Interview with Richard Ellis

Total Page:16

File Type:pdf, Size:1020Kb

Interview with Richard Ellis RICHARD ELLIS (b. 1950) INTERVIEWED BY HEIDI ASPATURIAN January – February 2014 Photo by Bob Paz, February 2008 ARCHIVES CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California Subject area Astronomy Abstract Interview in eight sessions (January–February 2014) with Steele Professor of Astronomy Richard Ellis, whose life has taken him from a small coastal town in Wales to the edge of the universe. He recounts that trajectory in this oral history, starting with his upbringing and education in Wales and his youthful enthusiasm for astronomy, which he pursued through studies at University College London (B.Sc. 1971) and Oxford University (D.Phil. 1974). Having the good fortune to begin his career at the dawn of the “golden era” of British astronomy, he describes his years on the faculty of the University of Durham, where he worked with physics department head and future UK Astronomer Royal A. Wolfendale to develop the “Durham group” into an internationally recognized astronomy program. He talks about his work at the Royal Greenwich Observatory, his galactic and extragalactic studies carried out at British observatories and elsewhere, most notably the Anglo-Australian Telescope, and his involvement in mapping the future of British astronomy. In 1993, he became the Plumian Professor at the University of Cambridge and director of Cambridge’s Institute of Astronomy, and in 1999 he joined the faculty of Caltech, where he served as director of Palomar Observatory/Caltech Optical http://resolver.caltech.edu/CaltechOH:OH_Ellis_R Observatories (2000–05), carried out pioneering observations at the W. M. Keck Observatories and Hubble Space Telescope, and was centrally involved in still- ongoing efforts to build the Thirty Meter Telescope (TMT). Ellis details his years of research in observational cosmology, probing galactic evolution and distribution at ever-higher redshifts, and his work on gravitational lensing and dark matter, the cosmic “dark ages” and cosmic dawn, and the pursuit of the most distant objects in the universe. He recalls his role in the 1987 discovery of the first cosmologically distant supernova and subsequent involvement in the supernova cosmology project, an investigation that won the 2011 Nobel Prize in physics for three of its principal scientists. He talks about his collaborations and interactions with numerous colleagues and students, including D. Axon, R. Blandford, A. Boksenberg, G. Efstathiou, D. Lynden-Bell, J. Peebles, M. Rees, W. Sargent, D. Saxon, B. Tinsley, and T. Tombrello, and shares his perspectives on the science and sociology of the astrophysical communities in Great Britain and the United States. Recaps of his election to the UK Royal Society and his designation as a Commander of the British Empire (CBE)—the latter formalized at a Buckingham Palace reception with HRH Prince Charles—also form part of this oral history. Note: Occasional allusions in this manuscript to a Royal Society memoir or biography refer to an autobiography that Ellis was asked to prepare for the Royal Society at the time he was elected a Fellow in 1995. A copy of the bio is appended to this oral history. Administrative information Access The interview is unrestricted. Copyright Copyright has been assigned to the California Institute of Technology © 2015. All requests for permission to publish or quote from the transcript must be submitted in writing to the Head of Archives and Special Collections. Preferred citation Ellis, Richard. Interview by Heidi Aspaturian. Pasadena, California, January – February 2014. Oral History Project, California Institute of Technology Archives. Retrieved [supply date of retrieval] from the World Wide Web: http://resolver.caltech.edu/CaltechOH:OH_Ellis_R Contact information Archives, California Institute of Technology Mail Code 015A-74 Pasadena, CA 91125 Phone: (626)395-2704 Fax: (626)395-4073 Email: [email protected] Graphics and content © 2015 California Institute of Technology. http://resolver.caltech.edu/CaltechOH:OH_Ellis_R CALIFORNIA INSTITUTE OF TECHNOLOGY ARCHIVES ORAL HISTORY PROJECT INTERVIEW WITH RICHARD ELLIS BY HEIDI ASPATURIAN PASADENA, CALIFORNIA Copyright © 2015 by the California Institute of Technology http://resolver.caltech.edu/CaltechOH:OH_Ellis_R