaying protocol MS based on Spatial Modulation based on Spatial (the Relays have data in their buffers)have (the Relays BS BS   R1(R1) R2(R2) … BS BS BS BS BS BS Relaying  

    silent silent

R2) , is is

MS2*) id=MS2 Based ‐ Phoenix

R1(R1) R2(MS) Rnid ‐ Rid(Rid) R2(MS1*) R2(MS R2) R1( Relaying Based Based

Repetition Spectral-Efficient Relaying BS BS BS BS BS BS Based

      silent silent

R1) –Alamouti ,

is is

Selective (NC)

id=MS1 Modulation Modulation

R1(MS) Rnid Rid(Rid) R1(MS1) R2(MS2) R1(MS R1) Rbest(MS) x Coding Relaying

Rx R Rx Rx Rx Rx Spatial       DSTBC Network MS(MS) MS(MS) MS(MS) MS(MSi) MS(MS2) MS(MS1)

Relay-Aided SM (14/24) Relay-Aided 331 Distributed Spatial Modulation for Relay Distributed SM , Sep. 2013. IEEE VTC-Fall ”,

Relay-Aided SM (15/24) Relay-Aided S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “ Networks 332 Distributed Spatial Modulation for Relay × , Sep. 2013. Optimal (Error-Aware) Demodulator IEEE VTC-Fall ”,

Relay-Aided SM (16/24) Relay-Aided S. Narayanan, M. Di Renzo, F. Graziosi, and H. Haas, “ Networks 333 Diversity order ofDiversity 2 the source is (analytically proved)

Relay-Aided SM (17/24) Relay-Aided 334 SPM

Relay-Aided SM (18/24) Relay-Aided 335

Relay-Aided SM (19/24) Relay-Aided 336 ,vol.10,no.7,pp. Relaying Listening Phase IEEE Trans. Wireless Commun. Non-Orthogonal ", ransmission in Decode-and-Forward Relaying Systems: T Relayed Information Information-Guided issa, " A Decode-and-Forward (DF) Decode-and-Forward ang and S. Y

Relay-Aided SM (20/24) Relay-Aided . Spatial Exploitation and Throughput Enhancement Y 2341-2351, July 2011. 337 ,vol.10,no.7,pp. Relaying : received from the source : received ] c x , d x [ : spatial-constellation diagram : signal-constellation diagram d c x = x x Relaying Phase - - - IEEE Trans. Wireless Commun. Non-Orthogonal ", ransmission in Decode-and-Forward Relaying Systems: T Information-Guided Non-Relayed InformationNon-Relayed issa, " A Decode-and-Forward (DF) Decode-and-Forward ang and S. Y

Relay-Aided SM (21/24) Relay-Aided . Spatial Exploitation and Throughput Enhancement Y 2341-2351, July 2011.

” 338 le- g s, l anne h ) ve c i : g in [*] SR-IGT ) ex cooperat l ecific IGT case with sin ecific IGT case p pg benchmark up arison amon dld i h l” p pg - he s lf T The general IGT scheme The general The The a (b) M = 4 relaynodes (a) M = 2 relay nodes general IGT Capacity complementary cumulative distribution function (CCDF) com - ( - relay selection ( and P. H. El Gamal, [*] K. Azarian, “On the achievable Schniter, tradeoffdiversity-multiplexing in hlf h IEEE Trans. Inf. Theory, vol. 51, no. vol. Inf. Theory, IEEE Trans. 4152–4172, Dec.12, pp. 2005. -

Relay-Aided SM (22/24) Relay-Aided 339

Relay-Aided SM (23/24) Relay-Aided 340

Relay-Aided SM (24/24) Relay-Aided 341 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 342

SM in Heterogeneous Cellular Networks (1/22) Cellular Networks SM in Heterogeneous or f 343 d te i o lil d or exp d/ an d ico, femto, relays, DAEs, p manage l ly roper p e b ld ou hld h erence s f Overlaid multi-tier heterogeneous scenario Overlaid multi-tier heterogeneous nter if i us, cognitive radios, etc.) reliable communications and energy efficiency Heterogeneous cellular systems arecells networks providing with different different QoSand types requirements contend of to the the wireless users, medium which (macro, coexist Th SM in Heterogeneous Cellular Networks (2/22) SM in Heterogeneous Cellular Networks   344 …what cellular will migrate…what to (Prof. Jeff Andrews, UT Austin)…

SM in Heterogeneous Cellular Networks (3/22) SM in Heterogeneous Cellular Networks , ar l u 345 ll e Clll C IEEE Trans. ”, eterogeneous )are: IEEE Trans. Commun. H ”, k n li Error Performance of Multi– integrations own Dlik D f ate o and/or R hts g abstraction models : verage insi A r “ o / A Tractable Approach to Coverage and Rate in Cellular ferers – A Stochastic Geometry Approach simulations models orazza, C . E . , vol. 59, no. 11, pp. 3122–3134, Nov. 2011. G numerical d ,an i abstraction ott id u intensive GidiG these . , A IEEE Trans. Commun. , Vol. 61, No. 5, pp. 2025–2047, May 2013. ”, enzo, The Wyner model The single-cell interfering model The regular hexagonal or square grid model Are over-simplistic and/or inaccurate Require Provide information only for specific BSsNo deployments closed-form solutions and R        Di Conventional(heterogeneous) approaches cellular networks ( for the analysis andHowever design of

SM in Heterogeneous Cellular Networks (4/22) SM in Heterogeneous Cellular Networks . Networks over Generalized Fading ChannelsVol. – 61, A No. Stochastic 7, pp. Geometry 3050-3071, Approach July 2013. Networks J. G. Andrews, F. Baccelli, andM.DiRenzo,C.Merola,A.Guidotti,F.Santucci,andG.E.Corazza,“ R. K. Ganti, “ M Antenna Receivers inCommun. a Poisson Field of Inter   346 timization p for Heterogeneous Cellular and o , n g of HCNs MODEL desi , Stochastic Geometry sis y y, g, p An Emerging (Tractable) Approach An Emerging (Tractable) emerges as an effective tool for emerges as an effective SPATIAL MODEL anal K-tier network with BSPoisson Point locations Processes modeled (PPPs) as independentPPP marked model islower bound surprisingly to reality good and trendsPPPmakesevenmoresenseforHCNsduetolessregularBSs for still hold 1-tier asplacements for well lower tiers (macro (femto, etc.) BSs):    RANDOM SPATIAL Networks (HCNs): SM in Heterogeneous Cellular Networks (5/22) SM in Heterogeneous Cellular Networks  347 l How It Works (Downlink – (Downlink It Works How 1-tier) na i e term bil e mo b ro PbP bil i l PPP-distributed macrostation base

