WHO Drug Information Vol

Total Page:16

File Type:pdf, Size:1020Kb

WHO Drug Information Vol WHO Drug Information Vol. 25, No. 1, 2011 World Health Organization WHO Drug Information Contents International Harmonization Mometasone furoate/formoterol fumarate: 14th International Conference of Drug withdrawal of marketing authorization Regulatory Authorities 1 application 37 International Conference of Drug Briakinumab: withdrawal of marketing Regulatory Authorities: personal authorization application 37 reminiscences 18 Omacetaxine mepesuccinate: withdrawal of marketing authorization application 38 Zoledronic acid: withdrawal of application WHO Prequalification of for an extension of indication 38 Medicines Programme Pandemic influenza vaccine (H5N1): Inspection of API manufacturing sites 24 withdrawal of marketing authorization application 38 Safety and Efficacy Issues ENCePP launch electronic register ATC/DDD Classification of studies 28 ATC/DDD Classification (temporary) 40 Methysergide and retroperitoneal fibrosis 28 ATC/DDD Classification (final) 43 Clozapine and life-threatening gastro- intestinal hypomotility 29 Recent Publications, Tamoxifen and anti-depressants: drug interaction 30 Information and Events Dronedarone : severe liver injury 31 Assessment of 26 African regulatory Dolasetron mesylate: abnormal heart authorities 46 rhythm 32 Quality of antimalarials in sub-Saharan Sitaxentan: update following withdrawal 32 Africa 46 Bevacizumab use in breast cancer Good governance for medicines 47 treatment 33 EC/ACP/WHO Partnership on Pharma- Latest developments in pharmaco- ceutical Policies 47 vigilance 33 Recommended International Regulatory Action and News Nonproprietary Names Influenza Global operation against illegal List 65 49 and counterfeit medicines 37 1 World Health Organization WHO Drug Information Vol. 25, No. 1, 2011 WHO Drug Information Digital Library, e-mail table of contents and subscriptions available at: http://www.who.int/druginformation 2 WHO Drug Information Vol. 25, No. 1, 2011 International Harmonization 14th International Conference of Drug Regulatory Authorities The success of the recent 14th International Conference of Drug Regulatory Authori- ties (ICDRA) held in Singapore from 30 November to 3 December was attested by the presence of 345 participants from over 90 agencies. In addition to the event, partici- pants were invited to celebrate thirty years of ICDRAs. Both developed and develop- ing country officials joined in confirming the value and impact of this forum to national, regional and international medicines regulation by contributing to seven plenaries and nineteen parallel workshops. The quality of the information offered and the lively dis- cussion led to adoption of recommendations which regulators consider important in assuring the quality, safety and efficacy of medicines. These are set out below and on the following pages. The 14th ICDRA was hosted by the Health Sciences Authority of Singapore in collabo- ration with the World Health Organization. The Conference continues to be a corner- stone of international harmonization of medicines regulation and is highly appreciated for the platform it provides in highlighting matters of urgency and relevance to an often difficult but vital sector of the health care system. ICDRA RECOMMENDATIONS Improving drug regulation action between regulatory agencies and as part of health systems civil society, scientific institutions, strengthening governmentally-managed health insur- ance systems and reimbursement Major trends relating to regulatory support schemes. for medical products present medicines Given the current fast-paced and exacting agencies and WHO with numerous climate, it is difficult for regulators to draw challenges. The increasing complexity of a fair balance between the potential risks regulatory work — whether as a result of of a new medicine and public expecta- new technologies, globalization of com- tions of availability and safety. Addition- mercial activities or internationalization of ally, the introduction of high performance product development — is particularly information systems and instant access onerous. together with demand for relevant, quality Increasing autonomy