3. Template Based Enantioselective Synthesis of Α-Quaternary Hydantoins
Total Page:16
File Type:pdf, Size:1020Kb
ACTA DE GRADO DE DOCTOR O DOCTORA ACTA DE DEFENSA DE TESIS DOCTORAL DOCTORANDO DON. Joseba Izquierdo Arruferia TITULO DE LA TESIS: New Approaches to Optically Active 2-tert-Alkyl Azaaryl Compounds and 5,5-Disubstituted Hydantoins El Tribunal designado por la Comisión de Postgrado de la UPV/EHU para calificar la Tesis Doctoral arriba indicada y reunido en el día de la fecha, una vez efectuada la defensa por el/la doctorando/a y contestadas las objeciones y/o sugerencias que se le han formulado, ha otorgado por___________________la calificación de: unanimidad ó mayoría SOBRESALIENTE / NOTABLE / APROBADO / NO APTO Idioma/s de defensa (en caso de más de un idioma, especificar porcentaje defendido en cada idioma): Castellano _______________________________________________________________ Euskera _______________________________________________________________ Otros Idiomas (especificar cuál/cuales y porcentaje) ______________________________ En a de de EL/LA PRESIDENTE/A, EL/LA SECRETARIO/A, Fdo.: Fdo.: Dr/a: ____________________ Dr/a: ______________________ VOCAL 1º, VOCAL 2º, VOCAL 3º, Fdo.: Fdo.: Fdo.: Dr/a: Dr/a: Dr/a: EL/LA DOCTORANDO/A, Fdo.: _____________________ Eskerrak Esta Tesis Doctoral ha sido realizada en el Departamento de Química Orgánica I de la Facultad de Ciencias Químicas de San Sebastián, Universidad del País Vasco (UPV-EHU), bajo la dirección del Dr. Claudio Palomo Nicolau y el Dr. Aitor Landa Álvarez, a quienes expreso mi más sincero agradecimiento primero por darme la oportunidad de desarrollar esta tesis doctoral en este departamento y por su dedicación y esfuerzo durante el desarrollo de este trabajo. Asimismo, agradezco a la Universidad del País Vasco-Euskal Herriko Unibertsitatea la concesión de una beca predoctoral que me ha dado la oportunidad de realizar el trabajo aquí recogido. También me gustaría agradecer al resto del grupo de profesores que forman parte de este departamento por estar siempre dispuestos a prestar su ayuda. Eskerrik asko Labokideei emandako momentu onengatik (bazkalorduetan, kongresuetan, hondartzan, “eskiatzen”…) eta beti laguntzeko prest egon zaretelako. Zuei esker urte hauek berehala pasatu dira, aupa zuek! Finalmente un agradecimiento especial a mi familia, por el apoyo que me han prestado en todo momento. Eskerrik asko denoi SUMMARY INTRODUCTION The field of asymmetric catalysis is a lively, fascinating and highly competitive research field in organic chemistry. The continuous need for novel asymmetric reactions as well as the demands for cheaper and more environmentally friendly catalytic processes is a challenge for all chemists in this field. The search for new pronucleophiles to obtain tetrasubstituted asymmetric centers using chiral organocatalysts has been the subject of intense study in recent years.1 This task has gained a great concern due to the fact that optical purity is now a strict requirement for the commercialization of new pharmaceutical products.2 On the one hand, 2-substituted pyridines, and more generally azaarenes, have attracted great part of attention since these structures are frequent in chiral compounds, as in pharmaceuticals or chiral ligands (Figure 1). Figure 1. One of the routes to obtain α-functionalized chiral 2-alkylpyridines by catalytic methods is by using 2-alkylpyridines as pronucleophiles (Scheme 1). 1 a) Quasdorf, K. W.; Overman, L. E. Nature 2014, 516, 181–191. b) Liu, Y.; Han, S.-J.; Liu, W.-B.; Stoltz, B. M. Acc. Chem. Res. 2015, 48, 740–751. For an all-carbon quaternary centers in natural products and medicinal chemistry, see: c) Ling, T.; Rivas, F. Tetrahedron 2016, 43, 6729–6777. 2 a) Kasprzyk-Hordern, B. Chem. Soc. Rev. 2010, 39, 4466–4503. b) Chiral Drugs: Chemistry and Biological Action (Lin, G.-Q. & You, Q.-D. & Chen, J.-F. ed., John Wiley & Sons, Inc.) 2011. c) Molecular, Clinical and Environmental Toxicology, Vol. 3 (Luch, A. ed., Springer Heidelberg Dondrecht London New York) 2012. Pages 413–436. Scheme 1. Despite the fact that the asymmetric addition of 2-alkylazaarenes to different electrophiles has been carried out with more or less success,3 the methods displayed present some limitations: 1. If the alkyl azaarene is not activated, more than stoichiometric amounts of a strong base are needed. 2. The use of preactivated substrates: EWG in either the azaarene ring or the Cα or both positions is needed. 3. None of these methods address the generation of a quaternary Cα- stereocenter, an issue of general importance in organic synthesis, and of particular significance to the present context given the interest of quaternary compounds as potential pharmacophores. On the other hand, hydantoins constitute a family of nitrogen heterocycles that are present in naturally occurring substances and medicinal compounds (Figure 2).4 However, only few examples to access to optically active quaternary hydantoins involving new-carbon bond forming reaction have been reported.5 3 a) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092–14093. b) Best, D.; Kujawa, S.; Lam, H. W. J. Am. Chem. Soc. 2012, 134, 18193–18196. c) Fallan, C.; Lam, H. W. Chem. Eur. J. 2012, 18, 11214–11218. d) Vera, S.; Liu, Y.; Marigo, M.; Escudero-Adán, E.; Melchiorre, P. Synlett 2011, 2011, 489– 494. 