PHY323:Lecture 6 Observational Evidence for Dark Matter from Galaxy Clusters

Total Page:16

File Type:pdf, Size:1020Kb

PHY323:Lecture 6 Observational Evidence for Dark Matter from Galaxy Clusters PHY323:Lecture 6 Observational Evidence for Dark Matter from Galaxy Clusters •Conclusion on galaxy halos and in-fall •Galaxy clusters •The Virial theorum •Super-clusters and beyond Experimental Evidence for Dark Matter IV How to Contact Me PHY 323 Neil Spooner n.spooner@sheffield.ac.uk office: E23 , extension 2-4422 Lecture PDFs http://www.shef.ac.uk/physics/teaching/phy323/index.html MOND - Modifying Newton’s Laws Applying the modified form of Newton’s second law to the gravitational force acting on a star outside of a galaxy of mass M leads us to GMm μ = a/a0 F = = maµ r2 which in the low acceleration limit (large r, a ≪ a0) yields GMa a = 0 € r Equating this with the centrifugal acceleration associated with a circular orbit, we arrive at a0 ~ 1.2 x 10-10 m s-2 € GMa v 2 note error in 0 = ⇒ v = (GMa )1/ 4 r r 0 last lecture € Worked Example Prove that under Newtons law this concept of combining masses in N-body simulations is alright. First consider a particle of mass 4M, what is the acceleration of a test mass at distance r? 4M test mass G(4M) 4GM a = = r r2 r2 now repeat for this scenario..and dr 2dr compare the result (use x ≡ << 1 ) € r M M test mass M r € ANS: given in lecture. M Notes How does Barnes Hut Work? Start by bisecting the simulation volume along all axes. Subdivide again each cell that contains more than 1 particle. Repeat subdivision until you have one or zero particles in the each ‘leaf’ - smallest subdivision of the volume. There are about Nlog2N smallest blocks. For each block, calculate the mass and the position of the centre of mass. This is about Nlog2N steps. How does Barnes Hut Work? For each particle, Descend the tree of ever smaller blocks, starting with the big blocks that may contain more than one subblocks and more than 1 particle. Compute the ratio: distance from ‘red’ particle to centre of mass of block distance from center of mass of block to block edge. If this ratio exceeds some pre-set parameter, the block is treated as a single particle with its total mass at the centre of mass. Tree descendency is an Nlog2N process, so everything is of order Nlog2N. Repeat for each particle, still overall Nlog2N NlogN CPU time 9 9 9 10 9 2 For instance for 10 points, 10 log2(10 ) is 3.10 c.f. (10 ) This would typically be 3.1013 floating point operations. On a current supercomputer about 3 seconds (c.f. 3.2 years!). 3 billion particle N body simulation final state. e.g. 50MPc on a side, that means 34 kpc elements BUT - structure is seen on all scales - worrying for ‘smooth’ models of DM www-hpcc.astro.washington.edu/ picture Summary of N-body Predictions Here are some predictions made by many N-body simulations of dark matter halos: (1) Halos form from the ‘bottom up’. The first structure seen is on the smallest distance scales, then small clusters, sometimes called ‘subhalos’ merge to form larger structures. (2) Any ‘smooth background’ results from tidal stripping of subhalos. Thus N-body simulations typically predict a lower density of smoothly distributed matter (Moore, 0.18-0.3GeV/cc) (3) The velocity dispersion of the matter in the simulated halos is not that of a Maxwell gas. Typical predictions are that trajectories of particles tend to be radially biased. (4) Most particles are attached to subhalos, and hence the velocity dispersion here at Earth depends on the subhalos in our vicinity. Summary of N-body Predictions early stage example showing remnants of merging of sub-halo structures Warnings about the Predictions of N- Body Simulations for Halo Dark Matter It is not obvious that the mechanisms giving rise to large structures in these simulations are correct! For example: (1) The simulations themselves suggest that the first signs of structure are at the smallest distance scales, with ‘fractal’, self similar structure formation at ever smaller distance scales. Do N body simulations correctly model formation of structure at small distance scales? (2) There is still not agreement within the simulation community about the correct way to apply boundary conditions at the edges of the mass distribution. (3) The simulations tend to predict very high dark matter densities at the centres of galaxies, which appears to contradict data from, for example, rotation curves. Clumping - the Nemesis of Halo Dark Matter Experiments Is there any scale on which the dark matter distribution is smooth? N-body simulations exhibit matter concentrations at all scales, seemingly limited only by the number of particles in the simulation. Could actual dark matter halos be like this? If so, it might be bad for dark matter search experiments. If there is dark matter clumping at the scale of our solar system, for example, Earth might be in a dark matter void, in which case Earth-based direct dark matter searches would be a challenge. Many in the field feel the ‘fractal structure’ scenario is likely, however the degree of “clumpiness” in a typical halo looks on average to be 10-20%. Notes What do dark matter halos look like in practice and why? Dark Matter in Clusters of Galaxies So far, we have considered evidence for dark matter in individual galaxies. There are two categories of evidence 1. Dynamics within our own galaxy. Data available first, but problems with reliability of results. 