SM in Heterogeneous Cellular Networks (6/22) SM in Heterogeneous Cellular Networks 348 Useful link l How It Works (Downlink – (Downlink It Works How 1-tier) na i e term bil e mo b ro PbP bil i l PPP-distributed macrostation base

SM in Heterogeneous Cellular Networks (7/22) SM in Heterogeneous Cellular Networks 349 k n li

l u f se Ufllik U l How It Works (Downlink – (Downlink It Works How 1-tier) na i e term bil e mo b ro PbP bil i l PPP-distributed macrostation base

SM in Heterogeneous Cellular Networks (8/22) SM in Heterogeneous Cellular Networks 350 Useful link l How It Works (Downlink – (Downlink It Works How 1-tier) na i e term bil e mo b ro PbP bil i l PPP-distributed macrostation base

SM in Heterogeneous Cellular Networks (9/22) SM in Heterogeneous Cellular Networks , ar l 351 u ll e Clll C erogeneous t e IEEE Trans. Commun. Ht H ”, k n li own Dlik D f eo t a Rt R , vol. 11, no. 10, pp. 3484–3495, Oct. 2012. verage A “ orazza, C . E . G d How It Works (Downlink – (Downlink It Works How 2-tier) ,an IEEE Trans. Wireless Commun. tti ”, o id Heterogeneous Cellular Networks with Flexible Cell Association: A Comprehensive u G id tti . A enzo, R Di

SM in Heterogeneous Cellular Networks (10/22) Cellular Networks SM in Heterogeneous . Networks over Generalized Fading ChannelsVol. – 61, A No. Stochastic 7, pp. Geometry 3050-3071, Approach July 2013. J. G. Andrews etDownlink al., SINR “ Analysis M . p 352 le Ma g gp ’s are Δ stations

Base station distribution City, in Taipei Taiwan, shown on Goo Blue the locations of base stations based models for modeling cellular y , 10 pages, Oct. 2012. Stochastic geometr S. Chen, “ – . Y Springer Wireless Netw. ”, . Shihet, and Y – Worldwide Base Station Locations Available via OpenCellID Station Locations Available Base Worldwide H. Lee, C. SM in Heterogeneous Cellular Networks (11/22) Cellular Networks SM in Heterogeneous – Open source project OpenCellID: http://www.opencellid.org/ C. networks in urban areas 353 based models for modeling cellular y , 10 pages, Oct. 2012. Stochastic geometr S. Chen, “ – . Y East Asia Springer Wireless Netw. ”, PPP better (or same accuracy Hexagonalthan as) . Shihet, and Y – H. Lee, C. SM in Heterogeneous Cellular Networks (12/22) Cellular Networks SM in Heterogeneous – Open source project OpenCellID: http://www.opencellid.org/ C. networks in urban areas 354 based models for modeling cellular y , 10 pages, Oct. 2012. Stochastic geometr S. Chen, “ – . Y South Asia Springer Wireless Netw. ”, PPP better (or same accuracy Hexagonalthan as) . Shihet, and Y – H. Lee, C. SM in Heterogeneous Cellular Networks (13/22) Cellular Networks SM in Heterogeneous – Open source project OpenCellID: http://www.opencellid.org/ C. networks in urban areas 355 based models for modeling cellular y , 10 pages, Oct. 2012. Stochastic geometr S. Chen, “ – . Y Europe Springer Wireless Netw. ”, PPP better (or same accuracy Hexagonalthan as) . Shihet, and Y – H. Lee, C. SM in Heterogeneous Cellular Networks (14/22) Cellular Networks SM in Heterogeneous – Open source project OpenCellID: http://www.opencellid.org/ C. networks in urban areas 356 based models for modeling cellular y , 10 pages, Oct. 2012. Stochastic geometr S. Chen, “ – . Y America Springer Wireless Netw. ”, PPP better (or same accuracy Hexagonalthan as) . Shihet, and Y – H. Lee, C. SM in Heterogeneous Cellular Networks (15/22) Cellular Networks SM in Heterogeneous – Open source project OpenCellID: http://www.opencellid.org/ C. networks in urban areas 357 ons i Useful link (SM) ase stat b

) cell association is neglected  emto f e.g., e.g., ( er i(i f )b i ower-t l ng i er Preliminary Reference Scenario f nter i

d ute ib Interfering link (QAM/PSK/SSK/SM) str di ib d i f i l Tagged macro base station at a fixed macrodistance base station at a fixed Tagged Probe mobile terminal PPP-

SM in Heterogeneous Cellular Networks (16/22) Cellular Networks SM in Heterogeneous  358   I b 1   ggregate    Interference         ** 12 II I II  BG SS b  I b AWGN A     I b cos 2  ,

  1 , ,, Eexp exp 0, 4  U 2Re N 2Re I  1   2 Sb b 000AGG    Useful Signal II I   i BB I b i  II II I Z d B Ms sB s GCN            c PPP i  Λ  etr  i A KeyA from Result Stochastic GeometryTheoryPPP and Decision Mi M  AGG AGG

