Spatially-Variant CNN-Based Point Spread Function Estimation For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Convolution! (CDT-14) Luciano Da Fontoura Costa
Convolution! (CDT-14) Luciano da Fontoura Costa To cite this version: Luciano da Fontoura Costa. Convolution! (CDT-14). 2019. hal-02334910 HAL Id: hal-02334910 https://hal.archives-ouvertes.fr/hal-02334910 Preprint submitted on 27 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Convolution! (CDT-14) Luciano da Fontoura Costa [email protected] S~aoCarlos Institute of Physics { DFCM/USP October 22, 2019 Abstract The convolution between two functions, yielding a third function, is a particularly important concept in several areas including physics, engineering, statistics, and mathematics, to name but a few. Yet, it is not often so easy to be conceptually understood, as a consequence of its seemingly intricate definition. In this text, we develop a conceptual framework aimed at hopefully providing a more complete and integrated conceptual understanding of this important operation. In particular, we adopt an alternative graphical interpretation in the time domain, allowing the shift implied in the convolution to proceed over free variable instead of the additive inverse of this variable. In addition, we discuss two possible conceptual interpretations of the convolution of two functions as: (i) the `blending' of these functions, and (ii) as a quantification of `matching' between those functions. -
Single‑Molecule‑Based Super‑Resolution Imaging
Histochem Cell Biol (2014) 141:577–585 DOI 10.1007/s00418-014-1186-1 REVIEW The changing point‑spread function: single‑molecule‑based super‑resolution imaging Mathew H. Horrocks · Matthieu Palayret · David Klenerman · Steven F. Lee Accepted: 20 January 2014 / Published online: 11 February 2014 © Springer-Verlag Berlin Heidelberg 2014 Abstract Over the past decade, many techniques for limit, gaining over two orders of magnitude in precision imaging systems at a resolution greater than the diffraction (Szymborska et al. 2013), allowing direct observation of limit have been developed. These methods have allowed processes at spatial scales much more compatible with systems previously inaccessible to fluorescence micros- the regime that biomolecular interactions take place on. copy to be studied and biological problems to be solved in Radically, different approaches have so far been proposed, the condensed phase. This brief review explains the basic including limiting the illumination of the sample to regions principles of super-resolution imaging in both two and smaller than the diffraction limit (targeted switching and three dimensions, summarizes recent developments, and readout) or stochastically separating single fluorophores in gives examples of how these techniques have been used to time to gain resolution in space (stochastic switching and study complex biological systems. readout). The latter also described as follows: Single-mol- ecule active control microscopy (SMACM), or single-mol- Keywords Single-molecule microscopy · Super- ecule localization microscopy (SMLM), allows imaging of resolution imaging · PALM/(d)STORM imaging · single molecules which cannot only be precisely localized, Localization microscopy but also followed through time and quantified. This brief review will focus on this “pointillism-based” SR imaging and its application to biological imaging in both two and Fluorescence microscopy allows users to dynamically three dimensions. -
Mapping the PSF Across Adaptive Optics Images
