Cane Toad Risk Assessment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland
Herpetological Conservation and Biology 11:408–425. Submitted: 26 January 2016; Accepted: 2 September 2016; Published: 16 December 2016. Amphibian Abundance and Detection Trends During a Large Flood in a Semi-Arid Floodplain Wetland Joanne F. Ocock1,4, Richard T. Kingsford1, Trent D. Penman2, and Jodi J.L. Rowley1,3 1Centre for Ecosystem Science, School of Biological, Earth and Environmental Sciences, UNSW Australia, Sydney, New South Wales, 2052, Australia 2Centre for Environmental Risk Management of Bushfires, Institute of Conservation Biology and Environmental Management, University of Wollongong, Wollongong, New South Wales 2522, Australia 3Australian Museum Research Institute, Australian Museum, 6 College St, Sydney, New South Wales 2010, Australia 4Corresponding author, email: [email protected] Abstract.—Amphibian abundance and occupancy are often reduced in regulated river systems near dams, but com- paratively little is known about how they are affected on floodplain wetlands downstream or the effects of actively managed flows. We assessed frog diversity in the Macquarie Marshes, a semi-arid floodplain wetland of conserva- tion significance, identifying environmental variables that might explain abundances and detection of species. We collected relative abundance data of 15 amphibian species at 30 sites over four months, coinciding with a large natural flood. We observed an average of 39.9 ± (SE) 4.3 (range, 0-246) individuals per site survey, over 47 survey nights. Three non-burrowing, ground-dwelling species were most abundant at temporarily flooded sites with low- growing aquatic vegetation (e.g., Limnodynastes tasmaniensis, Limnodynastes fletcheri, Crinia parinsignifera). Most arboreal species (e.g., Litoria caerulea) were more abundant in wooded habitat, regardless of water permanency. -
Threat Abatement Plan
gus resulting in ch fun ytridio trid myc chy osis ith w s n ia ib h p m a f o n o i t THREAT ABATEMENTc PLAN e f n I THREAT ABATEMENT PLAN INFECTION OF AMPHIBIANS WITH CHYTRID FUNGUS RESULTING IN CHYTRIDIOMYCOSIS Department of the Environment and Heritage © Commonwealth of Australia 2006 ISBN 0 642 55029 8 Published 2006 This work is copyright. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior written permission from the Commonwealth, available from the Department of the Environment and Heritage. Requests and inquiries concerning reproduction and rights should be addressed to: Assistant Secretary Natural Resource Management Policy Branch Department of the Environment and Heritage PO Box 787 CANBERRA ACT 2601 This publication is available on the Internet at: www.deh.gov.au/biodiversity/threatened/publications/tap/chytrid/ For additional hard copies, please contact the Department of the Environment and Heritage, Community Information Unit on 1800 803 772. Front cover photo: Litoria genimaculata (Green-eyed tree frog) Sequential page photo: Taudactylus eungellensis (Eungella day frog) Banner photo on chapter pages: Close up of the skin of Litoria genimaculata (Green-eyed tree frog) ii Foreword ‘Infection of amphibians with chytrid fungus resulting Under the EPBC Act the Australian Government in chytridiomycosis’ was listed in July 2002 as a key implements the plan in Commonwealth areas and seeks threatening process under the Environment Protection the cooperation of the states and territories where the and Biodiversity Conservation Act 1999 (EPBC Act). disease impacts within their jurisdictions. -
Neurotoxic Effects of Venoms from Seven Species of Australasian Black Snakes (Pseudechis): Efficacy of Black and Tiger Snake Antivenoms
