Renewable Energy Powered Desalination Systems: Technologies and Market Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy Powered Desalination Systems: Technologies and Market Analysis UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE ENGENHARIA GEOGRÁFICA, GEOFÍSICA E ENERGIA Renewable Energy Powered Desalination Systems: Technologies and Market Analysis Francisco Diogo Abreu Santos Moniz Azevedo Dissertação de Mestrado Integrado em Engenharia da Energia e do Ambiente Mestrado Integrado em Engenharia da Energia e do Ambiente 2014 UNIVERSIDADE DE LISBOA FACULDADE DE CIÊNCIAS DEPARTAMENTO DE ENGENHARIA GEOGRÁFICA, GEOFÍSICA E ENERGIA Renewable Energy Powered Desalination Systems: Technologies and Market Analysis Francisco Diogo Abreu Santos Moniz Azevedo Dissertação de Mestrado Integrado em Engenharia da Energia e do Ambiente Mestrado Integrado em Engenharia da Energia e do Ambiente Orientador: Prof. Doutor Jorge Maia Alves 2014 Abstract Water desalination is becoming a cost-effective solution to combat water scarcity in various areas of the planet. However, desalination is an energy-intensive process and most of the world’s plants are currently powered by conventional energy production. As the costs of fossil fuels increase, their operation becomes increasingly expensive and with the additional costs of pollution and greenhouse gas emissions. Hence, the integration of renewable energy production with desalination is increasingly attractive. This thesis explores renewable energy-powered desalination technologies and how they can represent a sustainable solution to resolve water scarcity in diverse areas of the planet. Keywords: Desalination; Renewable Energy; Water Scarcity; Resumo A dessalinização de água está a tornar-se uma solução economicamente viável para combater a escassez de água em várias regiões do planeta. No entanto, este processo consome bastante energia e a maioria das centrais mundiais são atualmente alimentadas por fontes de energia convencional. Com o custo dos combustíveis fósseis a aumentar, a sua operação torna-se cada vez mais onerosa e com as dificuldades adicionais da poluição e das emissões de gases de efeito estufa. Assim, a integração da produção de energias renováveis com a dessalinização é cada vez mais atraente. Este trabalho explora tecnologias de dessalinização alimentadas por energias renováveis e como estas podem representar uma solução sustentável para resolver a escassez de água em diversas regiões do planeta. Palavras-Chave: dessalinização; energias renováveis; escassez de água; Table of Contents Abstract .................................................................................................................................................. iii Resumo ................................................................................................................................................... iv Table of Contents .................................................................................................................................... v List of Figures ....................................................................................................................................... vii List of Tables ........................................................................................................................................ viii List of Acronyms .................................................................................................................................... ix Acknowledgements ................................................................................................................................ xi 1. Introduction ..................................................................................................................................... 1 1.1 Water Scarcity ......................................................................................................................... 2 1.2 The Energy-Water Nexus ........................................................................................................ 6 2. Desalination Technologies .............................................................................................................. 9 2.1 Thermal Desalination ............................................................................................................ 10 2.1.1 Multi-Stage Flash .......................................................................................................... 10 2.1.2 Multi Effect Distillation ................................................................................................ 11 2.1.3 Vapour Compression ..................................................................................................... 12 2.2 Membrane Desalination ........................................................................................................ 13 2.2.1 Electrodialysis ............................................................................................................... 13 2.2.1 Membrane Distillation ................................................................................................... 14 2.2.2 Reverse Osmosis ........................................................................................................... 15 2.3 Energy Requirements ............................................................................................................ 18 2.4 Environmental Impact ........................................................................................................... 20 3. Renewable Energy-Powered Desalination .................................................................................... 23 3.1 Solar-Powered Desalination .................................................................................................. 