Volcanoes of New Mexico

Total Page:16

File Type:pdf, Size:1020Kb

Volcanoes of New Mexico Winter 2006 VOLCANOES OF NEW MEXICO Perhaps more than any other state in one of these enormous eruptions, as are the U.S., New Mexico offers an the striking landforms at City of Rocks enormously diverse record of volcanic State Park. activity. Many familiar and distinctive The shape of volcanoes, and the time New Mexico landscapes are composed that they take to form, vary widely with of volcanoes and volcanic rocks. The the style of eruption. Cinder cone vol- black, barren, lunar landscapes around canoes, such as Capulin Mountain and Grants and Carrizozo are recent lava Bandera Crater, are perfect cone-shaped flows, and the black flat-topped mesas hills. Cinder cones typically form around Albuquerque are remnants of quickly and are the result of a more-or- older lavas. Mount Taylor and Capulin less continuous single episode of Mountain are volcanoes, and Los eruption. An interesting example is the Alamos is built on the flank of a huge eruption that formed the famous volcano, one so large that it is best Mexican volcano, Paricutín. This vol- viewed from space. Ship Rock is the cano was born in a cornfield on eroded remnant of a volcano, as is February 20, 1943, following several Capulin Mountain in northeastern New Cabezon Peak. Although not as easy to Mexico is a classic cinder cone. The cutaway weeks of local earthquake activity. The recognize, many of the rocks in the view revealing the structure of a typical cinder volcano grew to a height of 150 feet on Gila Mountains and other southern cone (below) shows the layers of ash that its first day of eruption and was 500 and western New Mexico mountain accumulate around the central vent. The feet high 6 days later, reaching a final ranges are also volcanic. The youngest summit crater is often preserved in younger height of over 1,000 feet after 3 years features, such as Capulin Mountain, which volcanic rocks in New Mexico are a erupted about 55,000 years ago. Photo © of activity. scant 3,800 years old. At the other end Adriel Heisey. Most volcanoes, however, are larger of the age spectrum, volcanic rocks in and take longer to form. Stratovolcanoes, parts of northern New Mexico are more such as Mount Taylor and Sierra than a billion years old. Blanca, form from repeated eruptions Volcanoes are defined as vents over many thousands of years, and the through which magma (melted rock) resulting landforms are large, some- and gases erupt from below the earth’s times asymmetrical mountains. The surface. Volcanoes range widely in size, Jemez Mountains in north-central New from small cinder cones, such as duced several hundred cubic miles of Mexico are the geographic expression of Bandera Crater (near Grants), which volcanic rock in single events, hundreds a series of volcanic eruptions that can be climbed in a matter of minutes, of times larger than the May 18, 1980, occurred over the past 15 million years. to much larger landforms like the eruption of Mount St. Helens. The The two largest eruptions, which Jemez Mountains, and skyline-domi- Mogollon–Datil eruptions were larger occurred 1.2 and 1.6 million years ago, nating volcanoes like Mount Taylor and than any volcanic events that have produced the distinctive white-to- 12,000-foot-tall Sierra Blanca on the occurred in historic time, and the salmon-colored cliffs of Bandelier Tuff east edge of the Tularosa Basin. deposits from some of these events pro- that form a spectacular backdrop Eruptions from some of the largest duced sheets of rock several hundred around much of the area. These two New Mexico volcanoes, located in the miles across. The well-known very explosive eruptions poured hun- Mogollon–Datil volcanic field in the “Kneeling Nun” landform near Silver dreds of cubic miles of hot ash, pumice, southwestern part of the state, pro- City is formed from volcanic rock from and gas over the surrounding land- Published by the New Mexico Bureau of Geology and Mineral Resources • A Division of New Mexico Tech faults. The river flows are probably extinct, meaning that they through a series of broad are unlikely ever to erupt again. valleys created by this However, new volcanoes will certainly stretching process. The form within our state, though probably Jemez lineament is a not within our lifetimes. Dr. Allan more subtle crustal Sanford, a geophysicist at New Mexico feature, expressed as an Tech, has identified the Socorro Magma alignment of volcanic Body, a large body of molten rock vents, including (but not underlying the area from Bernardo to limited to) the south of Socorro. Many small earth- Zuni–Bandera, Mount quakes associated with the magma body Taylor, Jemez Mountain, have been detected using seismometers, and Raton–Clayton vol- and some have been felt by