Clinical and Experimental Pharmacology and Physiology (2005) 32, 7–12 NEUROTOXIC EFFECTS OF VENOMS FROM SEVEN SPECIES OF AUSTRALASIAN BLACK SNAKES (PSEUDECHIS): EFFICACY OF BLACK AND TIGER SNAKE ANTIVENOMS Sharmaine Ramasamy,* Bryan G Fry† and Wayne C Hodgson* *Monash Venom Group, Department of Pharmacology, Monash University, Clayton and †Australian Venom Research Unit, Department of Pharmacology, University of Melbourne, Parkville, Victoria, Australia SUMMARY the sole clad of venomous snakes capable of inflicting bites of medical importance in the region.1–3 The Pseudechis genus (black 1. Pseudechis species (black snakes) are among the most snakes) is one of the most widespread, occupying temperate, widespread venomous snakes in Australia. Despite this, very desert and tropical habitats and ranging in size from 1 to 3 m. little is known about the potency of their venoms or the efficacy Pseudechis australis is one of the largest venomous snakes found of the antivenoms used to treat systemic envenomation by these in Australia and is responsible for the vast majority of black snake snakes. The present study investigated the in vitro neurotoxicity envenomations. As such, the venom of P. australis has been the of venoms from seven Australasian Pseudechis species and most extensively studied and is used in the production of black determined the efficacy of black and tiger snake antivenoms snake antivenom. It has been documented that a number of other against this activity. Pseudechis from the Australasian region can cause lethal 2. All venoms (10 g/mL) significantly inhibited indirect envenomation.4 twitches of the chick biventer cervicis nerve–muscle prepar- The envenomation syndrome produced by Pseudechis species ation and responses to exogenous acetylcholine (ACh; varies across the genus and is difficult to characterize because the 1 mmol/L), but not to KCl (40 mmol/L), indicating activity at offending snake is often not identified.3,5 However, symptoms of post-synaptic nicotinic receptors on the skeletal muscle. -
Distribution of Bufotes Latastii (Boulenger, 1882), Endemic to the Western Himalaya
Alytes, 2018, 36 (1–4): 314–327. Distribution of Bufotes latastii (Boulenger, 1882), endemic to the Western Himalaya 1* 1 2,3 4 Spartak N. LITVINCHUK , Dmitriy V. SKORINOV , Glib O. MAZEPA & LeO J. BORKIN 1Institute Of Cytology, Russian Academy Of Sciences, Tikhoretsky pr. 4, St. Petersburg 194064, Russia. 2Department of Ecology and EvolutiOn, University of LauSanne, BiOphOre Building, 1015 Lausanne, Switzerland. 3 Department Of EvOlutiOnary BiOlOgy, EvOlutiOnary BiOlOgy Centre (EBC), Uppsala University, Uppsala, Sweden. 4ZoOlOgical Institute, Russian Academy Of Sciences, Universitetskaya nab. 1, St. PeterSburg 199034, Russia. * CorreSpOnding author <[email protected]>. The distribution of Bufotes latastii, a diploid green toad species, is analyzed based on field observations and literature data. 74 localities are known, although 7 ones should be confirmed. The range of B. latastii is confined to northern Pakistan, Kashmir Valley and western Ladakh in India. All records of “green toads” (“Bufo viridis”) beyond this region belong to other species, both to green toads of the genus Bufotes or to toads of the genus Duttaphrynus. B. latastii is endemic to the Western Himalaya. Its allopatric range lies between those of bisexual triploid green toads in the west and in the east. B. latastii was found at altitudes from 780 to 3200 m above sea level. Environmental niche modelling was applied to predict the potential distribution range of the species. Altitude was the variable with the highest percent contribution for the explanation of the species distribution (36 %). urn:lSid:zOobank.Org:pub:0C76EE11-5D11-4FAB-9FA9-918959833BA5 INTRODUCTION Bufotes latastii (fig. 1) iS a relatively cOmmOn green toad species which spreads in KaShmir Valley, Ladakh and adjacent regiOnS Of nOrthern India and PakiStan. -
Why Do Most Tropical Animals Reproduce Seasonally? Testing Hypotheses on an Australian Snake
Ecology, 87(1), 2006, pp. 133±143 q 2006 by the Ecological Society of America WHY DO MOST TROPICAL ANIMALS REPRODUCE SEASONALLY? TESTING HYPOTHESES ON AN AUSTRALIAN SNAKE G. P. BROWN AND R. SHINE1 Biological Sciences A08, University of Sydney, New South Wales 2006 Australia Abstract. Most species reproduce seasonally, even in the tropics where activity occurs year-round. Squamate reptiles provide ideal model organisms to clarify the ultimate (adap- tive) reasons for the restriction of reproduction to speci®c times of year. Females of almost all temperate-zone reptile species produce their eggs or offspring in the warmest time