Overview and Kepler Update
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond
National Aeronautics and Space Administration NASA Astrobiology Institute Annual Science Report 2016 Team Report: Foundations of Complex Life: Evolution, Preservation and Detection on Earth and Beyond, Massachusetts Institute of Technology Foundations of Complex Life Evolution, Preservation and Detection on Earth and Beyond Lead Institution: Massachusetts Institute of Technology Team Overview Foundations of Complex Life is a research project investigating the early evolution and preservation of complex life on Earth. We seek insight into the early evolution and preservation of complex life by refining our ability to identify evidence of environmental and biological change in the late Mesoproterozoic to Neoproterozoic eras. Better understanding how signatures of life and environment are preserved will guide how and where to look for evidence for life elsewhere in the universe—directly supporting the Curiosity mission on Mars and helping set strategic goals for future explorations of the Solar System and studies of the early Earth. Our Team pursues these questions under five themes: I. The earliest history of animals: We use methods from molecular biology, experimental taphonomy, and paleontology to explore what caused the early divergence of animals. Principal Investigator: II. Paleontology, sedimentology, and geochemistry: We track the origin of complex Roger Summons protists and animals from their biologically simple origins by documenting the stratigraphy, isotopic records, and microfossil assemblages of well-preserved rock successions from 1200 to 650 million years ago. III. A preservation-induced oxygen tipping point: We investigate how changes in the preservation of organic carbon may have driven the Neoproterozoic oxygenation of the oceans coincident with the appearance of complex life. -
MARTIAN PALEOMAGNETISM with the SQUID MICROSCOPE Thesis
MARTIAN PALEOMAGNETISM WITH THE SQUID MICROSCOPE Thesis by Benjamin Paul Weiss In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2003 (Defended January 28, 2003) ii 2003 Benjamin Paul Weiss All Rights Reserved iii ACKNOWLEDGEMENTS There are of course many people who need to be thanked for making this thesis possible, but by far the most important of these is Joe Kirschvink. Joe couldn’t have had me in his lab more than a week before trusting me and a fellow undergraduate—the two of us new to geology, unproven and truly nobodies—to stay up all night slicing up the martian meteorite ALH84001. All night long we kept laughing out of excitement and disbelief as we played with not only an invaluable rock from Mars but the oldest known rock from any planet! This ability to inspire through his trust is Joe’s genius as a teacher. Joe also taught me how to be at once fearlessly creative and within the bounds of rigor. To me, it is the stories—of the rocks, of the events of the past, and of how we learn about them—that were what attracted me to planetary science in the first place. Trucking around the world with Joe (through South Africa, Swaziland, Mexico, Australia, Japan…), I saw some really strange rocks and places, which had even stranger stories to tell. Strange, at least, when told through Joe as their interpreter (Joe says I am a Martian that has just recently taken over a human body but hasn’t quite learned how to use all of the equipment; if this is true, then where did he come from?). -
A Thermostable D-Polymerase for Mirror-Image
Published online 2 February 2017 Nucleic Acids Research, 2017, Vol. 45, No. 7 3997–4005 doi: 10.1093/nar/gkx079 A thermostable D-polymerase for mirror-image PCR Andreas Pech1,†, John Achenbach2,†, Michael Jahnz2, Simone Schulzchen¨ 1, Florian Jarosch2, Frank Bordusa3 and Sven Klussmann2,* 1NOXXON Pharma AG, Weinbergweg 23, 06120 Halle (Saale), Germany, 2NOXXON Pharma AG, Max-Dohrn-Str. 8–10, 10589 Berlin, Germany and 3Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany Received December 02, 2016; Revised January 19, 2017; Editorial Decision January 25, 2017; Accepted January 27, 2017 ABSTRACT ing to mirror-image L-adenosine and its corresponding L- RNA aptamer (so-called Spiegelmer®) comparably recog- Biological evolution resulted in a homochiral world nizing D-adenosine (4). Since compounds