of management and information puts greater pressure on decision-making in governmental regula- regulators to react professionally and with tory systems, together with greater transparency in a minimum of time. interaction between regulators and the private sector in the development of In spite of many positive developments in standards and regulations has led to the the Global regulatory arena it is worrying need for greater efforts to improve inter- that the gaps among regulatory systems 3 International Harmonization WHO Drug Information Vol. 25, No. 1, 2011 are rather increasing than decreasing. Medicines regulatory authorities should: This is partly caused by the human and financial resource gap existing between • Commit to and collaborate in prioritizing, well-resourced and resource-constrained developing and teaching regulatory settings. science to strengthen scientific robust- ness in advancing regulatory innovation A medical products regulatory system, and thought leadership, exploring new supported by relevant legislation, is an regulatory tools and frameworks, and essential component of a functioning conducting environmental scanning. health system. A medicines regulatory system includes, at the very least, the • Keep abreast of developments in health necessary legislation and regulation, a technology assessment to minimize regulatory authority which subjects all duplication of activities and explore pharmaceutical products to premarketing ways to better interface with parties evaluation, marketing authorization and involved in health technology assess- postmarketing surveillance. The regula- ment. tory system should also include an • Take account of the wider health and inspectorate, access to a medicines non-health environment in which they quality control laboratory, enforcement operate nationally and internationally, mechanisms and safety monitoring. proactively strengthen networks, en- Moderators gage stakeholders, and clarify policies John Lim, Singapore and Thomas and positions in order to enhance their Lönngren, European Union regulatory mission and effectiveness, especially in crisis preparedness and Presentations risk management. Challenges of biomedical advancement – • Work with their governments to reiterate evolving role of the regulator. John Lim, to the WHO governing bodies (World Singapore Health Assembly and Executive Board) Drug regulation and public health in the the importance of strengthening regula- EU. Thomas Lönngren, EU tory capacity and cooperation as an essential part of overall health systems Strengthening regulatory capacity around strengthening. the Globe: our common and vital interest. Margaret Hamburg, USA Collaboration and cooperation among Recommendations regulatory agencies WHO should: The rapid advancement in biomedical • Continue to assist medicines regulatory sciences and the invention of novel authorities (MRAs) in garnering political therapeutic products have made it more support at national or regional levels to critical than ever for medicines regulatory build regulatory capacity. agencies to work together to achieve the goal of protecting and advancing public • Work with Member States in ongoing health. promotion of collaboration and coordi- nation to develop MRA capacity in The 14th ICDRA re-affirmed the impor- pharmacovigilance, identifying core tance of regional harmonization efforts minimum functions, and mapping of which are already on-going in different major initiatives that may facilitate parts of the world in various forms and cooperation. models. It was also recognized that WHO 4 WHO Drug Information Vol. 25, No. 1, 2011 International Harmonization could further support these collaborative • Provide a protected electronic platform initiatives by providing technical assist- for regulators to share information and ance where capacity building is needed. experience on specific regulatory topics Furthermore, WHO is in a unique position of common interests, similar to that for to facilitate networking and information the Paediatric Medicines Regulators exchange among regulators. Network (PmRN). Moderators • Facilitate twinning of less developed Supriya Sharma, Canada and Christina agencies with well-established