Mapping the PSF across Adaptive Optics images Laura Schreiber Osservatorio Astronomico di Bologna Email: [email protected] Abstract • Adaptive Optics (AO) has become a key technology for all the main existing telescopes (VLT, Keck, Gemini, Subaru, LBT..) and is considered a kind of enabling technology for future giant telescopes (E-ELT, TMT, GMT). • AO increases the energy concentration of the Point Spread Function (PSF) almost reaching the resolution imposed by the diffraction limit, but the PSF itself is characterized by complex shape, no longer easily representable with an analytical model, and by sometimes significant spatial variation across the image, depending on the AO flavour and configuration. • The aim of this lesson is to describe the AO PSF characteristics and variation in order to provide (together with some AO tips) basic elements that could be useful for AO images data reduction. Erice School 2015: Science and Technology with E-ELT What’s PSF • ‘The Point Spread Function (PSF) describes the response of an imaging system to a point source’ • Circular aperture of diameter D at a wavelenght λ (no aberrations) Airy diffraction disk 2 퐼휃 = 퐼0 퐽1(푥)/푥 Where 퐽1(푥) represents the Bessel function of order 1 푥 = 휋 퐷 휆 푠푛휗 휗 is the angular radius from the aperture center First goes to 0 when 휗 ~ 1.22 휆 퐷 Erice School 2015: Science and Technology with E-ELT Imaging of a point source through a general aperture Consider a plane wave propagating in the z direction and illuminating an aperture. The element ds = dudv becomes the a sourse of a secondary spherical wave. -
Fourier Ptychographic Wigner Distribution Deconvolution
FOURIER PTYCHOGRAPHIC WIGNER DISTRIBUTION DECONVOLUTION Justin Lee1, George Barbastathis2,3 1. Department of Health Sciences and Technology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 2. Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA 3. Singapore–MIT Alliance for Research and Technology (SMART) Centre Singapore 138602, Singapore Email: [email protected] KEY WORDS: Computational Imaging, phase retrieval, ptychography, Fourier ptychography Ptychography was first proposed as a method for phase retrieval by Hoppe in the late 1960s [1]. A typical ptychographic setup involves generation of illumination diversity via lateral translation of an object relative to its illumination (often called the probe) and measurement of the intensity of the far-field diffraction pattern/Fourier transform of the illuminated object. In the decades following Hoppes initial work, several important extensions to ptychography were developed, including an ability to simultaneously retrieve the amplitude and phase of both the probe and the object via application of an extended ptychographic iterative engine (ePIE) [2] and a non-iterative technique for phase retrieval using ptychographic information called Wigner Distribution Deconvolution (WDD) [3,4]. Most recently, the Fourier dual to ptychography was introduced by the authors in [5] as an experimentally simple technique for phase retrieval using an LED array as the illumination source in a standard microscope setup. In Fourier ptychography, lateral translation of the object relative to the probe occurs in frequency space and is obtained by tilting the angle of illumination (while holding the pupil function of the imaging system constant). In the past few years, several improvements to Fourier ptychography have been introduced, including an ePIE-like technique for simultaneous pupil function and object retrieval [6]. -
Enhanced Three-Dimensional Deconvolution Microscopy Using a Measured Depth-Varying Point-Spread Function
2622 J. Opt. Soc. Am. A/Vol. 24, No. 9/September 2007 J. W. Shaevitz and D. A. Fletcher Enhanced three-dimensional deconvolution microscopy using a measured depth-varying point-spread function Joshua W. Shaevitz1,3,* and Daniel A. Fletcher2,4 1Department of Integrative Biology, University of California, Berkeley, California 94720, USA 2Department of Bioengineering, University of California, Berkeley, California 94720, USA 3Department of Physics, Princeton University, Princeton, New Jersey 08544, USA 4E-mail: fl[email protected] *Corresponding author: [email protected] Received February 26, 2007; revised April 23, 2007; accepted May 1, 2007; posted May 3, 2007 (Doc. ID 80413); published July 27, 2007 We present a technique to systematically measure the change in the blurring function of an optical microscope with distance between the source and the coverglass (the depth) and demonstrate its utility in three- dimensional (3D) deconvolution. By controlling the axial positions of the microscope stage and an optically trapped bead independently, we can record the 3D blurring function at different depths. We find that the peak intensity collected from a single bead decreases with depth and that the width of the axial, but not the lateral, profile increases with depth. We present simple convolution and deconvolution algorithms that use the full depth-varying point-spread functions and use these to demonstrate a reduction of elongation artifacts in a re- constructed image of a 2 m sphere. © 2007 Optical Society of America OCIS codes: 100.3020, 100.6890, 110.0180, 140.7010, 170.6900, 180.2520. 