of the year, thereby synchronizing embryogenesis with high ambient temperatures. However, although tropical reptiles are freed from this thermal constraint, most do not reproduce year-round. Seasonal reproduction in tropical reptiles might be driven by biotic factors (e.g., peak periods of predation on eggs or hatchlings, or food for hatchlings) or abiotic factors (e.g., seasonal availability of suitably moist incubation conditions). Keelback snakes (Tropidonophis mairii, Colubridae) in tropical Australia reproduce from April to November, but with a major peak in May±June. Our ®eld studies falsify hypotheses that invoke biotic factors as explanations for this pattern: the timing of nesting does not minimize predation on eggs, nor maximize food availability or survival rates for hatchlings. Instead, our data implicate abiotic factors: female keelbacks nest most intensely soon after the cessation of monsoonal rains when soils are moist enough to sustain optimal embryogenesis (wetter nests produce larger hatchlings, that are more likely to survive) but are unlikely to become waterlogged (which is lethal to eggs). -
Animals from the Outback ANIMALS from the OUTBACK Introduction
Animals From The Outback ANIMALS FROM THE OUTBACK Introduction • Australia is a big country with many different animal habitats. Australia’s deserts, rainforests, reefs, swamps, bushlands and mountains provide homes for many different types of animals. • Many of Australia’s animals are ‘endemic’ to the country. This means that they are only found in Australia, and nowhere else on Earth. • The main reason is because Australia is surrounded by sea, and isolated from the rest of the world. Many Australian animals have evolved on their own, and haven’t been able to spread to other countries or continents. Bandicoot Bandicoot • Bandicoots are marsupials that are endemic to Australia and New Guinea. (As we saw above, if an animal is ‘endemic’ to an area, then it isn’t found anywhere else.) • There are over 20 species of bandicoot – most are rabbit-sized, and all have long legs, thin tails and pointed noses. Bandicoots are omnivores that forage for food in their bushland habitat. Black Swan Black Swan • Black swans are elegant birds with black feathers and bright red bills. Black swans inhabit wetlands across Australia. They eat plants and algae, and use their long necks to find food. Cane Toad Cane Toad • Many Australians would rather the cane toad was not on a list of Australian animals! Cane toads secrete poison from behind their ears as a defense against predators. • The cane toad is an invasive species in Australia and has spread rapidly across the country since its introduction in the 1940s. Cane toads are a threat to many native Australian animals, who fall ill after eating the toads. -
Protecting Threatened Quolls and Other Biodiversity on Kimberley Islands from Cane Toads
Protecting threatened quolls and other biodiversity on Kimberley islands from cane toads Project Summary Project 4.2.5 Kimberley islands. Photo: Mark Cowan Research in Brief Why is the research impacts when they reach islands and in relatively short time periods. This research will use existing needed? In combination, these factors mean data to predict future invasion Cane toads (Rhinella marina) have that keeping cane toads off currently by cane toads of Australian caused extensive declines and local uninvaded Australian islands is a high islands, particularly the Kimberley extinctions of many species on priority for conservation managers. islands. This information is mainland Australia. Both aquatic and important for prioritizing The endangered Northern Quoll terrestrial species that eat frogs or (Dasyurus hallucatus) was once surveillance action on these toads are highly at risk. islands in order to conserve widespread across Northern Australia toad-sensitive species such as Australia’s islands are important but many local declines have been the endangered Northern Quoll. conservation refuges which are rich observed following the invasion of in unique endemic species. Islands cane toads. Northern Quolls occur that are free from invasive species, on several islands across the northern particularly feral animals, have also Australian coast. Many islands in enabled some species to persist that Queensland and the Northern have become extinct on the mainland. Territory have already been invaded The value of islands as refuges from by cane toads. The more than invasive species has led conservation 2,500 islands off Western Australia’s managers to use them as arks to Kimberley coast are thought to be host insurance populations of highly cane toad free, although cane toads vulnerable mainland species. -