Ellis–ii TABLE OF CONTENTS INTERVIEW WITH RICHARD ELLIS Session 1 1-37 Family background and history in Colwyn Bay, Wales, including seafaring father, “fire and brimstone” minister grandfather, and 16th century ancestor, William Salesbury, who first translated the Bible into Welsh. Bilingual childhood and education; refusal to be baptized despite strict Baptist upbringing; parents’ relationship and parental influences. Interest in astronomy sparked at age six by children’s book Into Outer Space; “devours” all available books on astronomy and builds telescope at age eleven. Reading preferences as a child and teenager; affinity for science, particularly physics. As sixties adolescent, forms rock band, Omega, with fellow scientifically inclined Sixth Formers, acquires Beatles haircut, and intermittently defies authority. Recalls 2014 meeting with Terry Jones of Monty Python Flying Circus and discovering that as kids they briefly lived in same neighborhood. Excels at school, hitchhikes around Britain, takes A level exams, applies to university, and decides to read astronomy at University College London (UCL). British astronomy in the late 1960s; “amazing” UCL environment; campus culture, social life, and politics; course work with professors C. W. Allen, D. McNally, and W. Somerville; academic challenges and successes in first year. Third-year research project into quasar absorption lines marks first exposure to extragalactic astronomy; reflections on UCL undergrad astronomy program in late 1960s. Session 2 38-66 Meets fellow university student and future wife Barbara in fall 1969. Conducts third-year research into solar limb darkening; awarded Faculty of Science Silver Medal for outstanding academic achievement. Applies for graduate school, enrolls at Oxford, and begins stellar nucleosynthesis thesis research with Professor D. Blackwell. Finds Oxford “a rather pompous” university. “Parochial” atmosphere within astronomy program. Difficulties with Blackwell as mentor and advisor. Flirts briefly with advertising career before accepting position at Durham University (1974) as first astronomer in physics department headed by A. Wolfendale; completes and misplaces PhD thesis. At Durham, with grad student D. Axon, measures polarization within Milky Way and produces first-ever 3D map of galaxy’s magnetic field. Observational studies and statistical work (D. Fong) on galaxy clustering and its relationship to large-scale structure lead to collaboration with Princeton theorists J. Peebles and B. Tinsley and puts Durham astronomy http://resolver.caltech.edu/CaltechOH:OH_Ellis_R Ellis–iii program on the map. Makes first visit to newly opened Anglo-Australian Telescope (1977) and realizes AAT’s utility for empirical studies of cosmic evolution. Professional travels include first visit to Los Angeles (1979). Comments on revolutionary impact of new telescopes and instruments on British observational astronomy in 1980s. Commences spectroscopic studies of galaxy redshifts with grad students G. Efstathiou and T. Shanks; grasps significance of multi-fiber spectroscopy for studies of faint, blue galaxies, and begins these studies at AAT. Frustrated by promotion prospects at Durham; explores other job possibilities, but then accepts offer of first tenured astronomy position there. Physics department head Wolfendale subsequently named Astronomer Royal and is knighted in 1990s. Session 3 67-90 Impact of religious upbringing on outlook and personality; inherited Ellis “wanderlust.” British “astro-empire” era and creation of robust Durham astronomy program. Collaboration with Royal Greenwich Observatory (RGO) on new instruments for UK telescopes culminates in Auto-fib Redshift Survey of primeval galaxies and discovery of luminosity-dependent galaxy evolution. Comments on IRAS survey. Rising prominence of Durham astronomy group and saga of promotion, in 1985, to professor of astronomy. Takes two-year leave of absence from Durham (1983–1985) as RGO fellow, working with A. Boksenberg. Infrared studies at UKIRT. Serves on committees to propose ten-year plan for British astronomy and to explore options for building new 8-meter telescope and new AAT spectrograph; becomes national spokesman and roving international ambassador for project. Discovery of first cosmologically distant supernova (1987). T. Broadhurst discovery of