2. Dynamics of other galaxies. More reliable data, gathered more recently using new experimental technologies. Now we will consider evidence for dark matter in the spaces between the galaxies of galaxy clusters. Again, there are two classes of evidence. 1. Dynamics within our own local group of galaxies. Again, data is older, but the measurements were very difficult. 2. Data from other galaxy clusters, gathered using a new technology - GRAVITATIONAL LENSING Dark Matter in Clusters of Galaxies The members of a cluster of galaxies move because of their mutual gravitational attraction In most cases the velocity of the cluster galaxies is much higher than can be accounted for from the individual galaxy masses The result is there must be an unseen core of dark matter attracting the galaxies with more gravity and therefore more velocity Basis of the Virial theorem In mechanics the Virial theorem gives a general equation relating the average total kinetic energy of a stable system over time T , bound by potential forces, with that of the total potential energy Vtot N 2 T = "$ Fk # rk k=1 ! where Fk represents the force on the kth particle, which is located ! at position rk If the force between any two particles of the system results from a ! n potential energy V(r) = ar proportional to some power n of the inter-particle distance r, the virial theorem adopts a simple form 2 T = n V 2 T V ! tot = " GPE for gravity of course n = -1 ! ! Basis of the Virial theorem In any system of bodies what determines if it growing or shrinking is the balance between gravitational attraction and the motions of the bodies. If its to be in a steady state (i.e. the time taken for an object to move across is much less than the lifetime of the assembly) then the speed of objects must be comparable to the escape velocity. If it is much greater then the system will fly apart, if less then it will collapse. The criteria is that the kinetic energy be equal in magnitude to the gravitation potential (binding) energy. 2 T = " VGPE ! Basis of the Virial theorem So the Virial theorem for a system of bodies in a gravitationally bound system postulates a simple relationship between the average kinetic energy and and average gravitational potential energy of the bodies, e.g. a cluster related to the motion of depends on the mass of the the bodies whole system Assumptions in calculations: (1) system must be equilibrium or the method fails (2) the measurements span a representative sample of bodies (3) all bodies are the same mass (or use a fudge) (4) the velocity distribution is isotropic 2 T = " VGPE hence applying Virial to galaxy clusters is not exact... ! Virial Theorem for Gravity - Galaxy Cluster e.g. if individual galaxies in the cluster have a velocity v and the total cluster mass is M then: T = 1/2M<v2> For a spherical system of radius R the gravitational energy is: VGPE = -αGM2/R where α depends on how the mass is distributed but is typically 1/2-2 from Virial theorem 2T = -VGPE thus we get the mass of a cluster is: M = <v2>R/αG and can be found by measuring v and R We can find the “luminous mass” and obtain the mass to light ratio M/L Notes Write out the simple derivation of the Virial theorem as applied to a cluster of galaxies... Worked Example Calculate the Mass to Light ratio for the Coma cluster using the Virial theorem Worked Example - what Fritz Zwicky did These individual measurements can also be used to determine the mass of the cluster by using the virial theorem : mean mean gravitational potential kenetic energy of a bound system in energy equilibrium mean 1 1 2 kinetic T = " VGPE T = M v energy 2 2 2 2 " VGPE = 2 T = # Mivi = # Mi vi i i ! where vi is the velocity of an !individual galaxy of the cluster of mass Mi 2 T = " VGPE ! ! Worked Example - what Fritz Zwicky did Zwicky then assumed the galaxies are evenly distributed within a sphere of radius R, and calculates the gravitational potential as gravitational constant total mass of the cluster 3GM V = " GPE 5R Zwicky’s value for R was 2 x 106 light years (613 kpc) indicates simplify previous equation: M v 2 = M v 2 the average " i i taken over ! i both time and mass 5R v 2 thus the total mass of the cluster M = ! 3G This equation now only depends on the velocities of each galaxy ! Worked Example - what Fritz Zwicky did The values he measured were along the line of sight, not the radial velocities, but by assuming spherical symmetry he used the relation measured line of sight velocity Zwicky’s value for v = 236 km / s (changed from printed notes) sum done in lecture...