SM in Heterogeneous Cellular Networks (17/22) Cellular Networks SM in Heterogeneous II 2, 359    II BG  I B     Aggregate Interference    I     Equivalent AWGN Equivalent conditioning upon conditioning  d) **12  erre f AWGN    pre    ( y ll Equivalent AWGN Channel AWGN Equivalent U 2Re N 2Re ca 2 ti y 000 ltill(l f d) Useful Signal   applied by conditioning upon B or ana on : The conditioning can be removed either numerically : Thecan be removed conditioning : The frameworks developed without interference can be : The developed frameworks i s i  Λ ec Metric Dii D STEP 1 STEP 2 SM in Heterogeneous Cellular Networks (18/22) Cellular Networks SM in Heterogeneous , ce  61 or n f 360 . a ., rm Vol  g o , . rf e. e ( Prfrmn P r o ng i Technol Err r . “ us a, d Veh zz . a r  o Crzz C . Trans  E . G , i ecompute IEEE , b ucc ” nt a SntS i can . F can be obtained from: 2 , Channels , Vol. 61, No. 5, pp. 2025–2047, May 2013. tti  o Bit Error Probability of Spatial Modulation (SM-) III id u Gidtti G STEP  The Bottom Line . Fading STEP 1 A n i a, l I signal spatial joint o r B e MrlM . C Generalized IEEE Trans. Commun. o,  ”, nz e over  Rnz R I BBBB Di  . of Multi–Antenna Receivers inApproach a Poisson Field of Interferers – A Stochastic Geometry No. 3, pp. 1124-1144, Mar. 2012. M. Di RenzoMIMO and H. Haas, “ M eaverageover   Closed-form results in Th Nakagami-m fading): SM in Heterogeneous Cellular Networks (19/22) Cellular Networks SM in Heterogeneous ABEP ABEP ABEP ABEP   f o 361 ld e Fi ld , Honolulu, sson i o Pi P na i MIMO on i at l u d o MdlM i l a i pat Sil S f so i ys l na Ali A ormance f er Pf P “ enzo, R Di . IEEE International Conference on Computing, Networking and Communications M ”, d uan L

SM in Heterogeneous Cellular Networks (20/22) SM in Heterogeneous Cellular Networks . W Interferers USA, February 3–6, 2013 (submitted). f o 362 ld e Fi ld , Honolulu, sson i o Pi P na i MIMO on i at l u d o MdlM i l a i pat Sil S f so i ys l na Ali A ormance f er Pf P “ enzo, R Di . IEEE International Conference on Computing, Networking and Communications M ”, d uan L

SM in Heterogeneous Cellular Networks (21/22) Cellular Networks SM in Heterogeneous . W Interferers USA, February 3–6, 2013 (submitted). f o 363 ld e Fi ld , Honolulu, sson i o Pi P na i MIMO on i at l u d o MdlM i l a i pat Sil S f so i ys l na Ali A ormance f er Pf P “ enzo, R Di . IEEE International Conference on Computing, Networking and Communications M ”, d uan L

SM in Heterogeneous Cellular Networks (22/22) SM in Heterogeneous Cellular Networks . W Interferers USA, February 3–6, 2013 (submitted). 364 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 365

SM for Light Communications (1/13) Visible 366

SM for Light Communications (2/13) Visible 367

SM for Light Communications (3/13) Visible 368 , pp. 1853-1888, May 2012. Wireless Myths, Realities, and Proc. of the IEEE ",

SM for Light Communications (4/13) Visible L. Hanzo, H. Haas, S. Imre, D. C. O'Brien, M. Rupp, L. Gyongyosi, " Futures: From 3G/4G to Optical and Quantum Wireless 369 , Dec. 2011. On the Performance of Space Shift Keying for Optical Wireless IEEE Globecom - Workshop on Optical Wireless Communications ,”

SM for Light Communications (5/13) Visible T.Fath,M.DiRenzo,andH.Haas,“ Communications 370 , Dec. 2011. : receiver detector area 2 = 15°: Tx semi-angle = 15°: Rx semi-angle 2 / 1/2 1 Ф A=1cm Ψ On the Performance of Space Shift Keying for Optical Wireless Optical Wireless Setup and Channel IEEE Globecom - Workshop on Optical Wireless Communications ,”

SM for Light Communications (6/13) Visible T.Fath,M.DiRenzo,andH.Haas,“ Communications 371 = 8, Rate = 5 bpcu t N

SM for Light Communications (7/13) Visible 372

SM for Light Communications (8/13) Visible 373

SM for Light Communications (9/13) Visible 374 , vol. 61, no. 2, pp. 733–742, Feb. 2013. = 4, Rate = 4 bpcu r IEEE Trans. Commun. ,” = N t N Performance Comparison of MIMO Techniques for Optical Wireless

SM for Light Communications (10/13) Visible T. FathCommunications in and Indoor Environments H. Haas, “ 375 , vol. 61, no. 2, pp. 733–742, Feb. 2013. = 4, Rate = 8 bpcu r IEEE Trans. Commun. ,” = N t N Performance Comparison of MIMO Techniques for Optical Wireless

SM for Light Communications (11/13) Visible T. FathCommunications in and Indoor Environments H. Haas, “ 376 = 0.7 TX , vol. 61, no. 2, pp. 733–742, Feb. 2013. IEEE Trans. Commun. ,” = 4, Rate = 4, 8 bpcu, d r Performance Comparison of MIMO Techniques for Optical Wireless = N t N

SM for Light Communications (12/13) Visible T. FathCommunications in and Indoor Environments H. Haas, “ 377

SM for Light Communications (13/13) Visible GSSK –VLC transmitter developed byhttp://purevlc.com/ the startup PureVLC 378 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. 379 y frequenc r frequency carrier GHz 2 @ (Bristol/UK) environment: 2x2 MIMO @ 2.3GHz carrie y scenario Urban Laborator   MIMO channel sounder Post-processing Performance assessment via channel measurements Testbed implementation (NI-PXIe-1075 @ Heriot-Watt Univ. / UK)

Experimental Evaluation ofExperimental Evaluation SM (1/31)   , 380 Performance IEEE VTC-Fall ", .M.Grant," P . Beach, H. Haas, and A ang, M. W r 4 a i a × 4 p g a a f Channel Measurements ) Racal ◦ of sts o y i (UK), usin consists tter cons y i hompson, M. Di Renzo, C.-X. T . ositioned atop a building, W setup p etransm ounis, MEDAV RUSK channel sounder MIMO channelare taken measurements aroundBristol the center cit of The MIMO, with 20 MHzcentered at bandwidth 2 GHz Th 2m, districts of Bristol cit providing elevatedcentral coverage business and of commercial of dual polarized (±45 Xp651772 antennas separated by Y

Experimental Evaluation ofExperimental Evaluation SM (2/31) . of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements 2013. A    , 381 Performance IEEE VTC-Fall ", .M.Grant," P . Beach, H. Haas, and A r y ve an i ang, M. W (PIFA) ece rir r g nt e r e Channel Measurements ,whichisbased Antennas diff r nt F wo t thus avoidin , r , which is equipped with 4 ve Inverted i , hompson, M. Di Renzo, C.-X. ece T rir r . W e on 4-dipoleshelmet mounted on a cycle A reference headset shadowing by the user Alaptop Printed fitted inside the backpanel of the display th   ounis, At devices arefour used, antennas: both equipped with Y