periodic redshift distribution (1990) generates considerable publicity and controversy; ultimately shown to be harbinger of discovery of baryonic acoustic scale (2003). Reflections on emotional appeal of astronomy and excitement of making discoveries at telescopes. Session 4 91-106 Disparate funding structures between British university astronomy programs and royal observatories provoke calls for observatory closures. Reaction to announcement of first Keck Telescope. Infrared studies of galaxy clusters at redshift 1 with grad student A. Aragón- Salamanca. Develops interest in gravitational lensing; meets R. Blandford at first lensing conference in late 1980s; works with grad student I. Smail on phenomenon using Hubble (HST) data. Continues work on cosmic evolution and large-scale structure; investigates “weak” primeval galaxies using HST. http://resolver.caltech.edu/CaltechOH:OH_Ellis_R Ellis–iv Rejects job offer from Steward Observatory in
Recommended publications
  • Far Side of the Moore by Sean Grundy
    Far Side Of The Moore By Sean Grundy CHARACTERS PATRICK MOORE (early 30s)...eccentric amateur astronomer PAUL JOHNSTONE (mid 30s)...BBC science producer DR HENRY KING (40s) ...soon-to-be head of the BAA PERCY WILKINS (60s) ...Moore’s mentor EILEEN WILKINS (early 20s) ...Percy’s daughter ARTHUR C CLARKE (late 30s)...Moore’s friend GERTRUDE MOORE (60s)...Moore’s mother LEONARD MIALL (40s)...BBC Head of Talks ANNOUNCER; STUDIO FM; TRANSMISSION CONTROL; HENRY KING’S SECRETARY; NEWS REPORTER; GEORGE ADAMSKI; BAA PRESIDENT Set in mid-1950s at BBC TV, BAA meeting room and Patrick’s home, East Grinstead. (Draft 4 - 27/01/15) SCENE 1.INTRO. SFX SPACEY FX/MUSIC ANNOUNCER The following drama is based on the true story of Patrick Moore and the making of ‘The Sky At Night’. PATRICK MOORE (OLDER) All true, even the stuff I exaggerated to jolly up the proceedings. However, I do apologise for my restraint on more colourful opinions: PC-brigade, female producers, Europhiles and all that. Damn irritating.. (FADE) SFX SPACEY MUSIC – MIX TO – RADIO DIAL REWINDING BACK IN TIME TO: SCENE 2.INT. BBC STUDIO. 1957 ARCHIVE (OR MOCK-UP) CYRIL STAPLETON’S PARADE MUSIC PLAYS PAUL JOHNSTONE ..Countdown to live in 90..Ident, please.. STUDIO FM (ON TALKBACK) Sky At Night. Programme 1. 24/4/57. 10.30pm. Transmission, do you have a feed? TRANSMISSION CONTROL (ON TALKBACK) Hello, studio. Rolling credits on ‘Cyril Stapleton Parade’. I see your slate: (READS) ‘Producer, Paul Johnstone. Host, Patrick Meere.’ STUDIO FM (ON TALKBACK) ‘Moore’. TRANSMISSION CONTROL Correction, ‘Moore’. STUDIO FM (ON TALKBACK) Live in 60.
    [Show full text]
  • Leed® Gold Certification
    MADONNA NOW The Magazine of Madonna University PRESIDENT’S REPORT 2010 ER D C TIF EE IE L D Cover Story LEED® GOLD CERTIFICATION Awarded to Madonna’s Franciscan Center GOLD ALUMNI MADONNA UNIVERSITY MADONNA UNIVERSITY 36600 Schoolcraft Road OF CONTENTS TABLE CENTER Livonia, MI 48150-1176 Admissions Office Welcome 734-432-5339 Alumni & Friends! ALUMNI Advancement Office Take advantage of all 41 734-432-5589 Madonna University offers Alumni Office its alumni. Whether you 734-432-5811 want to stay connected by updating your contact info, Main Number TASSEL 734-432-5300 or purchase a spirit tassel or 800-852-4951 brick paver, or volunteer to Spirit help with a Madonna event, [email protected] we’d love to see you. Next www.madonna.edu time you’re in the area, drop The spirit tassel symbolizes in and learn about these and support of the mission and values Editorial Staff The Madonna Now is published by other alumni benefits: of Madonna University. Make a 12 6 the Office of University Advancement Spirit Tassel Gift to the Annual Graduate School tuition Andrea Nodge ’84 discount Fund in the amount of your class vice president for advancement 2 Library & Computer Lab use year and receive this keepsake as President’s Perspective Living our Mission Karen Sanborn Job listings and career a reminder of your educational director of marketing assistance journey at Madonna. 5 Campus Living is Easy Decking the Halls Jill N. Hamilton-Krawczyk ’08 Alumni Scholarship for your graphic designer children 6 Fransciscan Center Awarded Gold To make your gift, contact LEED® Gold Certification Alan Piñon ’03 Access to alumni in the Amy Perry, alumni relations officer, marketing officer U.S.