Recommended publications
  • Dark Matter 1 Introduction 2 Evidence of Dark Matter
    Proceedings Astronomy from 4 perspectives 1. Cosmology Dark matter Marlene G¨otz (Jena) Dark matter is a hypothetical form of matter. It has to be postulated to describe phenomenons, which could not be explained by known forms of matter. It has to be assumed that the largest part of dark matter is made out of heavy, slow moving, electric and color uncharged, weakly interacting particles. Such a particle does not exist within the standard model of particle physics. Dark matter makes up 25 % of the energy density of the universe. The true nature of dark matter is still unknown. 1 Introduction Due to the cosmic background radiation the matter budget of the universe can be divided into a pie chart. Only 5% of the energy density of the universe is made of baryonic matter, which means stars and planets. Visible matter makes up only 0,5 %. The influence of dark matter of 26,8 % is much larger. The largest part of about 70% is made of dark energy. Figure 1: The universe in a pie chart [1] But this knowledge was obtained not too long ago. At the beginning of the 20th century the distribution of luminous matter in the universe was assumed to correspond precisely to the universal mass distribution. In the 1920s the Caltech professor Fritz Zwicky observed something different by looking at the neighbouring Coma Cluster of galaxies. When he measured what the motions were within the cluster, he got an estimate for how much mass there was. Then he compared it to how much mass he could actually see by looking at the galaxies.
    [Show full text]
  • S Chandrasekhar: His Life and Science
    REFLECTIONS S Chandrasekhar: His Life and Science Virendra Singh 1. Introduction Subramanyan Chandrasekhar (or `Chandra' as he was generally known) was born at Lahore, the capital of the Punjab Province, in undivided India (and now in Pakistan) on 19th October, 1910. He was a nephew of Sir C V Raman, who was the ¯rst Asian to get a science Nobel Prize in Physics in 1930. Chandra also went on to win the Nobel Prize in Physics in 1983 for his early work \theoretical studies of physical processes of importance to the structure and evolution of the stars". Chandra discovered that there is a maximum mass limit, now called `Chandrasekhar limit', for the white dwarf stars around 1.4 times the solar mass. This work was started during his sea voyage from Madras on his way to Cambridge (1930) and carried out to completion during his Cambridge period (1930{1937). This early work of Chandra had revolutionary consequences for the understanding of the evolution of stars which were not palatable to the leading astronomers, such as Eddington or Milne. As a result of controversy with Eddington, Chandra decided to shift base to Yerkes in 1937 and quit the ¯eld of stellar structure. Chandra's work in the US was in a di®erent mode than his initial work on white dwarf stars and other stellar-structure work, which was on the frontier of the ¯eld with Chandra as a discoverer. In the US, Chandra's work was in the mode of a `scholar' who systematically explores a given ¯eld. As Chandra has said: \There is a complementarity between a systematic way of working and being on the frontier.