Experimental Evaluation ofExperimental Evaluation SM (3/31) . of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements 2013. A  , m 382 6 second Performance a IEEE VTC-Fall roughly ", line walking .M.Grant," P it ity ec user th straight faster than the coherence d the a y in with , days . Beach, H. Haas, and A nificantl head osen aroun g gy taken h his ang, M. W then different on is eed is si on p ons are c Channel Measurements ti but device , oca lti l t measurement locations reference hompson, M. Di Renzo, C.-X. T . the W same measuremen second sthemeasurements 58 At each location theand user walked, holdinglong, the until 4096 laptop channel in snapshots front wereA recorded of him path perpendicular to the first A time of thefour to channel, reduce measurement the noise measurementsOne are set of averaged measurementand in results a with groups second the set of laptopthe of and reference only device, the reference device measurements taken at ounis, Y .

Experimental Evaluation ofExperimental Evaluation SM (4/31)      of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements 2013. A , h 383 s, eac t Performance se IEEE VTC-Fall t l ", .M.Grant," P measuremen t eren . Beach, H. Haas, and A diff t ang, M. 348 W f the 20 MHz bandwidth o g l a Channel Measurements t o ttl t annin p pg ” MIMO, where, by manipulating the original ” MIMO, which are the original 4x4 channel measurements es a id bins s y rov hompson, M. Di Renzo, C.-X. p T . Small-scale Large-scale uenc measurements, larger virtual MIMO systems are created “ “ W s q qy   Thi containing 1024fre snapshots ofAs the a simulations are 4×4frequency carried out MIMO using bin flatmeasurement fading channel, snapshot channels, centered to a create with single the around narrowband 128 channe 2 GHz,Two MIMO test is cases are investigated: chosen from each ounis, Y .

Experimental Evaluation ofExperimental Evaluation SM (5/31)    of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements 2013. A , , d % 384 1 ence of id i Performance snapshots), IEEE VTC-Fall level ", 1024 aps exper is the correlation t .M.Grant," P l γ anne significance hl h a containing ose c with h , (each . Beach, H. Haas, and A test sets ons w fit ti ang, M. W of oca lti l , Small-Scale MIMO : measurement goodness MIMO e l 348 -sca the ll squared - hompson, M. Di Renzo, C.-X. of coefficient) T . chi W out or sma is used to identify Rayleigh fading channels F Rayleigh fading are used The 20 fulfilled this requirement and are keptFor for further each processing locationestimated, the then transmit the andindices, decay receive is of correlation fitted todecay the matrices an correlation, are exponential based decay on model the ( antenna ounis, Y .

Experimental Evaluation ofExperimental Evaluation SM (6/31)     of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements 2013. A , 385 are them Performance correlation of IEEE VTC-Fall ", Both . .M.Grant," P the second channel, average r retained lowest are the from the reference device r . Beach, H. Haas, and A matrices with ang, M. sets W and the othe Small-Scale MIMO correlation p : to p pp : s l actual the first channel and 0.36 and 0.75 fo measurement r the anne hl h c and two d e t hompson, M. Di Renzo, C.-X. a T l . Two measurement sets withmodel the lowest meanfrom square the laptop error device between the The measured decay coefficients forand the 0.99 transmitter fo and receiver are 0.41 The coefficient are kept One is from the la respectively W orre     Cltd C Uncorrelated channels ounis, Y .

Experimental Evaluation ofExperimental Evaluation SM (7/31)   of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements 2013. A , e l of 386 mobile Performance arge-sca l IEEE VTC-Fall the e ", transmitter th a e t that .M.Grant," P form ocrea such t to d , kept is . Beach, H. Haas, and reversed A eps are use t are ang, M. snapshot ng s W i assing the chi-squared goodness of fit test p each Large-Scale MIMO rocess channels p - from t os p ng i the locations original channel y ow hompson, M. Di Renzo, C.-X. ll T o . The terminal becomes the transmitting device One the virtualelements array. ThisTo results reduce the inelements correlation are a between kept using adjacent virtual a down-sampling channels,Onl factor array only of 256 4 with 1024 for the Rayleigh fading distribution are kept fllf i W e 1) 2) 3) 4) channel measurements from the original channel measurements: Th ounis, Y .

Experimental Evaluation ofExperimental Evaluation SM (8/31)  of Spatial Modulation over Correlated and Uncorrelated Urban Channel Measurements 2013. A 387

Experimental Evaluation ofExperimental Evaluation SM (9/31) 388

Experimental Evaluation ofExperimental Evaluation SM (10/31) 389

Experimental Evaluation ofExperimental Evaluation SM (11/31) 390

Experimental Evaluation ofExperimental Evaluation SM (12/31) 391

Experimental Evaluation ofExperimental Evaluation SM (13/31) l , t h na 392 ea i l eac g p iii l Bh B i . nc A iil i eor . r , to appear. h p M SM rant, e G . th recovers t M o t ) . x P R) R ng – di ang, W . (DSP X accor .- m d C IEEE Trans. Veh. Technol. h e t t i ", va ti t d enzo, gor lih l R Di ng a en ac . i th M s i ers, ’) rocess b 2 p x l am Tx) ‘T - Indoor Testbed Ch b d gna . il i P s an , l ’ h (DSP 1 e ta l x i g es (‘T di i l Mlh M . e R id s, enna i t transmitter ve s i an oun Yi Y the it . A at Practical Implementation of Spatial Modulation , erece h ki ransm tit t y, t l h movs fi ac ast The binary dataalgorithm to be broadcastThe processed is data is first then(NI)-PXIe passed chassis passed to (PXIe-Tx) the through physical transmitter theEh E on digital the National signal Instruments a processing carrier frequency of 2.3The GHz receiver thenLl L detects anddata processes stream the radio frequency (RF) signal in PXIe–Rx. era Sfiki S .