    [Show full text]
  • AAO of the FUTURE AAO of Next Generation Fibre Positioning Robots
    IAU SPECIAL EDITION JULY 2003 NEWSLETTER ANGLO-AUSTRALIAN OBSERVATORY AAO OF THE FUTURE Next generation fibre positioning robots. Microrobotic technology based on the AAO’s Echidna system allows accurate positioning of payloads such as single fibres, guide bundles, mini- IFUs or even pick-off mirrors to be accurately positioned on large focal plates for large and ‘extremely large’ telescopes. See article on page 18. contents 3The Anglo-Australian Planet Search finDs a new “Solar System”-like gas giant (Chris Tinney et al.) 4RAVE hits the galaxy (FreD Watson et al.) 8A search for the highest reDshift raDio galaxies (Carlos De Breuck et al.) 9The 6DF Galaxy Survey (Will SaunDers et al.) 14 The end of observations for the 2dF Galaxy Redshift Survey (Matthew Colless et al.) 18 Directions for future instrumentation Development by the AAO (AnDrew McGrath et al.) 20 AAΩ: the successor to 2dF (Terry Bridges et al.) DIRECTOR’S MESSAGE DIRECTOR’S DIRECTOR’S MESSAGE On behalf of the staff of the Anglo-Australian Observatory, I would like to extend a warm welcome to Sydney to all IAU General Assembly delegates. This special GA edition of the AAO newsletter showcases some of the AAO’s achievements over the past year as well as some exciting new directions in which the AAO is heading in the future. Over the past few years the AAO has increasingly sought to build on its scientific and technical expertise through the design and building of astronomical instrumentation for overseas observatories, whilst maintaining its own telescopes as world-class facilities. The success of science programs such as the Anglo-Australian Planet Search and the 2dF Galaxy Redshift Survey amply demonstrate that the AAO is still facilitating the production of outstanding science by its user communities.
    [Show full text]
  • Messenger Extreme Exploration
    MESSENGERMESSENGER EEXTREMEXTREME EEXPLORATIONXPLORATION — Deborah Domingue, MESSENGER Deputy Project Scientist, Johns Hopkins University Applied Physics Laboratory The first half of 2004 has been an exciting time for planetary exploration with the successful encounter and sampling of Comet Wild 2 by Stardust, the landing of two Mars rovers, orbital operations at Mars by three spacecraft, and the arrival of Cassini at Saturn. This month we wished “Bon Voyage” to the MESSENGER spacecraft, which successfully launched from Cape Canaveral on August 3, 2004, and began its journey to the innermost planet of our solar system, Mercury. MESSENGER is a MEcury Surface, Space ENvironment, GEochemistry, and Ranging mission that will orbit Mercury for one Earth year (beginning in March 2011) following three flybys (in January and Septem- ber 2008 and October 2009) of the planet. It will be our first return to Mercury in over 30 years! The Mariner 10 spacecraft flew past Mer- cury three times in 1974 and 1975 and collected information on less than half the planet. MESSENGER will provide the first global map of Mercury, in addition to detailed information on the composition and structure of Mercury’s crust, its geologic history, the nature of Mercury’s thin exosphere and dynamic magnetosphere, and the makeup of its core and polar materials. MERCURY:A PLACE OF EXTREMES Mercury, the planet closest to the Sun, has a highly elliptical orbit such that its distance from the Sun ranges from 46 million kilometers (29 million miles) to 70 million kilometers (43 million miles). Because of its slow rotation, Mercury’s day (sunrise to sunrise) actually lasts two Mercury years (88 Earth days of dark and 88 Earth days of daylight).
    [Show full text]
  • Gruber Foundation Formed at Yale Yale Joins Sloan Digital Sky Survey
    Yale University Astronomy Department Newsletter Vol. 3 Fall 2011 No. 1 Yale joins Sloan Digital Sky Survey III Yale is now a fully participating member of the Sloan Digital Sky Survey III (SDSS-III) Collaboration. Although Yale was not a member during the first two phases of SDSS, the suc- cess of SDSS and the excitement of Yale astronomers about the projects and data of SDSS-III led Yale to join now. Based on citations in refereed articles and meeting abstracts, SDSS has been rated as the telescope project with the biggest sci- entific impact in history, beating out even the Hubble Space Telescope and the Keck Telescopes (c.f. Madrid, Juan P. and Macchetto, Duccio 2009arXiv0901.4552M). The previous incarnations of SDSS have imaged 13,000 square degrees, corresponding to about a third of the en- tire sky. SDSS-III is taking spectra of interesting objects that were found in these images, through a program of four sur- veys that cover three scientific themes. The Baryon Oscil- lation Spectroscopic Survey (BOSS) studies dark energy and the geometry of space. (SEE SDSS-III, p. 4) SDSS-III Data Release 8 image from January 2011 Gruber Foundation formed at Yale with prizes and fellowships in astronomy and cosmology In May of 2011, Patricia and Peter Gruber officially formed the Gruber Founda- tion at Yale University, dedicated to the advancement of science, support of young scientists, global justice, and women’s rights. The Gruber Foundation at Yale will succeed The Peter and Patricia Gruber Foundation, originally estab- lished in 1993, and carry on its philanthropic mission, including its prestigious annual science prizes.