local resi- canic fields. This zone dents. These earthquakes are caused by may be the expression of swelling of the magma chamber, which a weakness formed fractures the overlying brittle rocks. where two very old The magma body is located 12 miles blocks of the earth’s beneath the earth’s surface but shows crust were pressed no signs of erupting soon. The swelling together. In addition to of the magma chamber is being studied various styles of crustal using high-precision global positioning weakness, volcanism in system (GPS) data and instruments New Mexico is also likely called tiltmeters. The combination of The major volcanic fields in New Mexico tend to follow two major zones of weakness in the crust and underlying mantle, related to upwelling these two instruments allows even tiny the Jemez lineament and the Rio Grande rift. of abnormally hot changes in the shape of the earth’s mantle material. surface over the magma body to be scape. The rocks were later eroded by detected. This research is being carried water, resulting in the beautiful land- Active, Dormant, or Extinct? out by Los Alamos National Laboratory scape we see today. It is difficult to Volcanoes may be classified as active, geologist Andy Newman, as well as recognize the Jemez Mountains as a dormant, or extinct. An active volcano bureau geologists David Love, Bruce volcanic landform because they are so is one that is emitting lava or volcanic Allen, and Richard Chamberlin. The large. However, on a digital elevation gas. A dormant volcano is not actively magma body’s activity is being closely map (like the one shown on page 3), erupting, but, based on patterns of past monitored by the New Mexico Tech the volcanic shape and large central activity, is likely to erupt again. With geophysics program (on the Web at crater (caldera) become evident. the possible exception of the Jemez www.ees.nmt.edu/Geop/NM_Seismolo Volcanism in New Mexico Mountains, all volcanoes in New Mexico gy.html), and any change in activity Volcanic activity occurs in New Mexico and elsewhere in the western United States because of the local nature of the earth’s crust and mantle. The crust in New Mexico is being stretched by regional plate tectonic forces. This stretching produces areas of weakness in the brittle crust, allowing magma to work its way upward. The very large volcanic field represented by the Jemez Mountains occurs at the intersection of two zones of crustal weakness, the Rio Grande rift and the Jemez lineament. The Rio Grande rift is a major zone of crustal weakness running north to south through New Mexico that formed in order to accommodate stretching of the crust in an east-to- west direction. The surface expression of the Rio Grande rift is a broad, shallow valley caused by down-dropped A complete section of Bandelier Tuff is exposed along NM–4 north of Bandelier National blocks of the crust along rift-bounding Monument. NEW MEXICO EARTH MATTERS 2 WINTER 2006 outward from the main Ship Rock landform are also part of the original volcano. These walls are actually volcanic dikes, formed when hot magma moved laterally through cracks in the earth’s surface at the time of the eruption, cooled, and solidifed while still in the cracks. Like the central part of the volcano, the dikes are harder than the sedimentary rocks surrounding them and remained standing while the sedimentary rocks weathered away. Similar dikes are found In this oblique digital in many places throughout New elevation model of the Jemez Mountains, the shape of the Valles Mexico, typically appearing as thick, caldera becomes very clear. The Jemez black walls running across the land- River occupies the steep canyon running scape. Some of these dikes can be south from the caldera rim in the fore- traced across the earth’s surface for as ground. Although there have been no major much as 45 miles. would be carefully analyzed to assess eruptions from the Jemez Mountains vol- the possibility of an eruption. canic field in the last million years, there Our Youngest Volcanoes have been a number of smaller eruptions, The large explosive events that In contrast to violent eruptions like formed the upper part of the Bandelier the most recent of which occurred about 60,000 years ago. Bandelier and Ship Rock, most of the Tuff in the Jemez Mountain volcanic recent volcanic activity in New Mexico field occurred in the relatively recent cold ground water. The resulting vio- has been of a more passive eruption geologic past. No eruptions this large lent steam explosions excavated a deep style. This includes the 3,800-year-old have occurred anywhere in the world in depression in the earth’s surface. McCartys and the 10,000-year-old historic time, and only six have Magma and a variety of rock fragments Bandera Crater lava flows in the occurred in the U.S.