agencies Lim, Singapore for capacity building and training. Presentations Report from the pre-ICDRA meeting: Recent developments in cooperation of Effective collaboration: the future regulatory authorities among ASEAN for medicines regulation countries. Yuppadee Javrongrit, Thailand Recommendations Collaboration among regulatory authori- ties in the European Union: a micro- Promotion of increased regulatory agency perspective. Alar Irs, Estonia effectiveness First joint product assessment experience WHO should: from EAC partner states. Hiiti Sillo, Tanzania • Actively promote cooperation and collaboration programmes and use information generated by other MRAs Reporting back from the pre-ICDRA meeting. Stewart Jessamine, New Zea- as a tool to improve regulatory capacity land and effectiveness. • Collect best practices of collaboration Recommendations and cooperation between medicines regulatory authorities including informa- Regional working groups should: tion exchange, joint assessments and • Strengthen efforts to build capacity to inspections and activities aimed at reducing duplication. develop/adopt common technical standards and requirements. • Work with national MRAs to
Recommended publications
  • Ultraviolet-Visible Reference Spectra C
    1536 Ultraviolet-visible Reference Spectra JP XV Butropium Bromide 1 A solution in methanol (1 in 100,000) Butropium Bromide 2 A solution in methanol (1 in 5000) Calcium Folinate An aqueous solution (1 in 100,000) JP XV Ultraviolet-visible Reference Spectra 1537 Camostat Mesilate An aqueous solution (1 in 100,000) Carbamazepine The sample solution obtained in the Assay Carbazochrome Sodium Sulfonate Hydrate An aqueous solution (1 in 100,000) 1538 Ultraviolet-visible Reference Spectra JP XV Carbidopa Hydrate A solution prepared as follows: Dissolve 0.01 g in 250 mL of a solution of hydrochloric acid in methanol (9 in 1000) Carmofur A solution in a mixture of methanol and phosphoric acid-acetic acid-boric acid buffer solution, pH 2.0 (9:1) (1 in 100,000) Carteolol Hydrochloride An aqueous solution (1 in 100,000) JP XV Ultraviolet-visible Reference Spectra 1539 Carumonam Sodium An aqueous solution (3 in 100,000) Cefaclor An aqueous solution (1 in 50,000) Cefadroxil An aqueous solution (1 in 50,000) 1540 Ultraviolet-visible Reference Spectra JP XV Cefalexin An aqueous solution (3 in 100,000) Cefalotin Sodium An aqueous solution (1 in 50,000) Cefapirin Sodium An aqueous solution (3 in 200,000) JP XV Ultraviolet-visible Reference Spectra 1541 Cefatrizine Propylene Glycolate An aqueous solution (1 in 50,000) Cefazolin Sodium An aqueous solution (1 in 50,000) Cefbuperazone Sodium An aqueous solution (1 in 50,000) 1542 Ultraviolet-visible Reference Spectra JP XV Cefditoren Pivoxil A solution in methanol (1 in 50,000) Cefixime A solution in 0.1
    [Show full text]
  • 00246-2019.Supptables
    1 Table S1. List of ICD-10 codes identifying comorbidities during hospitalization for COPD exacerbation COPD J41, J42, J43, J440, J441, J449 COPD exacerbation J10, J11, J13, J14, J15, J16, J18, J20, J21, J22, J46, J170, J171, J178, J440, J441, J851, J12, A481, B012, B052, B250 Bacterial pneumonia J100, J110, J12, J13, J14, J15, J16, J170, J178, J18, J851, A481 Lung cancer C34 Other malignancy C00-26, C30-33, C37-41, C43-58, C60-76 Diabetes/abnormal glucose tolerance E10-14, R703 Bone fracture/osteoporosis M80-84 Interstitial pneumonia B221, J701, J704, J841, J848, J849, J990, J991, M321, M330, M331, M332, M351 Bronchial asthma J45, J46 Bronchiectasis J40, J41, J42, J47 Pulmonary thromboembolism I26 Mycobacterium infection A150-154, A156-159, A161-162, A165, A168-169, A19, A310, A319 Mycotic infection A420, A43, B37, B380-382, B390-392, B400-402, B410, B420, B440, B441, B449, B460, J172 Cor pulmonare I27 Congestive heart failure E059, I46, I50, I099, I110 Ischemic heart disease I20-25 Tachycardia I47-49, R000, T818 Autoimmune disease M05, M06, M08, M30-35 Stroke I60-64 Liver dysfunction B89, B181, B182, B659, B661, K702, K703, K72, K74, K761, K762, K763, K766, K767 Renal failure E102, E112, E142, I120, N17-19 GERD K21 Constipation or ileus K56, K590 Prostate hypertrophy N40 Abbreviations: COPD, chronic obstructive pulmonary disease; GERD, gastro-esophageal reflux disease 2 Table S2. List of baseline characteristics, comorbidities, and treatments before and during hospitalization for COPD exacerbation Baseline characteristics Sex, fiscal