Experimental Evaluation ofExperimental Evaluation SM (14/31)     and H. Haas, " N IEEE Early Access. 393

Experimental Evaluation ofExperimental Evaluation SM (15/31) 394 Antenna Spacing (Line-of-Sight Scenario)

Experimental Evaluation ofExperimental Evaluation SM (16/31) 395 hile w requency Power’ to f stationary l a a na h g t for ih Si wi g ms A large roll-off factor 7 ong l ~ ,a d owerisfocusedinashort e p dd d typically en a is h ermits up-sampling of the data p st i which on hich i w he up-sampling ratio is set to four and the up- ith a factor labelled ‘Tunin to ensure that the mat T ii i w y est channel l lied ower. p erformed p the p l anne of hl h are necessar or c f time y adding is d p ector is multi use v l g gna coherence il i Digital Signal Processing for Transmission (DSP–Tx) Digital Signal Processing for Transmission the ot s il pil he resultin sampleddataisthenpassedthrougharootraisedcosine(RRC)finiteimpulse response (FIR) filter with 40 taps and a roll-off factor of 0.75. The binary data is first splitThe into information information data segments in of each segment appropriateA is size then modulated using SM In addition, zero- maintaining the same signa and a long tap-dela T obtain the desired transmit power forFrames the are information created sequence suchthan that the frame lengthindoor multiplied by environment. the sampling Thisvalid rate for ensures is the less that frame duration all channel estimations at the receiver are time, i.e., ensure that only a single RF chain is active offset estimation section

Experimental Evaluation ofExperimental Evaluation SM (17/31)      

is 396

samples

which , 26100

used

is

most

at

format

has

data

frame

I16

a signed 16 bit representationsigned 16 ofa an integer number The I16 data format is used which is Each frame has at most 26100 samples - - Digital Signal Processing for Transmission (DSP–Tx) Digital Signal Processing for Transmission A frame includes the frequencydata sequences, offset as estimation shown sequence, below: the pilot and up-sampled The ‘Data section’ is formed from a series of concatenated frames

Experimental Evaluation ofExperimental Evaluation SM (18/31)   on i 397 mat i est SNR on, i zat i ron h ower in the SNR estimation in the SNR ower p e sync eak and data sections are shown difference in the peak power between the synchronization section and the p pp and data sections Th h i i SNR i i - There is approximately a 21.1 dB - : w ure belo g Digital Signal Processing for Transmission (DSP–Tx) Digital Signal Processing for Transmission In particular, theOffset’ differences estimation between sectionobservable the in and the amplitude the fi of amplitude the of ‘Pilot the and ‘Information Frequency Data’ is clearly

Experimental Evaluation ofExperimental Evaluation SM (19/31)  398 having on-board an Intel-i7 processor operating at 1.8 GHz Transmission Hardware (PXIe–Tx) Hardware Transmission NI-PXIe-1075 chassis with 4GB of RAM

Experimental Evaluation ofExperimental Evaluation SM (20/31)  399 typical eed p s offset g kHz tunin 10 p eneration g l and l swee na y g si GHz 1 w Q uenc q qy at I/ ske er channe density l l p Generator noise noise differentia Signal phase Transmission Hardware (PXIe–Tx) Hardware Transmission -to-channe , l phase I/Q less than 2 ms fre y dBc/Hz -channel 5450 l s channe - icall dBc/Hz p 160 dBm/Hz average noise density 110 yp y 400 Mega samples (Ms)/s, 16-Bit I/QDua Signal Generator 512 MB of deep on-board memory16-bit resolution 400 Ms/s sampling rate ±0.15 dB flatness to 120 MHz140 with digital flatness correction − 25 − 500 kHz to 6.6 GHz frequencyTyp range PXIe -             NI NI-PXIe-5652 RF Signal Generator NI-PXIe-5611 intermediate frequency (IF) to carrier RF up-converter

Experimental Evaluation ofExperimental Evaluation SM (21/31)    of an 400 with , mapping plane linear a azimuth performs the in receiver dBi generator 7 and signal of I/Q gain transmitter 5450 - the peak a PXIe - zero Transmission Hardware (PXIe–Tx) Hardware Transmission NI between to has the , down antenna separation m particular 2 . The NI-PXIe-5450 I/Qbinary signal file generated generator in Matlab is byIn the fed encoding with DSP–Tx algorithm thethe transmit signed vector 16-bitamplitude from is range the assigned toamplitude to the any output value powerThe equal output to and from 215 polarization, the5652 NI-PXIe-5450 and i.e., I/Q a RF signal peak linearconverter generator signal voltage then scale goes of generator to the theThe which NI-PXIe- NI-PXIe-5611 voltage outputs is theat analogue a connected waveform carrier corresponding frequency to of to theEach 2.3 the GHz binary antenna at data NI-PXIe-5611 theone transmitter half–wave frequency and dipole receiver placed in contains the twoEach middle. quarter-wave All dipoles, three and dipoles areomnidirectional vertically radiation polarized pattern. Theguarantee 10 cm very inter-antenna low, separation if2 is sufficient any, to spatial correlation when broadcasting at 2.3 GHz with a

Experimental Evaluation ofExperimental Evaluation SM (22/31)       401 Laboratory Setup

Experimental Evaluation ofExperimental Evaluation SM (23/31) 402 having on-board an Intel-i7 processor operating at 1.8 GHz Receiver Hardware (PXIe–Rx) Hardware Receiver NI-PXIe-1075 chassis with 4GB of RAM

Experimental Evaluation ofExperimental Evaluation SM (24/31)  403 z MH 4 f o idth w d an bdidth b t a fl t l narea i s lt resu h c hi h clock whi s / s M/ M 10 reference s i Receiver Hardware (PXIe–Rx) Hardware Receiver t -time sampling board l - men it i on srea / 5652 eexper - th n 150 Ms 3 to 250 MHz bandMHz in direct path mode, or 50 MHz bandwidth centered at 187.5 i antennas PXIe - e t   NI NI-PXIe-5622 16-Bit Digitizer (I16) NI-PXIe-5601 RF down-converter The receiving antennas are the sameThe as NIPXIe-5601 those used RF for down-converterthe transmission is used to detect theThe analogue signal RF signal isbandpass from then filter with sentra a to real the flat NI-PXIe-5622 bandwidthThe IF equal to digitizer, NI-PXIe-5622 0.4×SampleRate.reference which clock digitizer The and applies writes sampling the is its received binary files own The synchronized recorded binary files with are then the processed according to NI-PXIe-5652 ‘DSP–Rx’ on-board