made of mirror- in which nucleic acids consist exclusively of D- image building blocks show high biostability and low im- nucleotides and proteins made by ribosomal trans- munogenicity, L-nucleic acid aptamers and D-peptides are lation of L-amino acids. From the perspective of now being developed as therapeutic modalities (5,6). synthetic biology, however, particularly anabolic en- The dream of creating a living cell in the lab de novo has zymes that could build the mirror-image counterparts been around for some time (7,8) and significant progress of biological macromolecules such as L-DNA or L- such as the synthesis of a whole genome now controlling RNA are lacking. Based on a convergent synthesis viable cells (9) has been achieved. Also, the vision of mirror strategy, we have chemically produced and charac- life as an object of investigation, e.g. -
Tanja Bosak Was Born in Croatia and Graduated from the Zagreb University with a Degree in Geophysics
Tanja Bosak was born in Croatia and graduated from the Zagreb University with a degree in Geophysics. After a summer of research at JPL, she moved to the California Institute of Technology in Pasadena, where she studied signatures of microbial processes in ancient sedimentary rocks and earned a Ph.D. in Geobiology. She spent two years at Harvard as a Microbial Initiative Postdoctoral Fellow, joined the Department of Earth, Atmospheric and Planetary Sciences at MIT in 2007 and is now a Professor of Geobiology and the group leader of the Program in Geology, Geochemistry and Geobiology. Tanja’s work integrates microbiology, sedimentology and stable isotope geochemistry into experimental geobiology to ask how microbial processes leave chemical, mineral and morphological signals in sedimentary rocks. Her lab uses this approach to explore modern biogeochemical and sedimentological processes, interpret the co-evolution of life and the environment during the first 80% of Earth history and look for signs of past life on Mars. For this work, and her work with graduate students and undergraduates, Bosak received the Subaru Outstanding Woman in Science award by the Geological Society of America (2007), the Macelwane Medal from the American Geophysical Union (2011), the Edgerton Award for young faculty at MIT (2012), the Undergraduate Research Opportunities for Undergraduates Mentor of the Year award by MIT (2012) and the Award for Outstanding Contributions and Dedication to Geobiology and Geomicrobiology from The Geobiology and Geomicrobiology Division of The Geological Society of America. Bosak is a fellow of the American Geophysical Union (2011), the American Academy of Microbiology (2021), and a subject editor for Geobiology, Frontiers of Microbiology and Geochemical Perspectives Letters. -
Microbial Facies in a Sturtian Cap Carbonate, the Rasthof Formation, Otavi Group, Northern Namibia
Precambrian Research 181 (2010) 187–198 Contents lists available at ScienceDirect Precambrian Research journal homepage: www.elsevier.com/locate/precamres Microbial facies in a Sturtian cap carbonate, the Rasthof Formation, Otavi Group, northern Namibia Sara B. Pruss a,∗, Tanja Bosak b, Francis A. Macdonald c, Marie McLane a, Paul F. Hoffman c,d a Department of Geosciences, Smith College, Northampton, MA 01063, USA b Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA c Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA d School of Earth and Ocean Sciences, University of Victoria, Victoria, British Columbia, Canada V8W 2Y2 article info abstract Article history: Microbial structures in Neoproterozoic cap carbonates record the environmental processes present in Received 4 February 2010 the aftermath of global glaciation. The Rasthof Formation of northern Namibia is a unique carbonate Received in revised form 24 May 2010 depositional sequence that formed during post-glacial transgression and highstand following the Chuos Accepted 2 June 2010 glaciation. Carbon isotope profiles from four examined localities reveal that onlap was diachronous over post-glacial, syn-rift topography. The lower Rasthof Formation consists primarily of dark gray thinly (<mm) and thickly (1–4 mm) laminated microbialites that exhibit different rheological responses to the Keywords: emplacement of syndepositional dikes. The thinly laminated microbialaminite facies commonly host cm- Cryogenian Roll-up structure sized syndepositional folds of microbially laminated sediment called roll-up structures. In more thickly Neoproterozoic laminated facies, layers are deformed into broad decimeter-sized folds, but roll-up structures are absent. -