Recommended publications
  • Source to Surface Model of Monogenetic Volcanism: a Critical Review
    Downloaded from http://sp.lyellcollection.org/ by guest on September 28, 2021 Source to surface model of monogenetic volcanism: a critical review I. E. M. SMITH1 &K.NE´ METH2* 1School of Environment, University of Auckland, Auckland, New Zealand 2Volcanic Risk Solutions, Massey University, Palmerston North 4442, New Zealand *Correspondence: [email protected] Abstract: Small-scale volcanic systems are the most widespread type of volcanism on Earth and occur in all of the main tectonic settings. Most commonly, these systems erupt basaltic magmas within a wide compositional range from strongly silica undersaturated to saturated and oversatu- rated; less commonly, the spectrum includes more siliceous compositions. Small-scale volcanic systems are commonly monogenetic in the sense that they are represented at the Earth’s surface by fields of small volcanoes, each the product of a temporally restricted eruption of a composition- ally distinct batch of magma, and this is in contrast to polygenetic systems characterized by rela- tively large edifices built by multiple eruptions over longer periods of time involving magmas with diverse origins. Eruption styles of small-scale volcanoes range from pyroclastic to effusive, and are strongly controlled by the relative influence of the characteristics of the magmatic system and the surface environment. Gold Open Access: This article is published under the terms of the CC-BY 3.0 license. Small-scale basaltic magmatic systems characteris- hazards associated with eruptions, and this is tically occur at the Earth’s surface as fields of small particularly true where volcanic fields are in close monogenetic volcanoes. These volcanoes are the proximity to population centres.
    [Show full text]
  • Stratigraphic Nomenclature of ' Volcanic Rocks in the Jemez Mountains, New Mexico
    -» Stratigraphic Nomenclature of ' Volcanic Rocks in the Jemez Mountains, New Mexico By R. A. BAILEY, R. L. SMITH, and C. S. ROSS CONTRIBUTIONS TO STRATIGRAPHY » GEOLOGICAL SURVEY BULLETIN 1274-P New Stratigraphic names and revisions in nomenclature of upper Tertiary and , Quaternary volcanic rocks in the Jemez Mountains UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director U.S. GOVERNMENT PRINTING OFFICE WASHINGTON : 1969 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 15 cents (paper cover) CONTENTS Page Abstract.._..._________-...______.._-.._._____.. PI Introduction. -_-________.._.____-_------___-_______------_-_---_-_ 1 General relations._____-___________--_--___-__--_-___-----___---__. 2 Keres Group..__________________--------_-___-_------------_------ 2 Canovas Canyon Rhyolite..__-__-_---_________---___-____-_--__ 5 Paliza Canyon Formation.___-_________-__-_-__-__-_-_______--- 6 Bearhead Rhyolite-___________________________________________ 8 Cochiti Formation.._______________________________________________ 8 Polvadera Group..______________-__-_------________--_-______---__ 10 Lobato Basalt______________________________________________ 10 Tschicoma Formation_______-__-_-____---_-__-______-______-- 11 El Rechuelos Rhyolite--_____---------_--------------_-_------- 11 Puye Formation_________________------___________-_--______-.__- 12 Tewa Group__._...._.______........___._.___.____......___...__ 12 Bandelier Tuff.______________.______________... 13 Tsankawi Pumice Bed._____________________________________ 14 Valles Rhyolite______.__-___---_____________.________..__ 15 Deer Canyon Member.______-_____-__.____--_--___-__-____ 15 Redondo Creek Member.__________________________________ 15 Valle Grande Member____-__-_--___-___--_-____-___-._-.__ 16 Battleship Rock Member...______________________________ 17 El Cajete Member____..._____________________ 17 Banco Bonito Member.___-_--_---_-_----_---_----._____--- 18 References .
