ZANCO Journal of Pure and Applied Sciences Utilizing Geographic
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What3words Geocoding Extensions and Applications for a University Campus
WHAT3WORDS GEOCODING EXTENSIONS AND APPLICATIONS FOR A UNIVERSITY CAMPUS WEN JIANG August 2018 TECHNICAL REPORT NO. 315 WHAT3WORDS GEOCODING EXTENSIONS AND APPLICATIONS FOR A UNIVERSITY CAMPUS Wen Jiang Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton, N.B. Canada E3B 5A3 August 2018 © Wen Jiang, 2018 PREFACE This technical report is a reproduction of a thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Engineering in the Department of Geodesy and Geomatics Engineering, August 2018. The research was supervised by Dr. Emmanuel Stefanakis, and support was provided by the Natural Sciences and Engineering Research Council of Canada. As with any copyrighted material, permission to reprint or quote extensively from this report must be received from the author. The citation to this work should appear as follows: Jiang, Wen (2018). What3Words Geocoding Extensions and Applications for a University Campus. M.Sc.E. thesis, Department of Geodesy and Geomatics Engineering Technical Report No. 315, University of New Brunswick, Fredericton, New Brunswick, Canada, 116 pp. ABSTRACT Geocoded locations have become necessary in many GIS analysis, cartography and decision-making workflows. A reliable geocoding system that can effectively return any location on earth with sufficient accuracy is desired. This study is motivated by a need for a geocoding system to support university campus applications. To this end, the existing geocoding systems were examined. Address-based geocoding systems use address-matching method to retrieve geographic locations from postal addresses. They present limitations in locality coverage, input address standardization, and address database maintenance. -
Natural Area Coding Based Postcode Scheme
International Journal of Computer and Communication Engineering Natural Area Coding Based Postcode Scheme Valentin Rwerekane1*, Maurice Ndashimye2 1 Department of Computer Science, University of Rwanda, Huye, Rwanda. 2 iThemba Labs, University of South Africa, Cape Town, South Africa. * Corresponding author. Tel.: +250 788 873 955; email: [email protected] Manuscript submitted March 7th, 2017; accepted June 23, 2017. doi: 10.177606/ijcce.6.3.161-172 Abstract: Traditionally, addresses were used to direct people and helped in social activities; nowadays addresses are used in a wide range of applications, such as automated mail processing, vehicles navigation, urban planning and maintenance, emergency response, statistical analyses, marketing, and others, to ensure necessities induced by new information technologies and facility developments. On top of addresses primary use, postcodes systems were developed to comprehensively provide a variety of public and commercial services. Postcode being an integral part of an addressing system, if well-established, a postcode system brings further social-economic development benefits to a country. This paper aims at designing a postcode based on the Natural Area Coding (NAC). The design focuses on designing a standardized postcode that can fit into any addressing scheme and be used for towns and cities of any shapes from structured cities to slums. Design considerations of a fine-grained postcode (easy for humans, efficient for computerized systems and requiring less or no maintenance over time to improve its efficiency) have proven to be difficult to realize. Therefore, in this paper a new logic is illustrated whereby these considerations are rationally handled while simultaneously allowing the postcode to give a sense of directions and distance. -
Location Encoding Systems – Could Geographic Coordinates Be Replaced and at What Cost? Gogeomatics
