(February 8, 2013) Functional analysis exercises 04 Paul Garrett
[email protected] http:=/www.math.umn.edu/egarrett/ [This document is http://www.math.umn.edu/~garrett/m/fun/exercises 2012-13/fun-ex-02-08-2013.pdf] Due Fri, 24 Feb 2013, preferably as PDF emailed to me. [04.1] Let λ be a non-zero not-necessarily-continuous linear functional on a topological vector space V . Show that ker λ is dense if and only if λ is not continuous. [04.2] By considering the poles and residues of the meromorphic family of distributions s 2 us = (integration-against) jxj · log jxj (with x 2 R ) 2 @2 @2 on R , show that up to a constant log jxj is a fundamental solution for the Laplacian ∆ = 2 + 2 , that is, @x1 @x2 ∆ log jxj = δ · (constant) (on R2) 2 2 2 [04.3] On the two-torus T = R =Z , let δ1 be the Dirac delta at a point (x1; y1), and δ2 the Dirac delta @2 @2 at another point (x2; y2). Let ∆ = @x2 + @y2 . Determine the Fourier series for a solution u of ∆u = δ1 − δ2, and observe that this Fourier series is not absolutely convergent pointwise, although it is in H1−"(T2) for every " > 0. −∞ 2 Show that the similar equation ∆u = δ1 has no solution in H (T ). Further suppose both points have irrational slope, in the sense that x1=y1 and x2=y2 are not rational. Show 2 +1 1 that u restricted to rational lines Lξ = f(t; tξ): t 2 Rg=Z (with ξ 2 Q) has a Fourier series in H (T ).