A Thermostable D-Polymerase for Mirror-Image
Published online 2 February 2017 Nucleic Acids Research, 2017, Vol. 45, No. 7 3997–4005 doi: 10.1093/nar/gkx079 A thermostable D-polymerase for mirror-image PCR Andreas Pech1,†, John Achenbach2,†, Michael Jahnz2, Simone Schulzchen¨ 1, Florian Jarosch2, Frank Bordusa3 and Sven Klussmann2,* 1NOXXON Pharma AG, Weinbergweg 23, 06120 Halle (Saale), Germany, 2NOXXON Pharma AG, Max-Dohrn-Str. 8–10, 10589 Berlin, Germany and 3Institute of Biochemistry and Biotechnology, Martin-Luther-University Halle-Wittenberg, Kurt-Mothes-Strasse 3, 06120 Halle (Saale), Germany Received December 02, 2016; Revised January 19, 2017; Editorial Decision January 25, 2017; Accepted January 27, 2017 ABSTRACT ing to mirror-image L-adenosine and its corresponding L- RNA aptamer (so-called Spiegelmer®) comparably recog- Biological evolution resulted in a homochiral world nizing D-adenosine (4). Since compounds made of mirror- in which nucleic acids consist exclusively of D- image building blocks show high biostability and low im- nucleotides and proteins made by ribosomal trans- munogenicity, L-nucleic acid aptamers and D-peptides are lation of L-amino acids. From the perspective of now being developed as therapeutic modalities (5,6). synthetic biology, however, particularly anabolic en- The dream of creating a living cell in the lab de novo has zymes that could build the mirror-image counterparts been around for some time (7,8) and significant progress of biological macromolecules such as L-DNA or L- such as the synthesis of a whole genome now controlling RNA are lacking. Based on a convergent synthesis viable cells (9) has been achieved. Also, the vision of mirror strategy, we have chemically produced and charac- life as an object of investigation, e.g.
[Show full text]