21St Century Borders/Synthetic Biology: Focus on Responsibility and Governance
Social science Engineering Framework Institute on Science for Global Policy (ISGP) Risk-benefit Media Public Synthetic Biology Genetic Governance Regulation Voluntary Anticipatory Databases Xenobiology 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance Conference convened by the ISGP Dec. 4–7, 2012 at the Hilton El Conquistador, Tucson, Arizona Risk Technology Oversight Plants Uncertainty Product Less-affluent countries DIYBIO Biotechnology Emerging Dynamic Environmental Government Biosafety Self-regulation Nefarious Genetically modified Protein Standards Dual use Distribution Applications Food Microbial Authority Assessment Agricultural Institute on Science for Global Policy (ISGP) 21st Century Borders/Synthetic Biology: Focus on Responsibility and Governance Conference convened by the ISGP in partnership with the University of Arizona at the Hilton El Conquistador Hotel Tucson, Arizona, U.S. Dec. 4–7, 2012 An ongoing series of dialogues and critical debates examining the role of science and technology in advancing effective domestic and international policy decisions Institute on Science for Global Policy (ISGP) Tucson, AZ Office 845 N. Park Ave., 5th Floor PO Box 210158-B Tucson, AZ 85721 Washington, DC Office 818 Connecticut Ave. NW Suite 800 Washington, DC 20006 www.scienceforglobalpolicy.org © Copyright Institute on Science for Global Policy, 2013. All rights reserved. ISBN: 978-0-9803882-4-0 ii Table of contents Executive summary • Introduction: Institute on Science for Global Policy (ISGP) .............. 1 Dr. George H. Atkinson, Founder and Executive Director, ISGP, and Professor Emeritus, University of Arizona • Conference conclusions: Areas of consensus and Actionable next steps ...................................... 7 Conference program ........................................................................................... 11 Policy position papers and debate summaries • Synthetic Biology — Do We Need New Regulatory Systems? Prof. -
Xenobiology: a New Form of Life As the Ultimate Biosafety Tool Markus Schmidt* Organisation for International Dialogue and Conflict Management, Kaiserstr
Review article DOI 10.1002/bies.200900147 Xenobiology: A new form of life as the ultimate biosafety tool Markus Schmidt* Organisation for International Dialogue and Conflict Management, Kaiserstr. 50/6, 1070 Vienna, Austria Synthetic biologists try to engineer useful biological search for alternatives. They belong to apparently very systems that do not exist in nature. One of their goals different science fields and their quest for biochemical is to design an orthogonal chromosome different from diversity is driven by different motivations.(1–3) The science DNA and RNA, termed XNA for xeno nucleic acids. XNA exhibits a variety of structural chemical changes relative fields in question include four areas: origin of life, exobiology, to its natural counterparts. These changes make this systems chemistry, and synthetic biology (SB). The ancient novel information-storing biopolymer ‘‘invisible’’ to nat- Greeks, including Aristotle, believed in Generatio spontanea, ural biological systems. The lack of cognition to the the idea that life could suddenly come into being from non- natural world, however, is seen as an opportunity to living matter on an every day basis. Spontaneous generation implement a genetic firewall that impedes exchange of genetic information with the natural world, which means of life, however, was finally discarded by the scientific it could be the ultimate biosafety tool. Here I discuss, why experiments of Pasteur, whose empirical results showed that it is necessary to go ahead designing xenobiological modern organisms do not spontaneously arise in nature from systems like XNA and its XNA binding proteins; what non-living matter. On the sterile earth 4 billion years ago, the biosafety specifications should look like for this however, abiogenesis must have happened at least once, genetic enclave; which steps should be carried out to boot up the first XNA life form; and what it means for the eventually leading to the last universal common ancestor society at large. -