    [Show full text]
  • Breeding Laboratories (Hino, Japan)
    VOL. XLII NO. 6 THE JOURNAL OF ANTIBIOTICS 989 STIMULATORY EFFECT OF CEFODIZIME ON MACROPHAGE- MEDIATED PHAGOCYTOSIS Kazunori Oishi, Keizo Matsumoto, Masashi Yamamoto, Toshihiro Morito and Toshiaki Yoshida Department of Internal Medicine, Institute of Tropical Medicine, Nagasaki University, 12-4 Sakamoto-machi, Nagasaki 852, Japan (Received for publication January 27, 1989) Weevaluated the ingestion of anti-sheep erythrocyte (anti-E) IgG- and IgM-coated sheep erythiocytes by murineperitoneal macrophagesexposed to cefodizime, a newsemisynthetic cephalosporin, and other antibiotics. Cefodizime enhanced the ingestion of anti-E IgG- coated erythrocytes by peritoneal macrophages from CD-I and BALB/cmice in a dose- dependent manner, but had no effect on uncoated or IgM-coated erythrocytes. Similar enhancement was observed only in the case of cefpimizole (AC-1370), among the other anti- biotics examined. These results suggest that the favorable in vivo activity of cefodizime and cefpimizole may result from their phagocytosis-enhancing as well as antimicrobial properties. The new semisynthetic cephalosporin, cefodizime, is characterized by a cephem ring which con- tains a ^w-methoxyimino-aminothiazolyl group at the 7-position and a thiazolylthio-methyl group at the 3-position. The latter substitution is thought to provide metabolic stability and a prolonged half-life in humanserum0. The efficacy of cefodizime in experimental murine infections is apparently superior to that predicted from in vitro activity2>3). Wepostulated that the enhanced in vivo activity of cefodizime may be due to drug-induced immunostimulation. This speculation was in part based upon the previous demonstration that a variety of agents, including lysophosphatidylcholine4) and fibronectin5), enhance receptor-dependent phagocytosis. Moreover, it was previously reported that cefpimizole (AC-1370), another semisynthetic cephalosporin, potentiated phagocyte function of macrophages and neutrophils6).
    [Show full text]
  • Nurse-Led Drug Monitoring Clinic Protocol for the Use of Systemic Therapies in Dermatology for Patients
    Group arrangements: Salford Royal NHS Foundation Trust (SRFT) Pennine Acute Hospitals NHS Trust (PAT) Nurse-led drug monitoring clinic protocol for the use of systemic therapies in dermatology for patients with inflammatory dermatoses Lead Author: Dawn Lavery Dermatology Advanced Nurse Practitioner Additional author(s) N/A Division/ Department:: Dermatology, Clinical Support and Tertiary Medicine Applies to: (Please delete) Salford Royal Care Organisation Approving Committee Dermatology clinical governance committee Salford Royal Date approved: 13 February 2019 Expiry date: February 2022 Contents Contents Section Page Document summary sheet 1 Overview 2 2 Scope & Associated Documents 2 3 Background 3 4 What is new in this version? 3 5 Policy 4 Drugs monitored by nurses 4 Acitretin 7 Alitretinoin Toctino 11 Apremilast 22 Azathioprine 26 Ciclosporin 29 Dapsone 34 Fumaric Acid Esters – Fumaderm and Skilarence 36 Hydroxycarbamide 39 Hydroxychloroquine 43 Methotrexate 50 Mycophenolate moefetil 57 Nurse-led drug monitoring clinic protocol for the use of systemic therapies in dermatology for patients with inflammatory dermatoses Reference Number GSCDerm01(13) Version 3 Issue Date: 11/06/2019 Page 1 of 77 It is your responsibility to check on the intranet that this printed copy is the latest version Standards 67 6 Roles and responsibilities 67 7 Monitoring document effectiveness 67 8 Abbreviations and definitions 68 9 References 68 10 Appendices N/A 11 Document Control Information 71 12 Equality Impact Assessment (EqIA) screening tool 73 Group arrangements: Salford Royal NHS Foundation Trust (SRFT) Pennine Acute Hospitals NHS Trust (PAT) 1. Overview (What is this policy about?) The dermatology directorate specialist nurses are responsible for ensuring prescribing and monitoring for patients under their care, is in accordance with this protocol.