Experimental Evaluation ofExperimental Evaluation SM (25/31)         are 404 Rx – PXIe the on digitizer 5622 - PXIe - NI the by recorded files Digital Signal Processing for(DSP–Rx) Reception binary The converted to Matlab vectors In particular, a sample received vector detected by PXIe–Rx on Rx1 is as follows:

Experimental Evaluation ofExperimental Evaluation SM (26/31)   405 ) algorithm) on i mat ii i g recovery and correction of each frame est autocorrelation l an anne on hl h g or c f SM maximum-likelihood demodulation ( d (based uence en use q h se st sequence i y l gna il i Digital Signal Processing for(DSP–Rx) Reception ot s il letes the matched-filterin pil p e The Matlab vectors are then combinedThe to form detector a received firstsynchronization matrix finds the beginningThe SNR of is then the calculated using transmittedAfter the the ‘SNR sequence section’ SNR by forits using that underlying vector frames the has beenEach determined, each frame vector iscom is decomposed into then down-sampledThe frequency andfollows offset passed and are estimation, through performed using timin the state-of-the-artTh algorithms RRC filterThe which remaining data, alongestimated with binar the estimated channels, is finally used to recover an

Experimental Evaluation ofExperimental Evaluation SM (27/31)         t a y 406 emeasuremen CDFs of thecoefficients channel Each is definedRician b with distribution afactor unique K- The markersth denote points while thedenote lines theapproximation best fit Wireless Channel Characterization Channel Wireless

Experimental Evaluation ofExperimental Evaluation SM (28/31) 407 The Wireline Test: RF Chain Mismatch The Wireline Test:

Experimental Evaluation ofExperimental Evaluation SM (29/31) 408 every of end oint p the R at SN y and beginning the Results at eated 1000 times for ever p estimated information bits is sent per transmission to obtain the 5 is results l eriment is re p channel erimenta p he ex ex Astreamof10 The information data is put inThe 50, 2000 bit, frames frame resulting in 100 channel estimationsT per transmission

Experimental Evaluation ofExperimental Evaluation SM (30/31)     409

Experimental Evaluation ofExperimental Evaluation SM (31/31) 410 ) s d ren Td) T n i a Mi M d ts an l Transmitter esu Rl R Networks l the ime-Coded MIMO ca i T at Cellular umer (N i l Information Evaluation of SM l ormance f State -Modulated Space- er y Heterogeneous Pf P erimenta in p rror Introduction and Motivation behind SM-MIMO History of SM Research andTransmitter Research Design Groups – Working Encoding on SM Receiver Design – Demodulation E Achievable Capacity Channel Imperfect Channel State Information at theMultiple Receiver Access Interference Energy Efficiency Transmit-Diversity forSpatiall SM Relay-Aided SM SM SM for Visible Light Communications Ex The Road Ahead – Open ResearchImplementation Challenges/Opportunities Challenges of SM-MIMO .

Outline . 1. 2. 3. 4. 5. 6. 7 8. 9. 10. 11. 12. 13. 14 15. 16. 17. 18. : 411 MIMO d ze li Antennas Interference enera Idle Glid G or f the on i of at l Towards u , July 2013 (to appear). [Online]. d o : MdlM i l a i pat Sil S Advantage “ Networks anzo, H Taking . : L d Proceedings of the IEEE ”, Cellular ura, an i ug Si S Harvesting . S , b raye Energy Gh b . A Heterogeneous aas, H . Cell H Frequency ns g enzo, R Appraising theDesi Fundamental Trade-Offs ofLarge-Scale Single- Implementations: Training Overhead vs. for CSIT/CSIR Multi-RF Acquisition MIMO From Single-UserCommunications Point-to-Point toMillimeter-Wave Communications: Multi-User The Need for Beamforming Multi-Cell Gains Small SM–MIMO Engineering Radio Leveraging the Antenna Modulation Principle to a Larger Extent Open Physical-Layer Research Issues Di

The Ahead – Road Challenges/Opportunities Research Open .         M Challenges, Opportunities and Implementation Available: http://hal.archives-ouvertes.fr/docs/00/84/02/78/PDF/ProcIEEE_SM_FullPaper.pdf. o t 412 y some , eor th x i r ti t .Heremajor However . om ma d MIMO - ran expected d SM antennas) be an y r t can : aware - located - le-RF base stations g found (co cgeome be forwards ti as h can with sin uplink Interference y oc steps thti t s the f to on o ti complexity) significant ca - opportunities li for pp ransmit-diversit T Precoding and CSIT Application etc… Precoding for multi-user SM-MIMO Aliti A (Low etc… the analysis and the design of SM in HCNs         Point-to-point SM-MIMOroom has beenimportant studied aspects are extensively still not and completely understood: little Multi-user SM-MIMO andcellular understanding networks have theresearch almost potential been of neglected SM so in far

The Ahead – Road Challenges/Opportunities Research Open   413 … unknown timization: is p diversity assessment and o y achievable end : - to - efficienc c… t gy Advantages and disadvantages against state-of-the-art relaying End Error propagation and related low-complexity receivere design The number of RFoff chains vs. is the still total unclear number ofFair performance antennas trade- assessmentthe-art and optimization against state-of- Realistic/fair comparison with massive MIMO etc…         Distributed SM-MIMOunexplored for uplink applications is still almost Ener Testbed/practical implementation and measurements

The Ahead – Road Challenges/Opportunities Research Open    c ti 414 filters romagne t ec shaping ltl ti e d orthogonal on an ti if a t emen errors l mp ili tti on i y zat i antization u qantization q MIMO aracter enna-arra - t hii h and SM oss c l ean time l ng carrier - hi tc … i arge-sca w compatibility assessment Antenna switching at the symbol time Sihi S Reconfigurable single-RF antennasignatures design to createBandwidth unique efficient channel finite-duration pulse shaping L Multi Efficient channel estimation with single-RF transmitters Sampling are used etc

Implementation Challenges of SM-MIMO          415 ) ) 264759 rant 317126 ireless Mobile Communications g grant W ect, j ro p pj project, GREENET - ITN-CROSSFIRE (ITN ( Union ean Union p European M. Di Renzo Haas H. A. Ghrayeb he UK-China Science Bridges: R&D on (B)4G he Euro The The Engineering and Physical Sciences ResearchThe Council Laboratory (EPSRC), UK of Signals and SystemsT (“Jeunes Chercheurs 2010”), France The Italian Inter-University Consortium for TelecommunicationsT (CNIT), Italy EADS Deutschland GmbH, Germany        We gratefully the support acknowledge of: We