1. INTRODUCTION mismatch between the objective lens and coupling oil can Three-dimensional (3D) deconvolution microscopy is a be severe [5,6], especially in systems using high- powerful tool for visualizing complex biological struc- numerical apertures. -
Topic 3: Operation of Simple Lens
V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Topic 3: Operation of Simple Lens Aim: Covers imaging of simple lens using Fresnel Diffraction, resolu- tion limits and basics of aberrations theory. Contents: 1. Phase and Pupil Functions of a lens 2. Image of Axial Point 3. Example of Round Lens 4. Diffraction limit of lens 5. Defocus 6. The Strehl Limit 7. Other Aberrations PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -1- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Ray Model Simple Ray Optics gives f Image Object u v Imaging properties of 1 1 1 + = u v f The focal length is given by 1 1 1 = (n − 1) + f R1 R2 For Infinite object Phase Shift Ray Optics gives Delta Fn f Lens introduces a path length difference, or PHASE SHIFT. PTIC D O S G IE R L O P U P P A D E S C P I A S Properties of a Lens -2- Autumn Term R Y TM H ENT of P V N I E R U S E I T H Y Modern Optics T O H F G E R D I N B U Phase Function of a Lens δ1 δ2 h R2 R1 n P0 P ∆ 1 With NO lens, Phase Shift between , P0 ! P1 is 2p F = kD where k = l with lens in place, at distance h from optical, F = k0d1 + d2 +n(D − d1 − d2)1 Air Glass @ A which can be arranged to|giv{ze } | {z } F = knD − k(n − 1)(d1 + d2) where d1 and d2 depend on h, the ray height. -
Diffraction Optics
ECE 425 CLASS NOTES – 2000 DIFFRACTION OPTICS Physical basis • Considers the wave nature of light, unlike geometrical optics • Optical system apertures limit the extent of the wavefronts • Even a “perfect” system, from a geometrical optics viewpoint, will not form a point image of a point source • Such a system is called diffraction-limited Diffraction as a linear system • Without proof here, we state that the impulse response of diffraction is the Fourier transform (squared) of the exit pupil of the optical system (see Gaskill for derivation) 207 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 • impulse response called the Point Spread Function (PSF) • image of a point source • The transfer function of diffraction is the Fourier transform of the PSF • called the Optical Transfer Function (OTF) Diffraction-Limited PSF • Incoherent light, circular aperture ()2 J1 r' PSF() r' = 2-------------- r' where J1 is the Bessel function of the first kind and the normalized radius r’ is given by, 208 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 D = aperture diameter πD πr f = focal length r' ==------- r -------- where λf λN N = f-number λ = wavelength of light λf • The first zero occurs at r = 1.22 ------ = 1.22λN , or r'= 1.22π D Compare to the course notes on 2-D Fourier transforms 209 DR. ROBERT A. SCHOWENGERDT [email protected] 520 621-2706 (voice), 520 621-8076 (fax) ECE 425 CLASS NOTES – 2000 2-D view (contrast-enhanced) “Airy pattern” central bright region, to first- zero ring, is called the “Airy disk” 1 0.8 0.6 PSF 0.4 radial profile 0.2 0 0246810 normalized radius r' 210 DR. -
Improved Single-Molecule Localization Precision in Astigmatism-Based 3D Superresolution