    [Show full text]
  • Virial Theorem and Gravitational Equilibrium with a Cosmological Constant
    21 VIRIAL THEOREM AND GRAVITATIONAL EQUILIBRIUM WITH A COSMOLOGICAL CONSTANT Marek N owakowski, Juan Carlos Sanabria and Alejandro García Departamento de Física, Universidad de los Andes A. A. 4976, Bogotá, Colombia Starting from the Newtonian limit of Einstein's equations in the presence of a positive cosmological constant, we obtain a new version of the virial theorem and a condition for gravitational equi­ librium. Such a condition takes the form P > APvac, where P is the mean density of an astrophysical system (e.g. galaxy, galaxy cluster or supercluster), A is a quantity which depends only on the shape of the system, and Pvac is the vacuum density. We conclude that gravitational stability might be infiuenced by the presence of A depending strongly on the shape of the system. 1. Introd uction Around 1998 two teams (the Supernova Cosmology Project [1] and the High- Z Supernova Search Team [2]), by measuring distant type la Supernovae (SNla), obtained evidence of an accelerated ex­ panding universe. Such evidence brought back into physics Ein­ stein's "biggest blunder", namely, a positive cosmological constant A, which would be responsible for speeding-up the expansion of the universe. However, as will be explained in the text below, the A term is not only of cosmological relevance but can enter also the do­ main of astrophysics. Regarding the application of A in astrophysics we note that, due to the small values that A can assume, i s "repul­ sive" effect can only be appreciable at distances larger than about 22 1 Mpc. This is of importance if one considers the gravitational force between two bodies.
    [Show full text]
  • Scientometric Portrait of Nobel Laureate S. Chandrasekhar
    :, Scientometric Portrait of Nobel Laureate S. Chandrasekhar B.S. Kademani, V. L. Kalyane and A. B. Kademani S. ChandntS.ekhar, the well Imown Astrophysicist is wide!)' recognised as a ver:' successful Scientist. His publications \\'ere analysed by year"domain, collaboration pattern, d:lannels of commWtications used, keywords etc. The results indicate that the temporaJ ,'ari;.&-tjon of his productivit." and of the t."pes of papers p,ublished by him is of sudt a nature that he is eminent!)' qualified to be a role model for die y6J;mf;ergene-ration to emulate. By the end of 1990, he had to his credit 91 papers in StelJJlrSlructllre and Stellar atmosphere,f. 80 papers in Radiative transfer and negative ion of hydrogen, 71 papers in Stochastic, ,ftatisticql hydromagnetic problems in ph}'sics and a,ftrono"9., 11 papers in Pla.fma Physics, 43 papers in Hydromagnetic and ~}.droa:rnamic ,S"tabiJjty,42 papers in Tensor-virial theorem, 83 papers in Relativi,ftic a.ftrophy,fic.f, 61 papers in Malhematical theory. of Black hole,f and coUoiding waves, and 19 papers of genual interest. The higb~t Collaboration Coefficient \\'as 0.5 during 1983-87. Producti"it." coefficient ,,.as 0.46. The mean Synchronous self citation rate in his publications \\.as 24.44. Publication densi~. \\.as 7.37 and Publication concentration \\.as 4.34. Ke.}.word.f/De,fcriptors: Biobibliometrics; Scientometrics; Bibliome'trics; Collaboration; lndn.idual Scientist; Scientometric portrait; Sociolo~' of Science, Histor:. of St.-iencc. 1. Introduction his three undergraduate years at the Institute for Subrahmanvan Chandrasekhar ,,.as born in Theoretisk Fysik in Copenhagen.
    [Show full text]
  • Equipartition Theorem - Wikipedia 1 of 32
    Equipartition theorem - Wikipedia 1 of 32 Equipartition theorem In classical statistical mechanics, the equipartition theorem relates the temperature of a system to its average energies. The equipartition theorem is also known as the law of equipartition, equipartition of energy, or simply equipartition. The original idea of equipartition was that, in thermal equilibrium, energy is shared equally among all of its various forms; for example, the average kinetic energy per degree of freedom in translational motion of a molecule should equal that in rotational motion. The equipartition theorem makes quantitative Thermal motion of an α-helical predictions. Like the virial theorem, it gives the total peptide. The jittery motion is random average kinetic and potential energies for a system at a and complex, and the energy of any given temperature, from which the system's heat particular atom can fluctuate wildly. capacity can be computed. However, equipartition also Nevertheless, the equipartition theorem allows the average kinetic gives the average values of individual components of the energy of each atom to be energy, such as the kinetic energy of a particular particle computed, as well as the average or the potential energy of a single spring. For example, potential energies of many it predicts that every atom in a monatomic ideal gas has vibrational modes. The grey, red an average kinetic energy of (3/2)kBT in thermal and blue spheres represent atoms of carbon, oxygen and nitrogen, equilibrium, where kB is the Boltzmann constant and T respectively; the smaller white is the (thermodynamic) temperature. More generally, spheres represent atoms of equipartition can be applied to any classical system in hydrogen.