Stefanakis, E., 2016. Location Encoding Systems – Could geographic coordinates be replaced and at what cost? GoGeomatics. Magazine of GoGeomatics Canada. March 2016. Location Encoding Systems – Could geographic coordinates be replaced and at what cost? Geocoding is the process of converting a street address into a physical location that can be described with a pair of geographic coordinates. It is estimated that over 40% of the world population is physically disconnected because of lack of a street address. But even when street addresses are available, they are very often unable to describe the location. For example, locations inside parks or large facilities (e.g., stadiums or hospitals with multiple entrances) may be hundreds of meters away from the nearest address. The use of directions (such as “behind the main building find a storehouse; deliver the package at the right door facing the park”) instead of an address has become a common practice. However, this is usually ambiguous as it relies on local knowledge, while it cannot be interpreted automatically. Figure 1. UNB Campus. Three locations in Faculty of Engineering building. The street address to all of them is that of the Main Entrance: 15 Dineen Drive, Fredericton, NB. The wide spread of smartphones and mobile devices on one hand, and the extended internet accessibility on the other, have brought back the problem of geocoding in geomatics research and development. A geographic point location described by numbers (coordinates) – the geographic latitude and longitude as well as the height or depth – can be found more easily than ever by most of the users (as the smartphone becomes default equipment; I still resist and don’t have one!). -
Comparative Evaluation of Alternative Addressing Schemes
GEOProcessing 2016 : The Eighth International Conference on Advanced Geographic Information Systems, Applications, and Services Comparative Evaluation of Alternative Addressing Schemes Konstantin Clemens Technische Universitat¨ Berlin Service-centric Networking [email protected] Abstract—Alternative addressing schemes are developed to be valid postal address can only address existing entities, flexible and user friendly, while at the same time unambiguous perfectly valid AAS can reference any point on earth. and processable in an automated way. In this paper, four schemes 3) Postal addresses resolve to a variable degree of are compared to WGS84 latitude and longitude coordinates - an accuracy, as it is required. In urban centers, where addressing scheme for itself. An experiment with human users many entities are to be addressed in a small area, checks how user friendly the various schemes are and what classes multiple postal addresses address every single one of errors the users make. The results show that comprehensible and recognizable address elements are contributing towards a naturally. In some cases additional address elements user friendly address scheme. are added to, e.g., specify a lot within a mall with one house number. In rural areas, on the other hand, Keywords–Geocoding; Address Schemes; Geohash; GIS. postal addresses may refer to areas with groups of buildings. AAS uniformly resolve to a fixed accuracy I. INTRODUCTION on the entire globe. Nowadays, when referencing a location, most often postal 4) Postal addresses are composed from geographic area addresses are used. That is because postal addresses are espe- names as cities and regions. These areas usually have cially easy to use: A postal address is a compound of entities existed for a long time. -
PDF Download
Published online: 2021-05-12 THIEME e20 Original Article Proposing an International Standard Accident Number for Interconnecting Information and Communication Technology Systems of the Rescue Chain Nicolai Spicher1 Ramon Barakat1 Ju Wang1 Mostafa Haghi1 Justin Jagieniak2 Gamze Söylev Öktem2 Siegfried Hackel2 Thomas Martin Deserno1 1 Peter L. Reichertz Institute for Medical Informatics of TU Address for correspondence Nicolai Spicher, PhD, Peter L. Reichertz Braunschweig and Hannover Medical School, Braunschweig, Institute for Medical Informatics of TU Braunschweig and Hannover Germany Medical School, Mühlenpfordtstraße 23, 38106 Braunschweig, 2 Physikalisch-Technische Bundesanstalt PTB, National Metrology Germany (e-mail: [email protected]). Institute of Germany, Braunschweig, Germany Methods Inf Med 2021;60:e20–e31. Abstract Background The rapid dissemination of smart devices within the internet of things (IoT) is developing toward automatic emergency alerts which are transmitted from machine to machine without human interaction. However, apart from individual projects concentrating on single types of accidents, there is no general methodology of connecting the standalone information and communication technology (ICT) systems involved in an accident: systems