Inside the Race to Build Life from Scratch
INSIDE THE RACE TO BUILD LIFE FROM SCRATCH The effort to leap-frog evolution and build new types of life turns out to be more complex than reading and writing DNA. Illustration by Daniel Zender Synthetic biologists aim to transform the world with manmade organisms. What will it take to get there? By Emily Sohn n 2016, researchers at the J. Craig Venter Institute announced that they had created a brand-new life form: a bacterium with just 473 genes. Known as Syn 3.0, the cell had a genome smaller than that of any life form I found in nature. It was celebrated as a landmark achievement, heralding a new era in which scientists would use the genetic code to create designer life forms. Synthetic life, proclaimed Venter, was a reality. “I was involved in building it,” he says. Not everyone agreed — then, or now. To make Syn 3.0, the JCVI team synthesized M E replicas of genomes from natural bacteria and placed them into living cells whose N U genomes had been removed. Then they took away genes, one by one, until the cells could no longer function. The JCVI’s accomplishment was the culmination of “heroic work,” says Drew Endy, a synthetic biologist at Stanford University. But it doesn’t really count as artificial life. The point of doing it this way was to systematically determine which genes are essential for life. The result, a sort of minimum viable life form, left many important questions unanswered. Among them: nobody knows what 149 of the 473 essential genes do. -
1 Curriculum Vitae Colleen Michelle Hansel
CURRICULUM VITAE COLLEEN MICHELLE HANSEL Biogeochemist Department of Marine Chemistry and Geochemistry Telephone: 508‐289‐3738 Woods Hole Oceanographic Institution E‐mail: [email protected] Woods Hole, MA 02543 www.whoi.edu/science/MCG/microgeochem EDUCATION 2004 Ph.D. in Biogeochemistry, Department of Geological and Environmental Sciences, Stanford University 1999 M.S. in Environmental Chemistry, Department of Plant, Soil, and Entomological Sciences, University of Idaho 1997 B.S. in Geology, Department of Geological Sciences, California State University, Sacramento PROFESSIONAL EXPERIENCE 2015‐present Associate Scientist with tenure, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution 2012‐2015 Associate Scientist, Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution 2011‐2012 Associate Professor, School of Engineering and Applied Sciences and Department of Earth and Planetary Sciences, Harvard University 2009‐2011 Assistant Professor, Department of Earth and Planetary Sciences, Harvard University 2007‐2011 Assistant Professor, School of Engineering and Applied Sciences, Harvard University 2004‐2006 Postdoctoral Scholar, Department of Geological and Environmental Sciences, Stanford University 2000‐2004 Graduate Researcher, Department of Geological and Environmental Sciences, Stanford University HONORS AND AWARDS 2016 Guest investigator fellowship at the Helmholtz Center in Geesthacht, Germany (October 30- December 16, 2017) 2014 Mineralogical Society of America Distinguished -
Exploring Biological Possibility Through Synthetic Biology
European Journal for Philosophy of Science (2021) 11:39 https://doi.org/10.1007/s13194-021-00364-7 PAPER IN THE PHILOSOPHY OF THE LIFE SCIENCES Exploring biological possibility through synthetic biology Tero Ijäs1 · Rami Koskinen2 Received: 15 June 2020 / Accepted: 5 February 2021 © The Author(s) 2021 Abstract This paper analyzes the notion of possibility in biology and demonstrates how syn- thetic biology can provide understanding on the modal dimension of biological sys- tems. Among modal concepts, biological possibility has received surprisingly little explicit treatment in the philosophy of science. The aim of this paper is to argue for the importance of the notion of biological possibility by showing how it provides both a philosophically and biologically fruitful category as well as introducing a new practically grounded way for its assessment. More precisely, we argue that synthetic biology can provide tools to scientifcally anchor reasoning about biological possi- bilities. Two prominent strategies for this are identifed and analyzed: the design of functionally new-to-nature systems and the redesign of naturally occurring systems and their parts. These approaches allow synthetic biologists to explore systems that are not normally evolutionarily accessible and draw modal inferences that extend in scope beyond their token realizations. Subsequently, these results in synthetic biol- ogy can also be relevant for discussions on evolutionary contingency, providing new methods and insight to the study of various sources of unactualized -