    [Show full text]
  • Geothermal Hydrology of Valles Caldera and the Southwestern Jemez Mountains, New Mexico
    GEOTHERMAL HYDROLOGY OF VALLES CALDERA AND THE SOUTHWESTERN JEMEZ MOUNTAINS, NEW MEXICO U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4067 Prepared in cooperation with the OFFICE OF THE STATE ENGINEER GEOTHERMAL HYDROLOGY OF VALLES CALDERA AND THE SOUTHWESTERN JEMEZ MOUNTAINS, NEW MEXICO By Frank W. Trainer, Robert J. Rogers, and Michael L. Sorey U.S. GEOLOGICAL SURVEY Water-Resources Investigations Report 00-4067 Prepared in cooperation with the OFFICE OF THE STATE ENGINEER Albuquerque, New Mexico 2000 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Charles G. Groat, Director The use of firm, trade, and brand names in this report is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey. For additional information write to: Copies of this report can be purchased from: District Chief U.S. Geological Survey U.S. Geological Survey Information Services Water Resources Division Box 25286 5338 Montgomery NE, Suite 400 Denver, CO 80225-0286 Albuquerque, NM 87109-1311 Information regarding research and data-collection programs of the U.S. Geological Survey is available on the Internet via the World Wide Web. You may connect to the Home Page for the New Mexico District Office using the URL: http://nm.water.usgs.gov CONTENTS Page Abstract............................................................. 1 Introduction ........................................ 2 Purpose and scope........................................................................................................................
    [Show full text]
  • The Lower Permian Abo Formation in the Fra Cristobal and Caballo Mountains, Sierra County, New Mexico Spencer G
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/63 The Lower Permian Abo Formation in the Fra Cristobal and Caballo Mountains, Sierra County, New Mexico Spencer G. Lucas, Karl Krainer, Dan S. Chaney, William A. DiMichele, Sebastian Voigt, David S. Berman, and Amy C. Henrici, 2012, pp. 345-376 in: Geology of the Warm Springs Region, Lucas, Spencer G.; McLemore, Virginia T.; Lueth, Virgil W.; Spielmann, Justin A.; Krainer, Karl, New Mexico Geological Society 63rd Annual Fall Field Conference Guidebook, 580 p. This is one of many related papers that were included in the 2012 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Southwest NM Publication List
    Southwest New Mexico Publication Inventory Draft Source of Document/Search Purchase Topic Category Keywords County Title Author Date Publication/Journal/Publisher Type of Document Method Price Geology 1 Geology geology, seismic Southwestern NM Six regionally extensive upper-crustal Ackermann, H.D., L.W. 1994 U.S. Geological Survey, Open-File Report 94- Electronic file USGS publication search refraction profiles, seismic refraction profiles in Southwest New Pankratz, D.P. Klein 695 (DJVU) http://pubs.er.usgs.gov/usgspubs/ southwestern New Mexico ofr/ofr94695 Mexico, 2 Geology Geology, Southwestern NM Magmatism and metamorphism at 1.46 Ga in Amato, J.M., A.O. 2008 In New Mexico Geological Society Fall Field Paper in Book http://nmgs.nmt.edu/publications/g $45.00 magmatism, the Burro Mountains, southwestern New Boullion, and A.E. Conference Guidebook - 59, Geology of the Gila uidebooks/59/ metamorphism, Mexico Sanders Wilderness-Silver City area, 107-116. Burro Mountains, southwestern New Mexico 3 Geology Geology, mineral Catron County Geology and mineral resources of York Anderson, O.J. 1986 New Mexico Bureau of Mines and Mineral Electronic file (PDF) NMBGMR search $10.00 for resources, York Ranch SE quadrangle, Cibola and Catron Resources Open File Report 220A, 22 pages. <http://geoinfo.nmt.edu/publicatio CD Ranch, Fence Counties, New Mexico ns/openfile/details.cfml?Volume=2 Lake, Catron, 20A> Cibola 4 Geology Geology, Zuni Salt Catron County Geology of the Zuni Salt Lake 7 1/2 Minute Anderson, O.J. 1994 New Mexico Bureau of Mines and
    [Show full text]
  • Identification and Location of Seismic Signals at the Nirano Mud Volcanic
    Geophysical Research Abstracts Vol. 20, EGU2018-17534-1, 2018 EGU General Assembly 2018 © Author(s) 2018. CC Attribution 4.0 license. Identification and location of seismic signals at the Nirano Mud Volcanic Field, Italy Verónica Antunes (1), Thomas Planès (1), Matteo Lupi (1), Aurore Carrier (1), Anne Obermann (2), Adriano Mazzini (3), Tullio Ricci (4), Alessandra Sciarra (4), and Milena Moretti (4) (1) Department of Earth Sciences, University of Geneva, Geneva, Switzerland ([email protected]), (2) ETH Zürich, Erdbebendienst (SED), Zurich, Switzerland, (3) Centre for Earth Evolution and Dynamics (CEED), University of Oslo, Norway, (4) Istituto Nazionale di Geofisica e Vulcanologia (INGV), Rome, Italy Mud volcanoes are geological phenomena characterized by elevated fluid pressures at depth. This phenomena are only recently being investigated with passive seismic methods. To identify and characterize seismic signals produced at the Nirano Mud Volcano, Italy, we deployed a temporary network composed of 11 stations. During the three months survey period, the stations repeatedly recorded high frequency signals. We identi- fied two types of drumbeat signals. The first has duration of about 50s and a frequency range of 10-45 Hz. The second signal has a duration of about 4s and a frequency range of 5-45 Hz. The drumbeat signals are not recorded on all the stations and their amplitude varies according to the detected signal type, suggesting a marked attenuation in the region. We located the source region of the drumbeat signals at the north eastern-most region of the mud volcano system, using cross-correlation methods between station pairs. This observation is in agreement with geological observations: the most active part of the system is at the edge of the caldera where the fault controlled collapse occurs, hence facilitating the rise of deep fluids.