Thank You for Your Attention for Your Thank You  t hif 416 state fading . space s 2009 f channel Rician ly detection and u l Jl J so i , ys li l partial 3703 - correlated with 3692 p. over p , 7 ormance ana f er p MIMO ,no. modulation 8 ) . - or l f o v k (SSK) (SSK ramewor ommun., keying keying fk f C l ess shift shift l re genera Wi l Space “A “Space “ , , rans. aas, T H Haas Haas . . . H H H IEEE , d . Ghrayeb, and L. Szczecinski, “Spatial modulation: Optima ” s A l and and . anne 2010 enzo an hl” h c R Renzo Renzo June . Di Di Di , . . . performance analysis”, IEEE Commun. Lett., vol. 12, no. 8, pp. 545-547, Aug. 2008. R.Y.Mesleh,H.Haas,S.Sinanovic,C.W.Ahn,andS.Yun,“Spatialmodulation”,IEEETrans. Veh. Technol., vol. 57, no. 4, pp.J. 2228-2241, July Jeganathan, 2008. J. Jeganathan, A.MIMO Ghrayeb, L. Szczecinski, andN. A. Serafimovski, Ceron, “Space M.encoded shift spatial Di modulation keying (FBE-SM)”, Renzo, modulation2010 IEEE for S. Commun. Lett., Sinanovic, vol. 14, R.M. no. 5, Y. Di pp. Mesleh, 429-431,modulation Renzo May via and opportunistic and H.502 power Haas, allocation”, H. IEEE “Fractional Haas, Commun. bit Lett.,R.Y.Mesleh,M.DiRenzo,H.Haas,andP.M.Grant,“Trelliscodedspatialmodulation”, “Improving vol. 14, the no.IEEE 6, Trans. performance Wireless pp. Commun., 500- vol. of 9, no.M 7, space pp. 2349-2361, July shift 2010. keying (SSK) M information: Optimal detectorCommun., and vol. 58, performance no. analysis 11, pp. overM 3196-3210, fading Nov. 2010. channels”, IEEEchannels: Trans. PerformanceCommun., analysis vol. 59, no. and 1, pp. a 116-129, Jan. 2011. new method for transmit-diversity”, IEEE Trans. keying (SSK) modulationCommun., for vol. 58, MISO no. 9, correlated pp. 2590-2603, Nakagami-m Sep. 2010. fading channels”, IEEE Trans.

Further (1/3) Readings          l . M ess 417 l re il i rant, G . . M . 2013 P . b e e-antenna w l . Fb F ang, p , i t W lil l . 2012 X 2013 – ar. . l o C M v or mu f , ng, on i 1144 enzo, ki - at R l u 1124 dld i Di etwor . p. Nki N mo M p l , d a 3 i ers, b pat ,no. ons an am “S i l i 61 2013 . l Ch b cat i o . v P rant, July , ., l G , h e . l no M h es ommun 2531 . – Cii C ec Mlh M P . ThT l . d R ess 2507 h l e . s, i re Vh V pp Wi l , oun . 6 aas, an J Yi Y . rans. H . T no . A , , H ki 62 . IEEE , vol EURASIP . enzo, ” movs , ., s fi R l ” 2011 ng era i Di . Sfiki S anne . . ey hl” h A. Beach, H.Technol., 2013, to Haas, appear. [Online]. “Practical Available: IEEE Implementation Xplore Early of Access. Spatial Modulation”, IEEE Trans. Veh. systems: A survey”, IEEE Commun. Mag., vol. 49, no. 12, pp. 182-191, Dec. 2011. M. Di Renzo andaccess independent H. fading Haas, channels”, “BitOct IEEE error Trans. probability Veh. Technol., of vol.M. 60, space no. Di shift 8, keying pp. Renzofading: MIMO 3694-3711, Asymptotic and over analysis”, IEEE multiple- H. Commun. Lett., Haas,M vol. 15, “Bit no. 10, error pp. 1026-1028, probability Oct. 2011. ofM. space Di modulation over Renzoc Nakagami-m and H.M. Haas, Di “Bit Renzo,with D. error practical De channel Leonardis, probability estimates”, IEEE F. Trans. of Graziosi, Commun.,N. vol. and 60, SM-MIMO H. Serafimovski, no. 4, Haas, overModulation”, pp. EURASIP “Space S. 998-1012, generalized J. Apr. shift Wireless 2012. Communications fading Sinanovic, keying and (SSK-)K. Networking, September M. Ntontin, MIMO 2012. M. Di DiKiK Renzo, ” A. Renzo, Perez-Neira and C. andM. Verikoukis, Di “Adaptive H. Generalized Renzo Space andSpatial–Constellation Shift Haas, H. Diagram Haas, “On “Multiple andTechnol Transmit–Diversity for Shaping Access Spatial Filters Modulation Spatia MIMO:A. at Impact Younis, S. the of Sinanovic,Modulation”, Transmitter”, M. IEEE Di IEEE Trans. Commun., Renzo, Vol. and Trans. 61, H. No.N Veh. 7, Haas, pp. “Generalized 2805–2815, Sphere July Decoding 2013. for Spatial

Further (2/3) Readings           : : 418 MIMO d Available ze . li enera Glid G [Online] or . f on i 2011 at , l u 21 , July 2013 (to appear). [Online]. d - o 19 MdlM i . l a i Oct ) , pat ) ) Sil S “ Y 4f f FUtZ4 J anzo, Portugal H , Uu files/5_Achievements/conference/TD(11)02047.p . y yJ L d Proceedings of the IEEE Lisbon ”, , ura, an i watch?v=baKkBxz ug 02047 / ) Si S . 11 S , b TD( raye 2100 Gh b outube.com outube.com/watch?v=a6 y y . . . A w w : ww aas, COST Modulation , H // ://ww . p H htt http://www.youtube.com/watch?v=cPKIbxrEDho http: Spatial ( The Advantages of Spatial Modulation ( The World's First Spatial Modulation Demonstration ( enzo,    R df. W. Thompson, M. Beach,C.-X. J. McGeehan, Wang, A.evaluation” and Younis, H. M. Haas,http://www.ukchinab4g.ac.uk/sites/default/ P. Grant, Di P. Chambers, Renzo, Z. Chen, “Spatial modulation explained and routesYouTube for practical Di .