    [Show full text]
  • Consideration of Antibacterial Medicines As Part Of
    Consideration of antibacterial medicines as part of the revisions to 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) Section 6.2 Antibacterials including Access, Watch and Reserve Lists of antibiotics This summary has been prepared by the Health Technologies and Pharmaceuticals (HTP) programme at the WHO Regional Office for Europe. It is intended to communicate changes to the 2019 WHO Model List of Essential Medicines for adults (EML) and Model List of Essential Medicines for children (EMLc) to national counterparts involved in the evidence-based selection of medicines for inclusion in national essential medicines lists (NEMLs), lists of medicines for inclusion in reimbursement programs, and medicine formularies for use in primary, secondary and tertiary care. This document does not replace the full report of the WHO Expert Committee on Selection and Use of Essential Medicines (see The selection and use of essential medicines: report of the WHO Expert Committee on Selection and Use of Essential Medicines, 2019 (including the 21st WHO Model List of Essential Medicines and the 7th WHO Model List of Essential Medicines for Children). Geneva: World Health Organization; 2019 (WHO Technical Report Series, No. 1021). Licence: CC BY-NC-SA 3.0 IGO: https://apps.who.int/iris/bitstream/handle/10665/330668/9789241210300-eng.pdf?ua=1) and Corrigenda (March 2020) – TRS1021 (https://www.who.int/medicines/publications/essentialmedicines/TRS1021_corrigenda_March2020. pdf?ua=1). Executive summary of the report: https://apps.who.int/iris/bitstream/handle/10665/325773/WHO- MVP-EMP-IAU-2019.05-eng.pdf?ua=1.
    [Show full text]
  • 1 EMA Tender EMA/2017/09/PE, Lot 2 Impact of EU Label
    EMA tender EMA/2017/09/PE, Lot 2 Impact of EU label changes and revised pregnancy prevention programme for oral retinoid containing medicinal products: risk awareness and adherence Protocol • Prof. Anna Birna Almarsdóttir, Professor in Social and Clinical Pharmacy at the Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen • Prof. Marcel Bouvy, Professor of Pharmaceutical Care at the Division of Pharmacoepidemiology & Clinical Pharmacology of the Department of Pharmaceutical Sciences, Utrecht University. • Dr Rob Heerdink, Associate Professor at the Division of Pharmacoepidemiology & Clinical Pharmacology of the Department of Pharmaceutical Sciences, Utrecht University. • Dr Teresa Leonardo Alves, Researcher at the Centre for Health Protection, National Institute for Public Health and the Environment, The Netherlands. 1 Table of contents Background ...................................................................................................................... 3 Aims of the study ............................................................................................................. 4 Methods ........................................................................................................................... 4 Setting ........................................................................................... Error! Bookmark not defined. Study design ............................................................................................................................ 4 Population
    [Show full text]
  • Acitretin; Adapalene; Alitretinoin; Bexarotene; Isotretinoin
    8 February 2018 EMA/254364/2018 Pharmacovigilance Risk Assessment Committee (PRAC) Assessment report Referral under Article 31 of Directive 2001/83/EC resulting from pharmacovigilance data Retinoids containing medicinal products INN: Acitretin, Adapalene, Alitretinoin, Bexarotene, Isotretinoin, Tretinoin, Tazarotene Procedure number: EMEA/H/A-31/1446 Panretin EMEA/H/A-31/1446/C/000279/0037 Targretin EMEA/H/A-31/1446/C/000326/0043 Note: Assessment report as adopted by the PRAC and considered by the CHMP with all information of a commercially confidential nature deleted. 30 Churchill Place ● Canary Wharf ● London E14 5EU ● United Kingdom Telephone +44 (0)20 3660 6000 Facsimile +44 (0)20 3660 5555 Send a question via our website www.ema.europa.eu/contact An agency of the European Union © European Medicines Agency, 2018. Reproduction is authorised provided the source is acknowledged. Table of contents Table of contents ......................................................................................... 2 1. Information on the procedure ................................................................. 3 2. Scientific discussion ................................................................................ 3 2.1. Introduction......................................................................................................... 3 2.2. Clinical aspects .................................................................................................... 5 2.3. Data on efficacy ..................................................................................................