    [Show full text]
  • GEOLOGIC MAP of the MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE of SOUTHERN WASHINGTON by Wes Hildreth and Judy Fierstein
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP 1-2460 U.S. GEOLOGICAL SURVEY GEOLOGIC MAP OF THE MOUNT ADAMS VOLCANIC FIELD, CASCADE RANGE OF SOUTHERN WASHINGTON By Wes Hildreth and Judy Fierstein When I climbed Mount Adams {17-18 August 1945] about 1950 m (6400') most of the landscape is mantled I think I found the answer to the question of why men by dense forests and huckleberry thickets. Ten radial stake everything to reach these peaks, yet obtain no glaciers and the summit icecap today cover only about visible reward for their exhaustion... Man's greatest 2.5 percent (16 km2) of the cone, but in latest Pleis­ experience-the one that brings supreme exultation­ tocene time (25-11 ka) as much as 80 percent of Mount is spiritual, not physical. It is the catching of some Adams was under ice. The volcano is drained radially vision of the universe and translating it into a poem by numerous tributaries of the Klickitat, White Salmon, or work of art ... Lewis, and Cis pus Rivers (figs. 1, 2), all of which ulti­ William 0. Douglas mately flow into the Columbia. Most of Mount Adams and a vast area west of it are Of Men and Mountains administered by the U.S. Forest Service, which has long had the dual charge of protecting the Wilderness Area and of providing a network of logging roads almost INTRODUCTION everywhere else. The northeast quadrant of the moun­ One of the dominating peaks of the Pacific North­ tain, however, lies within a part of the Yakima Indian west, Mount Adams, stands astride the Cascade crest, Reservation that is open solely to enrolled members of towering 3 km above the surrounding valleys.
    [Show full text]
  • Plan for the Recovery of Desert Bighorn Sheep in New Mexico 2003-2013
    PLAN FOR THE RECOVERY OF DESERT BIGHORN SHEEP IN NEW MEXICO 2003-2013 New Mexico Department of Game and Fish August 2003 Executive Summary Desert bighorn sheep (Ovis canadensis mexicana) were once prolific in New Mexico, occupying most arid mountain ranges in the southern part of the state. Over-hunting, and disease transmission from livestock are 2 primary reasons for the dramatic decline in bighorn sheep numbers throughout the west during the early 1900s. In 1980, desert bighorn were placed on New Mexico’s endangered species list. From 1992-2003, approximately 25% of bighorn were radiocollared to learn causes of mortality driving this species towards extinction. Approximately 85% of all known-cause non-hunter killed radiocollared individuals have been killed by mountain lions. Despite the lack of a native ungulate prey base in desert bighorn range, mountain lion populations remain high, leading to the hypothesis that mountain lions are subsidized predators feeding on exotic ungulates, including cattle. Lack of fine fuels from cattle grazing have resulted in a lack of fire on the landscape. This has lead to increased woody vegetation which inhibits bighorn’s ability to detect and escape from predators. Bighorn numbers in spring 2003 in New Mexico totaled 213 in the wild, and 91 at the Red Rock captive breeding facility. This is in spite of releasing 266 bighorn from Red Rock and 30 bighorn from Arizona between 1979 and 2002. Several existing herds of desert bighorn likely need an augmentation to prevent them from going extinct. The presence of domestic sheep and Barbary sheep, which pose risks to bighorn from fatal disease transmission and aggression, respectively, preclude reintroduction onto many unoccupied mountain ranges.