for alerting (e.g., smart home/car/wearable), systems in the responding stage (e.g., ambulance), and in the curing stage (e.g., hospital). Objectives We define the International Standard Accident Number (ISAN) as a unique tokenforinterconnectingtheseICTsystemsandtoprovideembeddeddatadescribing Keywords the circumstances of an accident (time, position, and identifier of the alerting system). ► accidents (D000059) Materials and Methods Based on the characteristics of processes and ICT systems in ► emergency medical emergency care, we derive technological, syntactic, and semantic requirements for the services (D004632) ISAN, and we analyze existing standards to be incorporated in the ISAN specification. -
Geocoding User Queries
Geocoding User Queries Dipl.-Inf. Konstantin Clemens ORCID: 0000-0003-1892-9574 an der Fakultät VII – Wirtschaft und Management der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Tag der wissenschaftlichen Aussprache: Vorsitzender: 10. Dezember 2019 Prof. Dr. Manfred Hauswirth Gutachter: Prof. Dr. Axel Küpper Prof. Dr.-Ing. Jochen Schiller Prof. Dr.-Ing. David Bermbach Berlin 2020 Technische Universität Berlin Fakultät IV Service-centric Networking Doctoral Thesis Geocoding User Queries Author: Supervisors: Konstantin Clemens Prof. Dr. Axel Küpper Prof. Dr.-Ing. Jochen Schiller Prof. Dr.-Ing. David Bermbach iii Declaration of Authorship I, Konstantin Clemens, declare that this thesis titled, “Geocoding User Queries” and the work presented in it are my own. I conrm that: • This work was done wholly or mainly while in candidature for a research degree at this University. • Where any part of this thesis has previously been submitted for a degree or any other qualication at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly attributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help. • Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: v Abstract While human users refer to locations using toponyms and addresses, computers rely on latitude and longitude coordinates, or similar, numerical encoding of location information. -
Research for GEOCODE (Geospatial Entity Object Code) to Represent A
Research for GEOCODE (Geospatial Entity Object Code) to represent a geographic point of interest (POI) and methods to evaluate or choose codes for an appropriate purpose 地理的座標を表現するコードシステムと、目的に応じたコードの評価お よび選択手法の研究 Naoki Ueda and Venkatesh Raghavan Graduate School for Creative Cities, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan ABSTRACT: A time-expression format such as “10:15” is common and everyone uses it naturally in daily life. In contrast, a location-expression format, such as “latitude and longitude,” are not used in daily life. This is because it is not convenient for people to remember and use. Today, a GPS device is built-into most mobile phones and many location-based services (LBS) are gaining popularity. However, we still use a descriptive explanation to show location and spend much time and cost to communicate a location to others. Therefore, in attempts to handle location as easily as time, various GEOCODEs (geospatial entity object code) have been invented around the world. All, however, are not yet in popular use. In this report, an overview of GEOCODE is introduced and some perspectives given to evaluate and choose an appropriate GEOCODE for a specific purpose. The author of this report is a GEOCODE researcher and an inventor of several GEOCODEs. KEY WORDS: GIS, LBS, Coordinates, GEOCODE, geospatial entity object code 概要:時刻を表す『10:15』のようなフォーマットは、ごく自然に日常生活の中で使われています。 これに対して、場所を表すフォーマット、例えば『緯度・経度』は日常生活で自然に使用できるよう な便利なフォーマットではなく、あまり利用されていません。 今日、ほとんどの携帯電話には GPS 機能が内蔵され、位置ベースサービス(LBS)が普及してきました。 しかし、我々は場所を表すには住所や説明的な文章を使うことが多く、他社に場所を伝えるときに大 変な労力を使っています。 まだ一般的ではありませんが、時刻と同じように簡単に場所を扱えるように、これまでたくさんのジ オコード(地理空間物を特定するコード)が世界中で発明されてきました。 本レポートの筆者はいくつかのジオコードの発明者でもあり、ジオコードの研究者でもあります。本 レポートでは、ジオコードの概要を紹介し、目的に応じたジオコードを評価・選択する上でポイント となる幾つかの「視点」を紹介します。 キーワード:GIS、LBS、座標、ジオコード 1. -
Innovative Locations and Addressing in Australia November 2015