    [Show full text]
  • Acitretin; Adapalene; Alitretinoin; Bexarotene; Isotretinoin
    21 June 2018 EMA/261767/2018 Updated measures for pregnancy prevention during retinoid use Warning on possible risk of neuropsychiatric disorders also to be included for oral retinoids On 22 March 2018, the European Medicines Agency (EMA) completed its review of retinoid medicines, and confirmed that an update of measures for pregnancy prevention is needed. In addition, a warning on the possibility that neuropsychiatric disorders (such as depression, anxiety and mood changes) may occur will be included in the prescribing information for oral retinoids (those taken by mouth). Retinoids include the active substances acitretin, adapalene, alitretinoin, bexarotene, isotretinoin, tazarotene and tretinoin. They are taken by mouth or applied as creams or gels to treat several conditions mainly affecting the skin, including severe acne and psoriasis. Some retinoids are also used to treat certain forms of cancer. The review confirmed that oral retinoids can harm the unborn child and must not be used during pregnancy. In addition, the oral retinoids acitretin, alitretinoin and isotretinoin, which are used to treat conditions mainly affecting the skin, must be used in accordance with the conditions of a new pregnancy prevention programme by women able to have children. Topical retinoids (those applied to the skin) must also not be used during pregnancy, and by women planning to have a baby. More information is available below. Regarding the risk of neuropsychiatric disorders, the limitations of the available data did not allow to clearly establish whether this risk was due to the use of retinoids. However, considering that patients with severe skin conditions may be more vulnerable to neuropsychiatric disorders due to the nature of the disease, the prescribing information for oral retinoids will be updated to include a warning about this possible risk.
    [Show full text]
  • SUPPLEMENTARY FILE Cellular Fitnessphenotype of Cancer Target
    SUPPLEMENTARY FILE Cellular FitnessPhenotype of Cancer Target Genes in Cancer Therapeutics Bijesh George, P. Mukundan Pillai, Aswathy Mary Paul, Revikumar Amjesh, Kim Leitzel, Suhail M. Ali, Oleta Sandiford, Allan Lipton, Pranela Rameshwar, Gabriel N. Hortobagyi, Madhavan Radhakrishna Pillai, and Rakesh Kumar Supplementary Figures Supplementary Figure S1: Fitness-dependency of cellular targets of approved oncology drugs in cancer cell lines. A, Distribution of alterations in the cellular fitness in esophageal cancer cell lines upon selective knockdown of FSPS test gene. The values are plotted as boxplots with positive and negative changes in the cellular fitness for each cell line, represented by a single dot. B, Effect of knocking down of indicated targets in Head and Neck carcinoma cell lines. C, Distribution of 47 cancer targets of FDA-approved drugs, including, a subset of its 15 priority therapeutic targets in across cancer- types for which drugs targeting these cellular targets are approved. D, Distribution of 47 fitness targets across 19 cancer types for which drugs targeting these molecules are approved corresponds to the loss of Fitness score for were taken from Cancer Dependency Map (23). Supplementary Figure S2: Cellular targets of approved oncology drugs as excellent fitness genes in cancer-types for which drugs targeting these are not approved. Distribution of 43 cellular fitness genes with a significant loss of cellular fitness upon their depletion across peripheral nervous system, large intestine and ovarian cell lines
    [Show full text]
  • Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DIX to the HTSUS—Continued