24 3.1.1 Solar Stills ..................................................................................................................... 24 3.1.2 Solar Ponds .................................................................................................................... 25 3.1.3 Indirect Solar Thermal ................................................................................................... 26 3.1.4 Solar Photovoltaic ......................................................................................................... 30 3.2 Wind-Powered Desalination .................................................................................................. 32 3.3 Geothermal-Powered Desalination ........................................................................................ 33 3.4 Hybrid-Powered Desalination ............................................................................................... 34 4. Desalination Markets ..................................................................................................................... 35 4.1 Middle East and North Africa (MENA) Region ................................................................... 37 4.1.1 Saudi Arabia .................................................................................................................. 40 4.2 Other Areas............................................................................................................................ 43 4.3 Economic Assessment ........................................................................................................... 45 5. Conclusions ................................................................................................................................... 51 6. References ..................................................................................................................................... 53 List of Figures Figure 1: Trend in population density and water consumption [6] ......................................................... 2 Figure 2: Physical and Economic surface water scarcity (2007); [7] as in [4] ........................................ 3 Figure 3: Percentage of country populations that will be water stressed in the future [8] ...................... 4 Figure 4: Actual renewable water resources (in m3) per capita and per year, in 2011 [4] ...................... 4 Figure 5: Total Renewable Water Resources (m3 per capita): Projections until 2050 [4] ...................... 5 Figure 6: Water footprint of energy generation by fuel; Water use for electricity generation by cooling technology [4] ......................................................................................................................................... 7 Figure 7: Dry and automated cleaning at Ketura Sun ............................................................................. 8 Figure 8: Diagram of MSF process [16] ............................................................................................... 10 Figure 9: Diagram of MED process [16] ............................................................................................... 11 Figure 10: Fujairah F2 MED plant in United Arab Emirates ................................................................ 12 Figure 11: Diagram of VC process [16] ................................................................................................ 12 Figure 12: Effective range of membrane processes and applications [49] ............................................ 13 Figure 13: Scheme of ED process ......................................................................................................... 13 Figure 14: principle of membrane distillation ....................................................................................... 14 Figure 15: Schematic of Reverse Osmosis Desalination process [15] .................................................
Recommended publications
  • Renewable Energy Opportunities in Water Desalination
    8 Renewable Energy Opportunities in Water Desalination Ali A. Al-Karaghouli and L.L. Kazmerski National Renewable Energy Laboratory Golden, Colorado, 80401, USA 1. Introduction Desalination is a water-treatment process that separates salts from saline water to produce potable water or water that is low in total dissolved solids (TDS). Globally, the total installed capacity of desalination plants was 61 million m3 per day in 2008 [1]. Seawater desalination accounts for 67% of production, followed by brackish water at 19%, river water at 8%, and wastewater at 6%. Figure 1 show the worldwide feed-water percentage used in desalination. The most prolific users of desalinated water are in the Arab region, namely, Saudi Arabia, Kuwait, United Arab Emirates, Qatar, Oman, and Bahrain [2]. Fig. 1. Worldwide feed-water percentage used in desalination (http://desaldata.com/). Desalination can be achieved by using a number of techniques. Industrial desalination technologies use either phase change or involve semi-permeable membranes to separate the solvent or some solutes. Thus, desalination techniques may be classified into two main categories [3]: • Phase-change or thermal processes—where base water is heated to boiling. Salts, minerals, and pollutants are too heavy to be included in the steam produced from boiling and therefore remain in the base water. The steam is cooled and condensed. The 150 Desalination, Trends and Technologies main thermal desalination processes are multi-stage flash (MSF) distillation, multiple- effect distillation (MED), and vapor compression (VC), which can be thermal (TVC) or mechanical (MVC). • Membrane or single-phase processes—where salt separation occurs without phase transition and involves lower energy consumption.