    [Show full text]
  • Cosmic Background Explorer (COBE) and Beyond
    From the Big Bang to the Nobel Prize: Cosmic Background Explorer (COBE) and Beyond Goddard Space Flight Center Lecture John Mather Nov. 21, 2006 Astronomical Search For Origins First Galaxies Big Bang Life Galaxies Evolve Planets Stars Looking Back in Time Measuring Distance This technique enables measurement of enormous distances Astronomer's Toolbox #2: Doppler Shift - Light Atoms emit light at discrete wavelengths that can be seen with a spectroscope This “line spectrum” identifies the atom and its velocity Galaxies attract each other, so the expansion should be slowing down -- Right?? To tell, we need to compare the velocity we measure on nearby galaxies to ones at very high redshift. In other words, we need to extend Hubble’s velocity vs distance plot to much greater distances. Nobel Prize Press Release The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2006 jointly to John C. Mather, NASA Goddard Space Flight Center, Greenbelt, MD, USA, and George F. Smoot, University of California, Berkeley, CA, USA "for their discovery of the blackbody form and anisotropy of the cosmic microwave background radiation". The Power of Thought Georges Lemaitre & Albert Einstein George Gamow Robert Herman & Ralph Alpher Rashid Sunyaev Jim Peebles Power of Hardware - CMB Spectrum Paul Richards Mike Werner David Woody Frank Low Herb Gush Rai Weiss Brief COBE History • 1965, CMB announced - Penzias & Wilson; Dicke, Peebles, Roll, & Wilkinson • 1974, NASA AO for Explorers: ~ 150 proposals, including: – JPL anisotropy proposal (Gulkis, Janssen…) – Berkeley anisotropy proposal (Alvarez, Smoot…) – Goddard/MIT/Princeton COBE proposal (Hauser, Mather, Muehlner, Silverberg, Thaddeus, Weiss, Wilkinson) COBE History (2) • 1976, Mission Definition Science Team selected by HQ (Nancy Boggess, Program Scientist); PI’s chosen • ~ 1979, decision to build COBE in-house at GSFC • 1982, approval to construct for flight • 1986, Challenger explosion, start COBE redesign for Delta launch • 1989, Nov.
    [Show full text]
  • Professor Peter Goldreich Member of the Board of Adjudicators Chairman of the Selection Committee for the Prize in Astronomy
    The Shaw Prize The Shaw Prize is an international award to honour individuals who are currently active in their respective fields and who have recently achieved distinguished and significant advances, who have made outstanding contributions in academic and scientific research or applications, or who in other domains have achieved excellence. The award is dedicated to furthering societal progress, enhancing quality of life, and enriching humanity’s spiritual civilization. Preference is to be given to individuals whose significant work was recently achieved and who are currently active in their respective fields. Founder's Biographical Note The Shaw Prize was established under the auspices of Mr Run Run Shaw. Mr Shaw, born in China in 1907, was a native of Ningbo County, Zhejiang Province. He joined his brother’s film company in China in the 1920s. During the 1950s he founded the film company Shaw Brothers (HK) Limited in Hong Kong. He was one of the founding members of Television Broadcasts Limited launched in Hong Kong in 1967. Mr Shaw also founded two charities, The Shaw Foundation Hong Kong and The Sir Run Run Shaw Charitable Trust, both dedicated to the promotion of education, scientific and technological research, medical and welfare services, and culture and the arts. ~ 1 ~ Message from the Chief Executive I warmly congratulate the six Shaw Laureates of 2014. Established in 2002 under the auspices of Mr Run Run Shaw, the Shaw Prize is a highly prestigious recognition of the role that scientists play in shaping the development of a modern world. Since the first award in 2004, 54 leading international scientists have been honoured for their ground-breaking discoveries which have expanded the frontiers of human knowledge and made significant contributions to humankind.