    [Show full text]
  • Deposits of the Cerro Toledo Interval in Bandelier National Monument, New Mexico Elaine P
    New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/58 The time between the tuffs: Deposits of the Cerro Toledo interval in Bandelier National Monument, New Mexico Elaine P. Jacobs and Shari A. Kelley, 2007, pp. 308-315 in: Geology of the Jemez Region II, Kues, Barry S., Kelley, Shari A., Lueth, Virgil W.; [eds.], New Mexico Geological Society 58th Annual Fall Field Conference Guidebook, 499 p. This is one of many related papers that were included in the 2007 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.
    [Show full text]
  • NEW STUDY of the CERRO SECO RHYOLITE, VALLES CALDERA, NEW MEXICO a Thesis Presented to the Faculty of the Department of Geology
    NEW STUDY OF THE CERRO SECO RHYOLITE, VALLES CALDERA, NEW MEXICO A Thesis Presented to the faculty of the Department of Geology California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Geology by Robin L. Wham SPRING 2018 NEW STUDY OF THE CERRO SECO RHYOLITE, VALLES CALDERA, NEW MEXICO A Thesis by Robin L. Wham Approved by: __________________________________, Committee Chair Lisa Hammersley __________________________________, Second Reader Amy Wagner __________________________________, Third Reader Fraser Goff ____________________________ Date ii Student: Robin L. Wham I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the thesis. __________________________, Department Chair ___________________ Tim Horner Date Department of Geology iii Abstract of NEW STUDY OF THE CERRO SECO RHYOLITE, VALLES CALDERA, NEW MEXICO by Robin L. Wham Cerro Seco is one of six post-caldera rhyolite domes in the northern moat of the Valles Caldera, New Mexico. This study presents detailed mapping as well as petrographic and geochemical analysis of Cerro Seco’s eruptive units and surrounding lacustrine deposits. Cerro Seco’s eruptive members were previously mapped as three separate units: two flow units (lavas Qvse1 and Qvse2), and a pyroclastic unit Qvset. This study has revealed that the pyroclastic unit should be classified as two units: one ignimbrite and one hydromagmatic tuff. Outcrop morphology and pumice clast morphology support a hydromagmatic eruption for the newly classified unit; geochemical analysis illustrates that significant post-emplacement alteration involving water also occurred.
    [Show full text]
  • The Boring Volcanic Field of the Portland-Vancouver Area, Oregon and Washington: Tectonically Anomalous Forearc Volcanism in an Urban Setting
    Downloaded from fieldguides.gsapubs.org on April 29, 2010 The Geological Society of America Field Guide 15 2009 The Boring Volcanic Field of the Portland-Vancouver area, Oregon and Washington: Tectonically anomalous forearc volcanism in an urban setting Russell C. Evarts U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA Richard M. Conrey GeoAnalytical Laboratory, School of Earth and Environmental Sciences, Washington State University, Pullman, Washington 99164, USA Robert J. Fleck Jonathan T. Hagstrum U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025, USA ABSTRACT More than 80 small volcanoes are scattered throughout the Portland-Vancouver metropolitan area of northwestern Oregon and southwestern Washington. These vol- canoes constitute the Boring Volcanic Field, which is centered in the Neogene Port- land Basin and merges to the east with coeval volcanic centers of the High Cascade volcanic arc. Although the character of volcanic activity is typical of many mono- genetic volcanic fi elds, its tectonic setting is not, being located in the forearc of the Cascadia subduction system well trenchward of the volcanic-arc axis. The history and petrology of this anomalous volcanic fi eld have been elucidated by a comprehensive program of geologic mapping, geochemistry, 40Ar/39Ar geochronology, and paleomag- netic studies. Volcanism began at 2.6 Ma with eruption of low-K tholeiite and related lavas in the southern part of the Portland Basin. At 1.6 Ma, following a hiatus of ~0.8 m.y., similar lavas erupted a few kilometers to the north, after which volcanism became widely dispersed, compositionally variable, and more or less continuous, with an average recurrence interval of 15,000 yr.
    [Show full text]