    [Show full text]
  • Astronomy Astrophysics
    A&A 470, 449–466 (2007) Astronomy DOI: 10.1051/0004-6361:20077443 & c ESO 2007 Astrophysics A CFH12k lensing survey of X-ray luminous galaxy clusters II. Weak lensing analysis and global correlations S. Bardeau1,2,G.Soucail1,J.-P.Kneib3,4, O. Czoske5,6,H.Ebeling7,P.Hudelot1,5,I.Smail8, and G. P. Smith4,9 1 Laboratoire d’Astrophysique de Toulouse-Tarbes, CNRS-UMR 5572 and Université Paul Sabatier Toulouse III, 14 avenue Belin, 31400 Toulouse, France e-mail: [email protected] 2 Laboratoire d’Astrodynamique, d’Astrophysique et d’Aéronomie de Bordeaux, CNRS-UMR 5804 and Université de Bordeaux I, 2 rue de l’Observatoire, BP 89, 33270 Floirac, France 3 Laboratoire d’Astrophysique de Marseille, OAMP, CNRS-UMR 6110, Traverse du Siphon, BP 8, 13376 Marseille Cedex 12, France 4 Department of Astronomy, California Institute of Technology, Mail Code 105-24, Pasadena, CA 91125, USA 5 Argelander-Institut für Astronomie, Universität Bonn, Auf dem Hügel 71, 53121 Bonn, Germany 6 Kapteyn Astronomical Institute, PO Box 800, 9700 AV Groningen, The Netherlands 7 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Dr, Honolulu, HI 96822, USA 8 Institute for Computational Cosmology, Department of Physics, Durham University, South Road, Durham DH1 3LE, UK 9 School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK Received 9 March 2007 / Accepted 9 May 2007 ABSTRACT Aims. We present a wide-field multi-color survey of a homogeneous sample of eleven clusters of galaxies for which we measure total masses and mass distributions from weak lensing.
    [Show full text]
  • Virial Theorem for a Molecule Approved
    VIRIAL THEOREM FOR A MOLECULE APPROVED: (A- /*/• Major Professor Minor Professor Chairman' lof the Physics Department Dean 6f the Graduate School Ranade, Manjula A., Virial Theorem For A Molecule. Master of Science (Physics), May, 1972, 120 pp., bibliog- raphy, 36 titles. The usual virial theorem, relating kinetic and potential energy, is extended to a molecule by the use of the true wave function. The virial theorem is also obtained for a molecule from a trial wave function which is scaled separately for electronic and nuclear coordinates. A transformation to the body fixed system is made to separate the center of mass motion exactly. The virial theorems are then obtained for the electronic and nuclear motions, using exact as well as trial electronic and nuclear wave functions. If only a single scaling parameter is used for the electronic and the nuclear coordinates, an extraneous term is obtained in the virial theorem for the electronic motion. This extra term is not present if the electronic and nuclear coordinates are scaled differently. Further, the relation- ship between the virial theorems for the electronic and nuclear motion to the virial theorem for the whole molecule is shown. In the nonstationary state the virial theorem relates the time average of the quantum mechanical average of the kinetic energy to the radius vector dotted into the force. VIRIAL THEOREM FOR A MOLECULE THESIS Presented to the Graduate Council of the North Texas State University in Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE By Manjula A. Ranade Denton, Texas May, 1972 TABLE OF CONTENTS Page I.