    [Show full text]
  • Einstein's Wrong
    Einstein’s wrong way: from STR to GTR Adrian Ferent I discovered a new Gravitation theory which breaks the wall of Planck scale! Abstract My Nobel Prize - Discoveries “Starting from STR, it is not possible to find a Quantum Gravity theory” Adrian Ferent “Einstein was on the wrong way: from STR to GTR” Adrian Ferent “Starting from STR, Einstein was not able to explain Gravitation” Adrian Ferent “Starting from STR, Einstein was not able to explain Gravitation, he calculated Gravitation” Adrian Ferent “Einstein's equivalence principle is wrong because the gravitational force experienced locally is caused by a negative energy, gravitons energy and the force experienced by an observer in a non-inertial (accelerated) frame of reference is caused by a positive energy.” Adrian Ferent “Because Einstein's equivalence principle is wrong, Einstein’s gravitation theory is wrong.” Adrian Ferent “Because Einstein’s gravitation theory is wrong, LQG, String theory… are wrong theories” Adrian Ferent “Einstein bent the space, Ferent unbent the space” Adrian Ferent 1 “Einstein bent the time, Ferent unbent the time” Adrian Ferent “I am the first who Quantized the Gravitational Field!” Adrian Ferent “I quantized the gravitational field with gravitons” Adrian Ferent “Gravitational field is a discrete function” Adrian Ferent “Gravitational waves are carried by gravitons” Adrian Ferent In STR and GTR there are continuous functions. This is another proof that LIGO is a fraud. The 2017 Nobel Prize in Physics has been awarded for a project, the Laser Interferometer Gravitational-wave Observatory (LIGO) not for a scientific discovery; they did not detect anything because Einstein’s gravitational waves do not exist.
    [Show full text]
  • 277 — 18 January 2016 Editor: Bo Reipurth ([email protected]) List of Contents
    THE STAR FORMATION NEWSLETTER An electronic publication dedicated to early stellar/planetary evolution and molecular clouds No. 277 — 18 January 2016 Editor: Bo Reipurth ([email protected]) List of Contents The Star Formation Newsletter Interview ...................................... 3 Abstracts of Newly Accepted Papers ........... 5 Editor: Bo Reipurth [email protected] Abstracts of Newly Accepted Major Reviews . 30 Technical Editor: Eli Bressert Dissertation Abstracts ........................ 31 [email protected] New Jobs ..................................... 32 Technical Assistant: Hsi-Wei Yen Meetings ..................................... 33 [email protected] Summary of Upcoming Meetings ............. 36 Editorial Board Joao Alves Alan Boss Jerome Bouvier Cover Picture Lee Hartmann Thomas Henning The Rosette Nebula is a large HII region in Mono- Paul Ho ceros at a distance of about 1.6 - 1.7 kpc. It is Jes Jorgensen illuminated by the OB cluster NGC 2244, which Charles J. Lada contains seven O-stars, dominated by the O4V star Thijs Kouwenhoven HD 46223. The northwestern edge of the HII region Michael R. Meyer contains a large complex of globules and elephant Ralph Pudritz trunks. Luis Felipe Rodr´ıguez Ewine van Dishoeck Image courtesy Don Goldman http://astrodonimaging.com Hans Zinnecker ( ). The Star Formation Newsletter is a vehicle for fast distribution of information of interest for as- tronomers working on star and planet formation and molecular clouds. You can submit material for the following sections: Abstracts of recently Submitting your abstracts accepted papers (only for papers sent to refereed journals), Abstracts of recently accepted major re- Latex macros for submitting abstracts views (not standard conference contributions), Dis- and dissertation abstracts (by e-mail to sertation Abstracts (presenting abstracts of new [email protected]) are appended to Ph.D dissertations), Meetings (announcing meet- each Call for Abstracts.