    20558 Federal Register / Vol. 60, No. 80 / Wednesday, April 26, 1995 / Notices DEPARMENT OF THE TREASURY Services, U.S. Customs Service, 1301 TABLE 1.ÐPHARMACEUTICAL APPEN- Constitution Avenue NW, Washington, DIX TO THE HTSUSÐContinued Customs Service D.C. 20229 at (202) 927±1060. CAS No. Pharmaceutical [T.D. 95±33] Dated: April 14, 1995. 52±78±8 ..................... NORETHANDROLONE. A. W. Tennant, 52±86±8 ..................... HALOPERIDOL. Pharmaceutical Tables 1 and 3 of the Director, Office of Laboratories and Scientific 52±88±0 ..................... ATROPINE METHONITRATE. HTSUS 52±90±4 ..................... CYSTEINE. Services. 53±03±2 ..................... PREDNISONE. 53±06±5 ..................... CORTISONE. AGENCY: Customs Service, Department TABLE 1.ÐPHARMACEUTICAL 53±10±1 ..................... HYDROXYDIONE SODIUM SUCCI- of the Treasury. NATE. APPENDIX TO THE HTSUS 53±16±7 ..................... ESTRONE. ACTION: Listing of the products found in 53±18±9 ..................... BIETASERPINE. Table 1 and Table 3 of the CAS No. Pharmaceutical 53±19±0 ..................... MITOTANE. 53±31±6 ..................... MEDIBAZINE. Pharmaceutical Appendix to the N/A ............................. ACTAGARDIN. 53±33±8 ..................... PARAMETHASONE. Harmonized Tariff Schedule of the N/A ............................. ARDACIN. 53±34±9 ..................... FLUPREDNISOLONE. N/A ............................. BICIROMAB. 53±39±4 ..................... OXANDROLONE. United States of America in Chemical N/A ............................. CELUCLORAL. 53±43±0
    [Show full text]
  • The Genus Ochrobactrum As Major Opportunistic Pathogens
    microorganisms Review The Genus Ochrobactrum as Major Opportunistic Pathogens Michael P. Ryan 1,2 and J. Tony Pembroke 2,* 1 Department of Applied Sciences, Limerick Institute of Technology, Moylish V94 EC5T, Limerick, Ireland; [email protected] 2 Molecular Biochemistry Laboratory, Department of Chemical Sciences, School of Natural Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX2, Ireland * Correspondence: [email protected] Received: 22 October 2020; Accepted: 13 November 2020; Published: 16 November 2020 Abstract: Ochrobactrum species are non-enteric, Gram-negative organisms that are closely related to the genus Brucella. Since the designation of the genus in 1988, several distinct species have now been characterised and implicated as opportunistic pathogens in multiple outbreaks. Here, we examine the genus, its members, diagnostic tools used for identification, data from recent Ochrobactrum whole genome sequencing and the pathogenicity associated with reported Ochrobactrum infections. This review identified 128 instances of Ochrobactrum spp. infections that have been discussed in the literature. These findings indicate that infection review programs should consider investigation of possible Ochrobactrum spp. outbreaks if these bacteria are clinically isolated in more than one patient and that Ochrobactrum spp. are more important pathogens than previously thought. Keywords: Ochrobactrum; nosocomial infection; environmental bacteria 1. Introduction Gram-negative, non-fermenting bacteria are an emergent worry in medical situations and are becoming a growing cause of severe infections. Pathogens of this type are opportunistic and include many different bacterial species, such as Ralstonia spp., Pseudomonas aeruginosa, Sphingomonas paucimobilis and Brevundimonas spp. [1–5]. Gram-negative, non-fermenting bacteria can infect both patients undergoing treatments and individuals outside of a clinical setting with various underlying conditions or diseases.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev
    Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2008) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM GADOCOLETICUM 280776-87-6 ABAFUNGIN 129639-79-8 ACIDUM LIDADRONICUM 63132-38-7 ABAMECTIN 65195-55-3 ACIDUM SALCAPROZICUM 183990-46-7 ABANOQUIL 90402-40-7 ACIDUM SALCLOBUZICUM 387825-03-8 ABAPERIDONUM 183849-43-6 ACIFRAN 72420-38-3 ABARELIX 183552-38-7 ACIPIMOX 51037-30-0 ABATACEPTUM 332348-12-6 ACITAZANOLAST 114607-46-4 ABCIXIMAB 143653-53-6 ACITEMATE 101197-99-3 ABECARNIL 111841-85-1 ACITRETIN 55079-83-9 ABETIMUSUM 167362-48-3 ACIVICIN 42228-92-2 ABIRATERONE 154229-19-3 ACLANTATE 39633-62-0 ABITESARTAN 137882-98-5 ACLARUBICIN 57576-44-0 ABLUKAST 96566-25-5 ACLATONIUM NAPADISILATE 55077-30-0 ABRINEURINUM 178535-93-8 ACODAZOLE 79152-85-5 ABUNIDAZOLE 91017-58-2 ACOLBIFENUM 182167-02-8 ACADESINE 2627-69-2 ACONIAZIDE 13410-86-1 ACAMPROSATE
    [Show full text]