    [Show full text]
  • 8.901 Lecture Notes Astrophysics I, Spring 2019
    8.901 Lecture Notes Astrophysics I, Spring 2019 I.J.M. Crossfield (with S. Hughes and E. Mills)* MIT 6th February, 2019 – 15th May, 2019 Contents 1 Introduction to Astronomy and Astrophysics 6 2 The Two-Body Problem and Kepler’s Laws 10 3 The Two-Body Problem, Continued 14 4 Binary Systems 21 4.1 Empirical Facts about binaries................... 21 4.2 Parameterization of Binary Orbits................. 21 4.3 Binary Observations......................... 22 5 Gravitational Waves 25 5.1 Gravitational Radiation........................ 27 5.2 Practical Effects............................ 28 6 Radiation 30 6.1 Radiation from Space......................... 30 6.2 Conservation of Specific Intensity................. 33 6.3 Blackbody Radiation......................... 36 6.4 Radiation, Luminosity, and Temperature............. 37 7 Radiative Transfer 38 7.1 The Equation of Radiative Transfer................. 38 7.2 Solutions to the Radiative Transfer Equation........... 40 7.3 Kirchhoff’s Laws........................... 41 8 Stellar Classification, Spectra, and Some Thermodynamics 44 8.1 Classification.............................. 44 8.2 Thermodynamic Equilibrium.................... 46 8.3 Local Thermodynamic Equilibrium................ 47 8.4 Stellar Lines and Atomic Populations............... 48 *[email protected] 1 Contents 8.5 The Saha Equation.......................... 48 9 Stellar Atmospheres 54 9.1 The Plane-parallel Approximation................. 54 9.2 Gray Atmosphere........................... 56 9.3 The Eddington Approximation................... 59 9.4 Frequency-Dependent Quantities.................. 61 9.5 Opacities................................ 62 10 Timescales in Stellar Interiors 67 10.1 Photon collisions with matter.................... 67 10.2 Gravity and the free-fall timescale................. 68 10.3 The sound-crossing time....................... 71 10.4 Radiation transport.......................... 72 10.5 Thermal (Kelvin-Helmholtz) timescale............... 72 10.6 Nuclear timescale..........................
    [Show full text]
  • 1. Hydrostatic Equilibrium and Virial Theorem Textbook: 10.1, 2.4 § Assumed Known: 2.1–2.3 §
    1. Hydrostatic equilibrium and virial theorem Textbook: 10.1, 2.4 § Assumed known: 2.1–2.3 § Equation of motion in spherical symmetry d2r GM ρ dP ρ = r (1.1) dt2 − r2 − dr Hydrostatic equilibrium dP GM ρ = r (1.2) dr − r2 Mass conservation dM r =4πr2ρ (1.3) dr Virial Theorem 1 E = 2E or E = E (1.4) pot − kin tot 2 pot Derivation for gaseous spheres: multiply equation of hydrostatic equilibrium by r on both sides, integrate over sphere, and relate pressure to kinetic energy (easiest to verify for ideal gas). For next time – Read derivation of virial theorem for set of particles ( 2.4). – Remind yourself of interstellar dust and gas, and extinction§ ( 12.1). – Remind yourself about thermodynamics, in particular adiabatic§ processes (bottom of p. 317 to p. 321). Fig. 1.1. The HRD of nearby stars, with colours and distances measured by the Hipparcos satellite. Taken from Verbunt (2000, first-year lecture notes, Utrecht University). Fig. 1.2. Observed HRD of the stars in NGC 6397. Taken from D’Antona (1999, in “The Galactic Halo: from Globular Clusters to Field Stars”, 35th Liege Int. Astroph. Colloquium). Fig. 1.3. HRD of the brightest stars in the LMC, with observed spectral types and magnitudes transformed to temperatures and luminosities. Overdrawn is the empirical upper limit to the luminosity, as well as a theoretical main sequence. Taken from Humphreys & Davidson (1979, ApJ 232, 409). 2. Star formation Textbook: 12.2 § Jeans Mass and Radius 1/2 3/2 3/2 3/2 1/2 3 5k T 2 T n − MJ = 1/2 = 29 M µ− 4 3 , (2.1) 4π GµmH ρ ⊙ 10K 10 cm− 1/2 1/2 1/2 1/2 3 5k T 1 T n − RJ = 1/2 =0.30pc µ− 4 3 .
    [Show full text]
  • Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, a N College, Patna)
    Principle of Equipartition of Energy -Dr S P Singh (Dept of Chemistry, A N College, Patna) Historical Background 1843: The equipartition of kinetic energy was proposed by John James Waterston. 1845: more correctly proposed by John James Waterston. 1859: James Clerk Maxwell argued that the kinetic heat energy of a gas is equally divided between linear and rotational energy. ∑ Experimental observations of the specific heat capacities of gases also raised concerns about the validity of the equipartition theorem. ∑ Several explanations of equipartition's failure to account for molar heat capacities were proposed. 1876: Ludwig Boltzmann expanded this principle by showing that the average energy was divided equally among all the independent components of motion in a system. ∑ Boltzmann applied the equipartition theorem to provide a theoretical explanation of the Dulong-Petit Law for the specific heat capacities of solids. 1900: Lord Rayleigh instead put forward a more radical view that the equipartition theorem and the experimental assumption of thermal equilibrium were both correct; to reconcile them, he noted the need for a new principle that would provide an "escape from the destructive simplicity" of the equipartition theorem. 1906: Albert Einstein provided that escape, by showing that these anomalies in the specific heat were due to quantum effects, specifically the quantization of energy in the elastic modes of the solid. 1910: W H Nernst’s measurements of specific heats at low temperatures supported Einstein's theory, and led to the widespread acceptance of quantum theory among physicists. Under the head we deal with the contributions of translational and vibrational motions to the energy and heat capacity of a molecule.