Downloaded from a Website
A Submission to the Convention on Biological Diversity’s Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) on the Potential Impacts of Synthetic Biology on the Conservation and Sustainable Use of Biodiversity Submitted by: The International Civil Society Working Group on Synthetic Biology Consisting of Action Group On Erosion, Technology and Concentration (ETC Group) Center for Food Safety Center for Food Safety Econexus Friends of the Earth USA International Center for Technology Assessment The Sustainability Council of New Zealand 17th October 2011 2 A Submission to the Convention on Biological Diversity’s Subsidiary Body on Scientific, Technical and Technological Advice (SBSTTA) on the Potential Impacts of Synthetic Biology on the Conservation and Sustainable Use of Biodiversity Contents Executive Summary & Recommendations Part 1: Introduction and Overview: A. What is synthetic biology? B. Distinct synthetic biology approaches/sub-Fields C. Current and near-term applications of synthetic biology Part 2: Synthetic Biology, Biodiversity and Biosafety A. The behavior of synthetic biological systems is inherently uncertain and unpredictable. B. No risk assessment protocols have been developed to assess potential risks associated with synthetic biology C. Assured containment of organisms developed with synthetic biology is not practical or possible. D. Potential ecological risks associated with the release of synthetic organisms E. Xenobiology does not offer safe or reliable tools to ensure confinement or biological containment F. There is currently no comprehensive regulatory apparatus for the oversight and governance of synthetic biology G. Researchers who are most active in synthetic biology R&D do not necessarily have training in biological sciences or biosafety. H. -
Food Or Fuel Final2x
2 NLTC-v225 Food or Fuel? Colophon The ‘Food or Fuel’ module is intended for the Nature, Life and Technology (NLT) lessons. The module was certified on 10 June 2009 by the NLT Steering Committee for use on the VWO in domain F (Biomedical Technology and Biotechnology). The certification number of the module is X225-050-VF. The original certified module is available as a pdf download from http://www.betavak-nlt.nl . Disclaimer This certified module has not been developed for the Landelijk Ontwikkelpunt NLT or NLT Steering Committee. NLT Steering Committee and Landelijk Ontwikkelpunt NLT do not accept any responsibility for any inaccuracies and/or omissions in the module, nor for any damage that occurs as a result of (the use of) this module. Amended versions of this module can only be distributed if mention is made in the module of the fact that it is an amended version, quoting the name of the author of the amendments. Materials and websites that students require for this module are available from the NLT digital classroom: ►http://vaklokaal-nlt.nl © 2010. Version 1.0 This module is covered by a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Dutch licence ►http://creativecommons.org/licenses/by-nc-sa/3.0/nl Copyright for the module is held by B-Basic. B-Basic is therefore the rightful claimant as indicated in the creative commons licence mentioned above. This module was created for B-Basic, and designed by Authors Marcel Koeneman – lecturer in Chemistry Guido Linssen – lecturer in Physics Hans Tramper – professor in Bioprocess Technology Chief Editor Janneke van Seters – B-Basic employee Scientific experts Ton van Maris – Technical University Delft Sonja Isken- Wageningen University In collaboration with Jeroen Sijbers Anne-Lotte Masson Misha Denis Bram van Ravenstein Greetje Bosma Jaap Hillebrand Joke Zwarteveen Mia Drummen 4 NLTC-v225 Food or Fuel? Table of contents 1.