Cane Toads on Sanibel and Captiva
April 2020 SCCF Member Update Cane Toads on Sanibel and Captiva By Chris Lechowicz, Herpetologist and Wildlife & Habitat Management Director It is that time of year again when it is slowly starting to warm up and any out-of-season rainstorms can trigger Parotoid gland amphibian breeding. On Sanibel, this is limited to frogs and toads as we do not have any salamander species on the island. Besides the southern leopard frog (Lithobates sphenocephalus) which is our sole true winter breeder, the southern toad (Anaxyrus terrrestris) and the giant toad aka cane toad (Rhinella marina) are the usual suspects for late winter/early spring breeding, especially after a heavy rain. The southern toad is native and too often confused for the invasive exotic giant toad — the cane toad — in our area. Giant toads go by several local names, depending on where you are located. In Florida, the most common The first cane toad (Rhinella marina) documented on Sanibel names are cane toad, faux toad, or Bufo toad. Outside right before it was captured while attempting to breed. Female Florida, many people call them marine toads. The local cane toads can lay up to 35,000 eggs at a time (average 8,000 name “Bufo toad” comes from the former scientific name - 25,000). Inset: Cane toad eggs are laid in long strings that (Bufo marinus). In 2008, the cane toad was split off into resemble black beads. These were collected the night they were a new group of South American beaked toads (Rhinella). first documented by SCCF on July 17, 2013. -
Maternal Nest-Site Choice and Offspring Fitness in a Tropical Snake (Tropidonophis Mairii, Colubridae)
Ecology, 85(6), 2004, pp. 1627±1634 q 2004 by the Ecological Society of America MATERNAL NEST-SITE CHOICE AND OFFSPRING FITNESS IN A TROPICAL SNAKE (TROPIDONOPHIS MAIRII, COLUBRIDAE) G. P. BROWN AND R. SHINE1 Biological Sciences A08, University of Sydney, NSW 2006 Australia Abstract. Do reproducing female reptiles adaptively manipulate phenotypic traits of their offspring by selecting appropriate nest sites? Evidence to support this hypothesis is indirect, mostly involving the distinctive characteristics of used (vs. available) nest sites, and the fact that physical conditions during egg incubation can modify hatchling phenotypic traits that plausibly might in¯uence ®tness. Such data fall well short of demonstrating that nesting females actively select from among potential sites based on cues that predict ®tness- determining phenotypic modi®cations of their offspring. We provide such data from ex- perimental studies on a small oviparous snake (the keelback, Tropidonophis mairii) from the wet-dry tropics of Australia. When presented with a choice of alternative nesting sites, egg-laying females selected more moist substrates for egg deposition. Incubation on wetter substrates signi®cantly increased body size at hatching, a trait under strong positive selection in this population (based on mark±recapture studies of free-ranging hatchlings). Remark- ably, the hydric conditions experienced by an egg in the ®rst few hours after it was laid substantially affected phenotypic traits (notably, muscular strength) of the hatchling that emerged from that egg 10 weeks later. Thus, our data provide empirical support for the hypothesis that nesting female reptiles manipulate the phenotypic traits of their offspring through nest-site selection, in ways that enhance offspring ®tness. -
Bufo Marinus (Amphibian)