Further (3/3) Readings   M Challenges, Opportunities and Implementation Available: http://hal.archives-ouvertes.fr/docs/00/84/02/78/PDF/ProcIEEE_SM_FullPaper.pdf. , . l A a il i 10 ec. : 419 . g D , Trans spat vol ., d 996 e – dd d IEEE 993 co , p. k ” p Commun oc , time shift keyin bl k 12 – keying me i ,no. t Wireless space – . 17 l shift . l o pace v Trans “S time – ett., L oor, IEEE P space , nnel–hopping for high data rate wireless . V rocess. . P H . tradeoffs” d Si Sig – . cooperative ,an i 2011 IEEE rc . i b , e ” aided Fb F , complexity anay Pii P 165 . – and E – 163 relaying ng systems u, i l p. p ey , ki k ygo 2 t Al A . forward hif – ,no. U multiplexing 15 , . – and me s l i – o t v – asar, ., . B tt . e 2010. no. 4, pp. 1144–1153, Apr. 2011. Commun., vol. 59, no. 6, pp. 1707–1719, June 2011. communication”, IEEE Commun. Lett., vol. 12, no. 4, pp. 225–227, Apr. 2008. Y. Yang and B. Jiao,S. “Information–guided Sugiura, S. cha dispersion matrix Chen, approach”, IEEE and Trans. Commun., L.S. vol. 58, Chen, Hanzo, no. S. 11, Sugiura, “Coherent pp.space and 3219–3230, L. and Nov. 2010. Hanzo, differentia “Semi–blind joint channel estimation and data detectionY. for Yang and S.Ltt L Aissa, “Bit–padding informationC. guided Xu, channel S.differential hopping”, space–time Sugiura, IEEE shift Commun. S. keying”,2011 IEEE X. Sig. Ng, Process. Lett., andH. vol. L. A. 18, Ngo, no. Hanzo, C. 3,channels”, Xu, “Reduced–complexity pp. IEEE S. Sig. 153–156, noncoherently Sugiura, Process. Mar. and Lett., detected L. vol. 18,E Hanzo, no. “Space–time–frequency 3, shift pp. keying 177–180,modulation”, for Mar. IEEE dispersive 2011. Trans. Commun., vol. 59, no.S. 3, Sugiura, pp. S. 823–832, Mar. Chen,diversity 2011. and L. Hanzo, “Generalized space–time shift keying designedS. for Sugiura, flexible S.decode Chen, H. Haas, P. M. Grant, and L. Hanzo, “Coherent versus non–coherent

Further – Readings Groups (1/3) Other Research From          l . ., h a t il i ih i 420 Feb Lett , . 179 or spat – f 176 gn . i shift keying for . Commun – pp es , di d 2 access systems w 2011 . e – . t e d l IEEE c no p , i , Ot O t ” lil l , 16 sco . lli 550 assisted space – vol tre – on mu y ., i 547 s w i e v p. estimations Lett p di i i . “N , – diversit 10 – oor, P ,no. ans. Commun., vol. 59, no. 11, pp. 3090–3101, . imperfect ng space Commun 18 V i . l . o v H opp hi h ., IEEE – d tt , e gaussian Ltt L ,an i of rc i errors” roces. n antenna i P . anay Pii P on i presence Si Sig . ang, and L. Hanzo, “Transmit E Y the etect estimation u, di d L. l IEEE l in – , ” ygo gna Al A ng i channel . “Si l ey U kik ” of . ang, modulation hift Y 2011 asar, . ang, C. Xu, L. . B L Y – . . me s colocated and distributed/cooperative MIMOno. 6, elements”, pp. IEEE 2864–2869, July Trans. 2011. Veh. Technol., vol. 60, 2012. vol. 16, no. 2, pp. 228–230, Feb. 2012. P. Yang, Y. Xiao, Yi Y.,systems”, and IEEE S. Commun. Li, Lett., “Adaptive vol. spatial 15, modulationD. no. for 6, wireless pp. 602–604, MIMO June transmission 2011. E modulation”, IEEE Trans. Wireless Commun., vol. 10,C. no. Xu, 8, pp. S. 2670–2680,ti Sugiura, Aug. 2011. S. X. Ng, andS. Sugiura, L. C. Hanzo, Xu, S. “Reduced–complexityQAM–aided X. soft–decision space–time Ng, aided and shift L. space– Nov keying”, Hanzo, “Reduced–complexity IEEE coherent Tr versus non–coherent J. Wang, S.IEEE Jia, Commun. and Lett., vol. J. 16, no. Song,L 1, “Signal pp. 19–21, vector Jan. 2012. basedspace–shift keying detection modulation”, IEEE scheme Trans. for Sig. Process.,E. spatial vol. Basar, 60, modulation”, no. U. 1, Aygolu,presence pp. E. 351–366, Panayirci, Jan. 2012. and H. V. Poor, “Performance ofS. S. spatial Ikki modulation and(SSK) in R. the Mesleh, “A general framework for performance analysis of space shift keying

Further – Readings Groups (2/3) Other Research From          : 421 MIMO d ze li enera Glid G or f on i at l u , July 2013 (to appear). [Online]. d o MdlM i l a i pat Sil S “ anzo, H . L d Proceedings of the IEEE ”, ura, an i ug . Si S . S 2012 , . b Apr raye , Gh b . 1615 A – aas, 1605 . H . pp H , 4 . . no enzo, , R R. Y. Chang, S.–J.code–aided Lin, and constellation W.–H. design”, Chung,2012 “New IEEE space Wireless shift Commun. keying Lett., modulationJ. with vol. Wang, hamming 1, S. no.transmit antennas Jia, 1, and low pp. and complexity11 2–5, detection J. scheme”, Feb. IEEE Song, Trans. Wireless “Generalised Commun.,S. vol. Sugiura, spatial S. modulation Chen,aided systems”, and system IEEE L. Commun. with Hanzo, Surveys “A Tuts., multiple vol. universal 14, active space–time no. 2, architecture pp. for 401–420, 2nd multiple–antenna quarter 2012. Di .

Further – Readings Groups (3/3) Other Research From    M Challenges, Opportunities and Implementation Available: http://hal.archives-ouvertes.fr/docs/00/84/02/78/PDF/ProcIEEE_SM_FullPaper.pdf.