Review of Innovative Locations and Addressing in Australia 1 November 2015 Version 1.0 Innovative Locations and Addressing in Australia COPYRIGHT All material in this publication is licensed under the Creative Commons Attribution 3.0 Australia Licence, save for content supplied by third parties, and logos. Creative Commons Attribution 3.0 Australia Licence is a standard form licence agreement that allows you to copy, distribute, transmit, and adapt this publication provided you attribute the work. The full licence terms are available from creativecommons.org/licenses/by/3.0/au/ legalcode. A summary of the licence terms is available from creativecommons.org/ licenses/by/3.0/au/deed.en. DISCLAIMER While every effort has been made to ensure its accuracy, the CRCSI does not offer any express or implied warranties or representations as to the accuracy or completeness of the information contained herein. The CRCSI and its employees and agents accept no liability in negligence for the information (or the use of such information) provided in this report. ii Innovative Locations and Addressing in Australia Contents 1 Introduction ................................................................ 2 1.1 Project Background and Objectives ................................................................................................ 2 1.2 Scope & Deliverables ...................................................................................................................... 2 1.3 Methodology ................................................................................................................................... -
ISO/TC 211 Geographic Information/Geomatics Secretariat: SN (Norway)
ISO/TC 211 N 4037 2015-05-28 Number of pages: 51 ISO/TC 211 Geographic information/Geomatics Secretariat: SN (Norway) Document type: Other committee document Title: Draft new work item proposal, The Map Code standard Status: For information and consideration by the PMG and at the 40th ISO/TC 211 plenary meeting in Southampton 2015-06-11/12. Source: NMB of the Netherlands Expected action: Info Email to secretary: [email protected] Committee URL: http://isotc.iso.org/livelink/livelink/open/tc211 and http://www.isotc211.org NEW WORK ITEM PROPOSAL Closing date for voting Reference number (to be given by the Secretariat) Date of circulation ISO/TC / SC N 4037 Secretariat Proposal for new PC A proposal for a new work item within the scope of an existing committee shall be submitted to the secretariat of that committee with a copy to the Central Secretariat and, in the case of a subcommittee, a copy to the secretariat of the parent technical committee. Proposals not within the scope of an existing committee shall be submitted to the secretariat of the ISO Technical Management Board. The proposer of a new work item may be a member body of ISO, the secretariat itself, another technical committee or subcommittee, or organization in liaison, the Technical Management Board or one of the advisory groups, or the Secretary-General. The proposal will be circulated to the P-members of the technical committee or subcommittee for voting, and to the O-members for information. IMPORTANT NOTE: Proposals without adequate justification risk rejection or referral to originator. -
Geocoding User Queries
Geocoding User Queries Dipl.-Inf. Konstantin Clemens ORCID: 0000-0003-1892-9574 an der Fakultät IV – Elektrotechnik und Informatik der Technischen Universität Berlin zur Erlangung des akademischen Grades Doktor der Ingenieurwissenschaften - Dr.-Ing. - genehmigte Dissertation Promotionsausschuss: Tag der wissenschaftlichen Aussprache: Vorsitzender: 10. Dezember 2019 Prof. Dr. Manfred Hauswirth Gutachter: Prof. Dr. Axel Küpper Prof. Dr.-Ing. Jochen Schiller Prof. Dr.-Ing. David Bermbach Berlin 2020 Technische Universität Berlin Fakultät IV Service-centric Networking Doctoral Thesis Geocoding User Queries Author: Supervisors: Konstantin Clemens Prof. Dr. Axel Küpper Prof. Dr.-Ing. Jochen Schiller Prof. Dr.-Ing. David Bermbach iii Declaration of Authorship I, Konstantin Clemens, declare that this thesis titled, “Geocoding User Queries” and the work presented in it are my own. I conrm that: • This work was done wholly or mainly while in candidature for a research degree at this University. • Where any part of this thesis has previously been submitted for a degree or any other qualication at this University or any other institution, this has been clearly stated. • Where I have consulted the published work of others, this is always clearly attributed. • Where I have quoted from the work of others, the source is always given. With the exception of such quotations, this thesis is entirely my own work. • I have acknowledged all main sources of help. • Where the thesis is based on work done by myself jointly with others, I have made clear exactly what was done by others and what I have contributed myself. Signed: Date: v Abstract While human users refer to locations using toponyms and addresses, computers rely on latitude and longitude coordinates, or similar, numerical encoding of location information. -