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Wildlife Damage Management, Internet Center Other Publications in Wildlife Management for June 2006 Bufo marinus (amphibian) Follow this and additional works at: https://digitalcommons.unl.edu/icwdmother Part of the Environmental Sciences Commons "Bufo marinus (amphibian)" (2006). Other Publications in Wildlife Management. 31. https://digitalcommons.unl.edu/icwdmother/31 This Article is brought to you for free and open access by the Wildlife Damage Management, Internet Center for at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Other Publications in Wildlife Management by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. issg Database: Ecology of Bufo marinus http://www.issg.org/database/species/ecology.asp?si=113&fr=1&sts= all 6 all 6 Bufo marinus (amphibian) Management References Ecology Distribution Impacts Contacts Info and Links Taxonomic name: Bufo marinus (Linnaeus, 1758) Synonyms: Bufo agua Clark 1916, Bufo marinis [sic] Barbour 1916, Bufo marinus marinus Mertens 1972, Bufo marinus Mertens 1969, Bufo marinus Schneider 1799, Bufo strumosus Court 1858 Common names: Aga-Kröte (German), bufo toad, bullfrog, cane toad (English), crapaud (Caribbean), giant American toad (English), giant toad (English), kwapp (Caribbean), macao (Dominican Republic), maco pempen (Dominican Republic), Maco toro (Dominican Republic), marine Toad, Suriname toad Organism type: amphibian The cane toad, Bufo marinus was introduced throughout the world as a biological control for various insect pests of sugarcane and other crops. It has become a pest in its introduced range. It will feed on any organism available. It preys on and competes with native amphibians for food and breeding habitat. -
American Toad (Anaxyrus Americanus) Fowler's Toad (Anaxyrus Fowleri
Vermont has eleven known breeding species of frogs. Their exact distributions are still being determined. In order for these species to survive and flourish, they need our help. One way you can help is to report the frogs that you come across in the state. Include in your report as much detail as you can on the appearance and location of the animal; also include the date of the sighting, your name, and how to contact you. Photographs are ideal, but not necessary. When attempting to identify a particular species, check at least three different field markings so that you can be sure of what it is. To contribute a report, you may use our website (www.vtherpatlas.org) or contact Jim Andrews directly at [email protected]. American Bullfrog (Lithobates catesbeianus) American Toad (Anaxyrus americanus) The American Bullfrog is our largest frog and can reach 7 inches long. The Bullfrog is one of the three The American Toad is one of Vermont’s two toad species. Toads can be distinguished from other green-faced frogs in Vermont. It has a green and brown mottled body with dark stripes across its legs. frogs in Vermont by their dry and bumpy skin, and the long oval parotoid glands on each side of their The Bullfrog does not have dorsolateral ridges, but it does have a ridge that starts at the eye and goes necks. The American Toad has at least one large wart in each of the large black spots found along its around the eardrum (tympana) and down. The Bullfrog’s call is a deep low jum-a-rum. -
This Article Appeared in a Journal Published by Elsevier. the Attached
(This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Toxicon 60 (2012) 967–981 Contents lists available at SciVerse ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon Antimicrobial peptides and alytesin are co-secreted from the venom of the Midwife toad, Alytes maurus (Alytidae, Anura): Implications for the evolution of frog skin defensive secretions Enrico König a,*, Mei Zhou b, Lei Wang b, Tianbao Chen b, Olaf R.P. Bininda-Emonds a, Chris Shaw b a AG Systematik und Evolutionsbiologie, IBU – Fakultät V, Carl von Ossietzky Universität Oldenburg, Carl von Ossietzky Strasse 9-11, 26129 Oldenburg, Germany b Natural Drug Discovery Group, School of Pharmacy, Medical Biology Center, Queen’s University, 97 Lisburn Road, Belfast BT9 7BL, Northern Ireland, UK article info abstract Article history: The skin secretions of frogs and toads (Anura) have long been a known source of a vast Received 23 March 2012 abundance of bioactive substances.