    [Show full text]
  • Safety Aspects of the Desalination of Sea Water Using Nuclear Energy*
    XAO102639 Annex V SAFETY ASPECTS OF THE DESALINATION OF SEA WATER USING NUCLEAR ENERGY* A. Carnino, N. Gasparini Division of Nuclear Installation Safety, International Atomic Energy Agency, Vienna Abstract The nuclear plants for desalination to be built in the future will have to meet the standards of safety required for the best nuclear power plants currently in operation or being designed. Some specific characteristics of desalination plants such as siting and coupling require particular consideration from a safety point of view, and further safety studies will be needed when the type and size of the reactor are determined. The current safety approach, based on the defence in depth strategy, has been shown to be a sound foundation for the safety and protection of public health, and gives the plant the capability of dealing with a large variety of sequences, even beyond the design basis. The Department of Nuclear Safety of the IAEA is involved in many activities, the most important of which are to establish safety standards, and to provide various safety services and technical knowledge in many Technical Co-operation assistance projects. The department is also involved in other safety areas, notably in the field of future reactors. The IAEA is carrying out a project on the safety of new generation reactors, including those used for desalination, with the objective of fostering an exchange of information on safety approaches, promoting harmonization among Member States and contributing towards the development and revision of safety standards and guidelines for nuclear power plant design. The safety, regulatory and environmental concerns in nuclear powered desalination are those related directly to nuclear power plants, with due consideration given to the coupling process.
    [Show full text]
  • Wind and Geothermal Energy in Desalination
    neering & gi M n a E n , l a Abusharkh et al. Ind Eng Manage 2015, 4:4 a i g r e t m s e DOI: 10.4172/2169-0316.1000175 u n d t n I Industrial Engineering & Management ISSN: 2169-0316 Research Article Open Access Wind and Geothermal Energy in Desalination: A Short Review on Progress and Sustainable Commercial Processes Abusharkh AG, Giwa A and Hasan SW* Department of Chemical and Environmental Engineering, Masdar Institute of Science and Technology, P.O. Box 54224, Abu Dhabi, United Arab Emirates Abstract Fossil fuels have been used as the main energy source for the desalination technologies. The continued increase in the demand for desalinated water has resulted in rising greenhouse gas emissions and threat to available fuel reserves. Consequently, most commercial desalination processes powered by fossil fuels have significantly contributed to environmental pollution. Renewable energy comes into the picture as an environmental friendly option as well as a means of fossil energy minimization. In this paper, a review on the use of renewable energy in recent desalination processes has been carried, with a focus on wind and geothermal energy. Keywords: Renewable energy; Desalination; Wind; Geothermal; solar desalination has been widely developed and improved in recent Sustainability years, only the applications of wind and geothermal sources of energy have been reviewed in this paper. Introduction Utilizing Renewable Energy Sources for Desalination About 97% of the earth’s water is saline water that is present in oceans and the remaining 3% is fresh water present in rivers, lakes and The selection of a suitable desalination technology driven by wind groundwater [1].
    [Show full text]
  • Desalination Guidelines Development for Drinking Water: Background
    Rolling Revision of the WHO Guidelines for Drinking-Water Quality Draft for review and comments (Not for citation) Desalination Guidelines Development for Drinking Water: Background By Joseph A. Cotruvo World Health Organization August 2004 Introduction More than 11,000 desalination plants are in operation throughout the world producing more than 20 million cubic meters (roughly six billion gallons) of water per day. About 63% of the capacity exists in West Asia and the Middle East. North America has about 11% and North Africa and Europe account for about 7% each of capacity. Plant sizes and designs range from more than 500,000 m3/day to 20 to 100 m3/day. Most desalination plants use sea water or brackish water as their sources. It appears that comprehensive performance, operating and product quality specifications have evolved virtually on a site-by-site basis relative to source and the specific end product water use. Most drinking water applications outside of North America use World Health Organization Drinking Water Guidelines in some way as quality specifications. WHO Drinking Water Guidelines cover a broad spectrum of contaminants from inorganic and synthetic organic chemicals, disinfection byproducts, microbial indicators and radionuclides. They are aimed at typical drinking water sources and technologies. Because desalination is applied to non-typical source waters, and often uses non-typical technologies, existing WHO Guidelines may not fully cover the unique factors that can be encountered during production and distribution of desalinated water. Drinking water production Drinking water production processes can be divided into three broad categories each of which will impact the quality of the finished water received by the consumer.