4 For reviews of hydantoin chemistry, see: a) López, C. A.; Trigo, G. G. Adv. Heterocycl. Chem. 1985, 38, 177–228. b) Meusel, M.; Gütschow, M. Org. Prep. Proced. Int. 2004, 36, 391–443. c) Konnert, L.; Lamaty, F.; Martinez, J.; Colacino, E. Chem. Rev. 2017, 117, 13757–13809. 5 a t in on C ern n ez- ieto a o e , J.; Clayden, J. Angew. Chem. Int. Ed. 2015, 54, 8961– 8965. b) Maury, J.; Clayden, J. J. Org. Chem. 2015, 80, 10757−10768. Also, see: c) Tomohara, K.; Yoshimura, T.; Hyakutake, R.; Yang, P.; Kawabata, T. J. Am. Chem. Soc. 2013, 135, 13294–13297. Figure 2. Recently, our group introduced 1H-imidazol-4(5H)-ones 1 as novel nuchleophile in asymmetric synthesis.6 These compounds allowed a highly efficient construction of a tetrasubstituted stereogenic center and a direct access to 5,5-disubstituted hydantoins (3) and N-substituted (alkyl, allyl, aryl) α-amino acid derivatives (4) (Scheme 2). Scheme 2. 6 Etxabe, J.; Izquierdo, J.; Landa, A.; Oiarbide, M.; Palomo, C. Angew. Chem. Int. Ed. 2015, 54, 6883−6887. OBJECTIVES The first objective would be to synthesize highly activated 2-(cyanomethyl)azaarene N-oxides and test them for the first time as effective pronucleophiles for the addition to Michael acceptors utilizing a Brønsted base catalyst. This reaction would lead to otherwi e e u ive optica y active α-quaternary alkylazaarenes, compounds that have not been described previously (Scheme 3). Scheme 3. The second objective of this work would be, following our previous work concerning the synthesis of 5,5-disubstituted hydantoins 3 from 1H-imidazol-4(5H)-ones 1 (Scheme 2), the enantioselective synthesis of 5,5-disubstituted hydantoins 7 via Brønsted Base/H- bond donors catalyzed Michael reactions utilizing new 1H-imidazol-4(5H)ones 5 and 1H- imidazol-5(4H)ones 6 as pronucleophile templates (Scheme 4). If successful, a broad- scope approach for the enantioselective synthesis of diversely 1,3,5-substituted hydantoins would be at hand. Scheme 4. RESULTS AND DISCUSION CHAPTER 2 We envisioned that the 2-cyanoalkylpyridine could be good candidate to be deprotonated under Brønsted base catalysis, due to the incorporation of two EWG groups (nitrile and phenyl groups in the Cα po ition of the azaarene an be a e to different electrophiles (Figure 3). Figure 3. Proposed reaction for the investigation. Firstly, we evaluated several known bifunctional catalysts containing a Brønsted base and a H bond donor functionalities for the addition of 2-phenyl-2-(2-pyridyl)acetonitrile 8 to α’-hydroxy enone 107 with poor conversion and selectivities. To increase the low reactivity of the nucleophile we decided to activate it by using the azaarene N-oxide 9 (Figure 4). On the one side, it is well known that the oxidation of the pyridine increases the acidity of the Cα8 and on the other i e the →O group cou work as another strong coordinating site for catalyst binding.9 10 Figure 4. We show that the N-oxide group in compound 9 plays a strategic role as a removable activating and stereodirecting element in conjunction with newly designed multifunctional squaramide-Brønsted base catalysts bearing a bulky silyl group (Figure 5). 7 α’-Hydroxy enones: Michael aceptors recently introduced by our group and others as α,β-unsaturated carboxylic acid surrogates through simple oxidative cleavage of the ketol unit, Badiola, E.; Fiser, B.; Gomez-Bengoa, E.; Mielgo, A.; Olaizola, I.; Urruzuno, I.; García, J. M.; Odriozola, J. M.; Razkin, J.; Oiarbide, M.; Palomo. C. J. Am. Chem. Soc. 2014, 136, 17869–17881. 8 2-Alkylpyridine N-oxides are more acidic than the parent 2-alkylpyridines in about 3–4 pKa units in DMSO: a) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456−463. b) http://www.chem.wisc.edu/areas/reich/pkatable/. c) Evans pKa table: http://evans.rc.fas.harvard.edu/pdf/evans_pKa_table.pdf/. 9 The oxygen atom in the N-oxide has stronger dipole than the oxygen atoms of other common oxo donor such as alcohols, ethers, and amides. a) Karayannis, N. M. Coord. Chem. Rev. 1973, 11, 93−159. b) Chelucci, G.; Murineddu, G.; Pinna, G. A. Tetrahedon: Asymmetry 2004, 15, 1373−1389. c) Malkov, A. V.; Kočo çý P Eur. J. Org. Chem. 2007, 2007, 29−36. d) Liu, X.; Lin, L.; Feng, X. Acc. Chem. Res. 2011, 44, 574−587. e) Desimoni, G.; Faita, G.; Quadrelli, P. Chem. Rev. 2014, 114, 6081−6129. Figure 5. The reactions carried out with this new type of multifunctional organocatalyst yielded the desired products with very good performance and excellent enantioselectivity (Scheme 5). Scheme 5. The detailed mechanism of these catalytic transformation as well as the precise role played by each element involved remains unclear.