    [Show full text]
  • Neutrino Cosmology and Large Scale Structure
    Neutrino cosmology and large scale structure Christiane Stefanie Lorenz Pembroke College and Sub-Department of Astrophysics University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2019 Neutrino cosmology and large scale structure Christiane Stefanie Lorenz Pembroke College and Sub-Department of Astrophysics University of Oxford A thesis submitted for the degree of Doctor of Philosophy Trinity 2019 The topic of this thesis is neutrino cosmology and large scale structure. First, we introduce the concepts needed for the presentation in the following chapters. We describe the role that neutrinos play in particle physics and cosmology, and the current status of the field. We also explain the cosmological observations that are commonly used to measure properties of neutrino particles. Next, we present studies of the model-dependence of cosmological neutrino mass constraints. In particular, we focus on two phenomenological parameterisations of time-varying dark energy (early dark energy and barotropic dark energy) that can exhibit degeneracies with the cosmic neutrino background over extended periods of cosmic time. We show how the combination of multiple probes across cosmic time can help to distinguish between the two components. Moreover, we discuss how neutrino mass constraints can change when neutrino masses are generated late in the Universe, and how current tensions between low- and high-redshift cosmological data might be affected from this. Then we discuss whether lensing magnification and other relativistic effects that affect the galaxy distribution contain additional information about dark energy and neutrino parameters, and how much parameter constraints can be biased when these effects are neglected.
    [Show full text]
  • Nobel Lecture: Accelerating Expansion of the Universe Through Observations of Distant Supernovae*
    REVIEWS OF MODERN PHYSICS, VOLUME 84, JULY–SEPTEMBER 2012 Nobel Lecture: Accelerating expansion of the Universe through observations of distant supernovae* Brian P. Schmidt (published 13 August 2012) DOI: 10.1103/RevModPhys.84.1151 This is not just a narrative of my own scientific journey, but constant, and suggested that Hubble’s data and Slipher’s also my view of the journey made by cosmology over the data supported this conclusion (Lemaˆitre, 1927). His work, course of the 20th century that has lead to the discovery of the published in a Belgium journal, was not initially widely read, accelerating Universe. It is complete from the perspective of but it did not escape the attention of Einstein who saw the the activities and history that affected me, but I have not tried work at a conference in 1927, and commented to Lemaˆitre, to make it an unbiased account of activities that occurred ‘‘Your calculations are correct, but your grasp of physics is around the world. abominable.’’ (Gaither and Cavazos-Gaither, 2008). 20th Century Cosmological Models: In 1907 Einstein had In 1928, Robertson, at Caltech (just down the road from what he called the ‘‘wonderful thought’’ that inertial accel- Edwin Hubble’s office at the Carnegie Observatories), pre- eration and gravitational acceleration were equivalent. It took dicted the Hubble law, and claimed to see it when he com- Einstein more than 8 years to bring this thought to its fruition, pared Slipher’s redshift versus Hubble’s galaxy brightness his theory of general Relativity (Norton and Norton, 1984)in measurements, but this observation was not substantiated November, 1915.
    [Show full text]
  • The Mutable Galaxies How Galaxies Enrich with Heavy Elements
    GENERAL I ARTICLE The Mutable Galaxies How Galaxies Enrich with Heavy Elements Biman Nath Biman Nath is an Soon after the discovery of the expansion of the astrophysicist at the universe, astronomers hoped to determine the Raman Research parameters of the universe by comparing dis­ Institute, Bangalore. tant galaxies with nearby ones. Observing dis­ tant galaxies, however, meant observing them as they were long ago. A crucial assumption in Keywords these studies was that galaxies hardly change, in Galaxies, evolution of stars, the time scale of the expansion of the universe. production of elements. Beatrice Tinsley was one of the first astronomers to point out that galaxies do change. Here we discuss a simplified model of galactic evolution, and show that the comparison of its prediction with observations uncovers clues to how galaxies evolve with time. A cursory look at the starry sky at night is likely to make us think that stars, galaxies and the universe are immutable and changeless. Stars and galaxies do how­ ever change with time. The beginning of the last century was marked by the discovery of the expansion of the uni­ verse and also the development of our knowledge of the evolution of stars. Yet, the overall evolution of galaxies, as a result of stellar evolution, was considered too messy, and perhaps even negligible. The study of stars told us that stars shine as a result of thermonuclear reactions inside their cores. These Beatrice Tinsley reactions synthesize heavy elements like carbon, oxy­ was one of the first gen, nitrogen and so forth, beginning with hydrogen astronomers to and helium (which were created in the first few minutes point out that of the birth of the universe).
    [Show full text]