    [Show full text]
  • Arxiv:2006.01326V1 [Astro-Ph.GA] 2 Jun 2020 58090 Morelia, Michoacan, Mexico
    Noname manuscript No. (will be inserted by the editor) From diffuse gas to dense molecular cloud cores Javier Ballesteros-Paredes · Philippe Andre,´ · Patrick Hennebelle, · Ralf S. Klessen, · Shu-ichiro Inutsuka, · J. M. Diederik Kruijssen, · Melanie´ Chevance, · Fumitaka Nakamura, · Angela Adamo · Enrique Vazquez-Semadeni Received: 2020-01-31 / Accepted: 2020-05-17 Abstract Molecular clouds are a fundamental ingredient of galaxies: they are the channels that transform the diffuse gas into stars. The detailed process of how they Javier Ballesteros-Paredes Instituto de Radioastronom´ıa y Astrof´ısica, UNAM, Campus Morelia, Antigua Carretera a Patzcuaro 8701. 58090 Morelia, Michoacan, Mexico. E-mail: [email protected] Philippe Andre´ Laboratoire d’Astrophysique (AIM), CEA/DRF, CNRS, Universite´ Paris-Saclay, Universite´ Paris Diderot, Sorbonne Paris Cite,91191´ Gif-sur-Yvette, France Patrick Hennebelle AIM, CEA, CNRS, Universite´ Paris-Saclay, Universite´ Paris Diderot, Sorbonne Paris Cite,´ 91191, Gif- sur-Yvette, France Ralf S. Klessen Universitat¨ Heidelberg, Zentrum fur¨ Astronomie, Institut fur¨ Theoretische Astrophysik, Albert-Ueberle- Str. 2, 69120 Heidelberg, Germany, Department of Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan J. M. Diederik Kruijssen Astronomisches Rechen-Institut, Zentrum fur¨ Astronomie der Universitat¨ Heidelberg, Monchhofstraße¨ 12- 14, 69120 Heidelberg, Germany, Melanie´ Chevance Astronomisches Rechen-Institut, Zentrum fur¨ Astronomie der Universitat¨ Heidelberg,
    [Show full text]
  • 10. Timescales in Stellar Interiors This Separation Is Pleasant Because It
    10.Timescales inStellarInteriors This separation is pleasant because it means whenever we consider one timescale, we can assume that the faster processes are in equilibrium while the slower processes are static. Much excitement ensues when this hierarchy breaks down. For example, we see convection occur onτ dyn which then fundamentally changes the ther- mal transport. Or in the cores of stars near the end of their life,τ nuc becomes much shorter. If it gets shorter thanτ dyn, then the star has no time to settle into equilibrium – it may collapse. 10.8 The Virial Theorem In considering complex systems as a whole, it becomes easier to describe im- portant properties of a system in equilibrium in terms of its energy balance rather than its force balance. For systems in equilibrium– not just a star now, or even particles in a gas, but systems as complicated as planets in orbit, or clusters of stars and galaxies– there is a fundamental relationship between the internal, kinetic energy of the system and its gravitational binding energy. This relationship can be derived in a fairly complicated way by taking several time derivatives of the moment of inertia of a system, and applying the equations of motion and Newton’s laws. We will skip this derivation, the result of which can be expressed as: d2 I (208) = 2 K + U , dt2 � � � � where K is the time-averaged kinetic energy, and U is the time-averaged � � � � 2 gravitational potential energy. For a system in equilibrium, d I is zero, yielding dt2 the form more traditionally used in astronomy: 1 (209) K = U � � − 2 � � The relationship Eq.
    [Show full text]