bioRxiv preprint doi: https://doi.org/10.1101/304816; this version posted April 19, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Improved single-molecule localization precision in astigmatism-based 3D superresolution imaging using weighted likelihood estimation Christopher H. Bohrer1Ϯ, Xinxing Yang1Ϯ, Zhixin Lyu1, Shih-Chin Wang1, Jie Xiao1* 1Department of Biophysics and Biophysical Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland, 21205, USA. Ϯ These authors contributed equally to this work. *Correspondence and requests for materials should be addressed J.X. (email: [email protected]). Abstract: Astigmatism-based superresolution microscopy is widely used to determine the position of individual fluorescent emitters in three-dimensions (3D) with subdiffraction-limited resolutions. This point spread function (PSF) engineering technique utilizes a cylindrical lens to modify the shape of the PSF and break its symmetry above and below the focal plane. The resulting asymmetric PSFs at different z-positions for single emitters are fit with an elliptical 2D-Gaussian function to extract the widths along two principle x- and y-axes, which are then compared with a pre-measured calibration function to determine its z-position. While conceptually simple and easy to implement, in practice, distorted PSFs due to an imperfect optical system often compromise the localization precision; and it is laborious to optimize a multi-purpose optical system. Here we present a methodology that is independent of obtaining a perfect PSF and enhances the localization precision along the z-axis. -
List of Abbreviations STEM Scanning Transmission Electron Microscopy
List of Abbreviations STEM Scanning Transmission Electron Microscopy PSF Point Spread Function HAADF High-Angle Annular Dark-Field Z-Contrast Atomic Number-Contrast ICM Iterative Constrained Methods RL Richardson-Lucy BD Blind Deconvolution ML Maximum Likelihood MBD Multichannel Blind Deconvolution SA Simulated Annealing SEM Scanning Electron Microscopy TEM Transmission Electron Microscopy MI Mutual Information PRF Point Response Function Registration and 3D Deconvolution of STEM Data M. MERCIMEK*, A. F. KOSCHAN*, A. Y. BORISEVICH‡, A.R. LUPINI‡, M. A. ABIDI*, & S. J. PENNYCOOK‡. *IRIS Laboratory, Electrical Engineering and Computer Science, The University of Tennessee, 1508 Middle Dr, Knoxville, TN 37996 ‡Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 Key words. 3D deconvolution, Depth sectioning, Electron microscope, 3D Reconstruction. Summary A common characteristic of many practical modalities is that imaging process distorts the signals or scene of interest. The principal data is veiled by noise and less important signals. We split the 3D enhancement process into two separate stages; deconvolution in general is referring to the improvement of fidelity in electronic signals through reversing the convolution process, and registration aims to overcome significant misalignment of the same structures in lateral planes along focal axis. The dataset acquired with VG HB603U STEM operated at 300 kV, producing a beam with a diameter of 0.6 A˚ equipped with a Nion aberration corrector has been studied. The initial experiments described how aberration corrected Z- Contrast Imaging in STEM can be combined with the enhancement process towards better visualization with a depth resolution of a few nanometers. I. INTRODUCTION 3D characterization of both biological samples and non-biological materials provides us nano-scale resolution in three dimensions permitting the study of complex relationships between structure and existing functions. -
Sequences Systems Convolution Dirac's Delta Function Fourier
Sequences Dirac’s Delta Function ( 1 0 x 6= 0 fxngn=−∞ is a discrete sequence. δ(x) = , R 1 δ(x)dx = 1 1 x = 0 −∞ Can derive a sequence from a function x(t) by having xn = n R 1 x(tsn) = x( ). Sampling: f(x)δ(x − a)dx = f(a) fs −∞ P1 P1 Absolute summability: n=−∞ jxnj < 1 Dirac comb: s(t) = ts n=−∞ δ(t − tsn), x^(t) = x(t)s(t) P1 2 Square summability: n=−∞ jxnj < 1 (aka energy signal) Periodic: 9k > 0 : 8n 2 Z : xn = xn+k Fourier Transform ( 0 n < 0 j!n un = is the unit-step sequence Discrete Sejong’s of the form xn = e are eigensequences with 1 n ≥ 0 respect to a system T because for any !, there is some H(!) ( such that T fxng = H(!)fxng 1 n = 0 1 δn = is the impulse sequence Ffg(t)g(!) = G(!) = R g(t)e∓j!tdt 0 n 6= 0 −∞ −1 R 1 ±j!t F fG(!)g(t) = g(t) = −∞ G(!)e dt Systems Linearity: ax(t) + by(t) aX(f) + bY (f) 1 f Time scaling: x(at) jaj X( a ) 1 t A discrete system T transforms a sequence: fyng = T fxng. Frequency scaling: jaj x( a ) X(af) −2πjf∆t Causal systems cannot look into the future: yn = Time shifting: x(t − ∆t) X(f)e f(xn; xn−1; xn−2;:::) 2πj∆ft Frequency shifting: x(t)e X(f − ∆f) Memoryless systems depend only on the current input: yn = R 1 2 R 1 2 Parseval’s theorem: 1 jx(t)j dt = −∞ jX(f)j df f(xn) Continuous convolution: Ff(f ∗ g)(t)g = Fff(t)gFfg(t)g Delay systems shift sequences in time: yn = xn−d Discrete convolution: fxng ∗ fyng = fzng () A system T is time invariant if for all d: fyng = T fxng () X(ej!)Y (ej!) = Z(ej!) fyn−dg = T fxn−dg 0 A system T is linear if for any sequences: T faxn + bxng = 0 Sample Transforms aT fxng + bT fxng Causal linear time-invariant systems are of the form The Fourier transform preserves function even/oddness but flips PN PM real/imaginaryness iff x(t) is odd. -
The Role of the Wigner Distribution Function in Iterative Ptychography T B Edo1
The role of the Wigner distribution function in iterative ptychography T B Edo1 1 Department of Physics and Astronomy, University of Sheffield, S3 7RH, United Kingdom E-mail: [email protected] Ptychography employs a set of diffraction patterns that capture redundant information about an illuminated specimen as a localized beam is moved over the specimen. The robustness of this method comes from the redundancy of the dataset that in turn depends on the amount of oversampling and the form of the illumination. Although the role of oversampling in ptychography is fairly well understood, the same cannot be said of the illumination structure. This paper provides a vector space model of ptychography that accounts for the illumination structure in a way that highlights the role of the Wigner distribution function in iterative ptychography. Keywords: ptychography; iterative phase retrieval; coherent diffractive imaging. 1. Introduction Iterative phase retrieval (IPR) algorithms provide a very efficient way to recover the specimen function from a set of diffraction patterns in ptychography. The on-going developments behind the execution of these algorithms are pushing the boundaries of the method by extracting more information from the diffraction patterns than was earlier thought possible when iterative ptychography was first proposed [1]. Amongst these are: simultaneous recovery of the illumination (or probe) alongside the specimen [2, 3, 4], super resolved specimen recovery [5, 6], probe position correction [2, 7, 8, 9], three-dimensional specimen recovery [10, 11, 23], ptychography using under sampled diffraction patterns [12, 13, 14] and the use of partial coherent source in diffractive imaging experiments [15, 16, 17, 18]. -
Kernel Deconvolution Density Estimation Guillermo Basulto-Elias Iowa State University
Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2016 Kernel deconvolution density estimation Guillermo Basulto-Elias Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Statistics and Probability Commons Recommended Citation Basulto-Elias, Guillermo, "Kernel deconvolution density estimation" (2016). Graduate Theses and Dissertations. 15874. https://lib.dr.iastate.edu/etd/15874 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Kernel deconvolution density estimation by Guillermo Basulto-Elias A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Statistics Program of Study Committee: Alicia L. Carriquiry, Co-major Professor Kris De Brabanter, Co-major Professor Daniel J. Nordman, Co-major Professor Kenneth J. Koehler Yehua Li Lily Wang Iowa State University Ames, Iowa 2016 Copyright c Guillermo Basulto-Elias, 2016. All rights reserved. ii DEDICATION To Mart´ın.I could not have done without your love and support. iii TABLE OF CONTENTS LIST OF TABLES . vi LIST OF FIGURES . vii ACKNOWLEDGEMENTS . xi CHAPTER 1. INTRODUCTION . 1 CHAPTER 2. A NUMERICAL INVESTIGATION OF BIVARIATE KER- NEL DECONVOLUTION WITH PANEL DATA . 4 Abstract . .4 2.1 Introduction . .4 2.2 Problem description . .7 2.2.1 A simplified estimation framework . .7 2.2.2 Kernel deconvolution estimation with panel data .