Vysoké Učení Technické V Brně Informační Systém Pro
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ FACULTY OF INFORMATION TECHNOLOGY ÚSTAV INFORMAČNÍCH SYSTÉMŮ DEPARTMENT OF INFORMATION SYSTEMS INFORMAČNÍ SYSTÉM PRO SPRÁVU VIZUALIZACÍ GEOGRAFICKÝCH DAT INFORMATION SYSTEM FOR MANAGEMENT OF GEOGRAPHICAL DATA VISUALIZATIONS DIPLOMOVÁ PRÁCE MASTER’S THESIS AUTOR PRÁCE Bc. JAN GROSSMANN AUTHOR VEDOUCÍ PRÁCE Ing. JIŘÍ HYNEK, Ph.D. SUPERVISOR BRNO 2021 Vysoké učení technické v Brně Fakulta informačních technologií Ústav informačních systémů (UIFS) Akademický rok 2020/2021 Zadání diplomové práce Student: Grossmann Jan, Bc. Program: Informační technologie Obor: Informační systémy Název: Informační systém pro správu vizualizací geografických dat Information System for Management of Geographical Data Visualizations Kategorie: Informační systémy Zadání: 1. Prozkoumejte existující systémy pro tvorbu diagramů umožňující vizualizovat vlastní geografické datové sady. Prostudujte použité typy diagramů a způsob provázání dat s těmito diagramy. Zhodnoťte náročnost tvorby takových diagramů a jejich výslednou použitelnost. 2. Prostudujte principy tvorby informačních systémů, webových uživatelských rozhraní a vizualizací dat. Studujte způsoby uložení vizualizovaných dat. 3. Analyzujte požadavky uživatelů pro snadnou tvorbu mapových diagramů, které mohou být exportovány nebo vloženy do vlastních webových stránek a srovnejte je s možnostmi systémů z bodu 1. 4. Navrhněte informační systém řešící požadavky z bodu 3, který umožní jeho provázání s různými databázovými systémy a dokáže spravovat uživatelské konfigurace vytvořených map. Výsledné mapy bude možné vkládat do vlastních webových prezentací. 5. Navržený informační systém implementujte. 6. Výsledné řešení otestujte. Literatura: Kachlík, J.: Grafická vizualizace geografických dat síťového provozu. Brno, 2020. Bakalářská práce. Vysoké učení technické v Brně, Fakulta informačních technologií. Johnson, J.: Designing with the Mind in Mind: Simple Guide to Understanding User Interface Design Guidelines. -
A Restful Api for the Extended What3words Encoding
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018 ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands A RESTFUL API FOR THE EXTENDED WHAT3WORDS ENCODING W. Jiang, E. Stefanakis* Department of Geodesy and Geomatics Engineering, University of New Brunswick, P.O.Box 4400, Fredericton, E3B 5A3 Canada [email protected], [email protected] Commission IV, WGIV/7 KEY WORDS: RESTful API, Web Service, Geocoding, What3words, What3words Extensions ABSTRACT: Geocoding is a fundamental task of Geographic Information System (GIS) processing and analysis. It allows the transformation between a location reference (i.e., an address or an alphanumeric code) and coordinates, which is often an essential step when performing spatial analysis, mapping, and other geolocation related processes. Providing software functionality through RESTful APIs is a common practice in geospatial applications. Client programs are able to access or process geospatial data easily through a lightweight and scalable RESTful web service. Existing geocoding RESTful API providers include Google Maps Geocoding API, ArcGIS Geocoding REST API, MapQuest Open Geocoding API and what3words (w3w) Geocoding API. Extensions of what3words geocoding system have recently been proposed to overcome its limitation of fixed resolution and lack of consideration of the third dimension. This paper considers one of the extensions, the Quadtree Extension Model (QTEM) and introduces a RESTful API that provides operations for forward geocoding, reverse geocoding, single line and polygon encoding, and centre points encoding for a given area. The resources published by the web service could be implemented by software programs performing indoor and outdoor location referencing, location marking and path finding.