    [Show full text]
  • Linking Desalinization Technologies to Geothermal Greenhouse Operations
    Linking Desalinization Technologies to Geothermal Greenhouse Operations Students and Faculty Explore Mason Radium Springs Geothermal Greenhouse (20 Acres) Lead Investigator: Mark Person, NM Tech, Hydrology Program, [email protected] Co-Investigators: Robert Balch & Jianjia Yu, New Mexico Petroleum Research & Recovery Center, [email protected] [email protected] Randy Shaw, Bureau of Reclamation, Brackish Groundwater National Desalination Research Facility, Alamogordo, NM, [email protected] Frank Huang, NM Tech, Department of Civil & Environmental Engineering, [email protected] Shari Kelley, NM Bureau of Geology & Mineral Resources, [email protected] James Witcher, James Witcher & Associates, [email protected] Laura Crossey & Karl Karlstrom, UNM, Department of Earth and Planetary Sciences, [email protected] [email protected] Qiang Wei, NM Highlands University, Chemistry Department, [email protected] Jesus Gomez-Velez, NM Tech, Hydrology Program, [email protected] IWG Date: November 6-8, 2015 IWG Locations: Truth or Consequences, NM & Masson Radium Springs Greenhouse 1 1. SUMMARY 1.1 Objectives Our innovative working group (IWG) explored the potential linkages and synergies between different desalination technologies and direct use of geothermal waters for and aquaculture operations in New Mexico. Applications to bio-algal industry were also discussed. In addition, we considered how geothermal heat could be used to increase the effectiveness and reduce the cost of desalination of oil field brines. We discussed opportunities to craft these ideas into upcoming water-energy proposals and papers. 1.2 Key Ideas & Questions Linking geothermal and desalination technologies has not received much attention to date; however, such synergy can have significant environmental and economic benefits both locally and globally.
    [Show full text]
  • (Hydropower) Technology in South African Narrow-Reef Hard-Rock Mines
    The Southern African Institute of Mining and Metallurgy Platinum 2012 P. Fraser THE USE OF HIGH-PRESSURE, WATER-HYDRAULIC (HYDROPOWER) TECHNOLOGY IN SOUTH AFRICAN NARROW-REEF HARD-ROCK MINES P. Fraser Hydro Power Equipment (Pty) Ltd Abstract This paper examines the new water-hydraulic (hydropowered) drill rigs that have been developed and proven in the last decade primarily in tabular, shallow-dipping, narrow-reef hard-rock South African mines. These include drill rigs for flat-end tunnel development, narrow inclined raises and winzes, large inclines and declines and longhole-based developments such as ore passes and vent raises. The hydropower technology rigs offer advantages both in safety and performance over traditional compressed-air-powered, hand-held development, and are generally more cost-effective than imported oil electro-hydraulic drill rigs. Furthermore, hydropowered rigs are inherently energy-efficient. The benefits of hydropower are discussed and a ‘comprehensive development model’ is presented which demonstrates that ore-bodies can be accessed in significantly shorter times. ‘Localized’ half level hydropower systems are introduced and a range of ancillary equipment available is listed. Introduction According to Neville Nicolau, CEO of Anglo Platinum, ’Safety is our moral licence to operate’ and, ’if we don’t get our safety right, then you must expect society to take away our licence to operate, and then we would be responsible for closing mines and destroying work 1. While the long-term trend in the Fatal Injury Frequency Rate (FIFR) is downward, fatalities are not acceptable to any of the stakeholders in the mining industry or investor community. Safety is therefore a non-negotiable imperative.
    [Show full text]
  • The Contribution of Hydropower Reservoirs to Flood Control in the Austrian Alps
    Ilydrology in Mountainous Regions. II - Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Symposia, August 1990). IAHS Publ. no. 194,1990. The contribution of hydropower reservoirs to flood control in the Austrian Alps W. PIRCHER Tiroler Wasserkraftwerke Aktiengesellschaft (TIWAG) Landhausplatz 2, A-6o2o Innsbruck, Austria ABSTRACT A considerable improvement to flood control is a significant - and free - additional utility accruing to the general public from the construction of hydropower storage reservoirs. By way of illustration, the author presents a comparative study on the basis of a number of flood events in valleys influenced by storage power plants. INTRODUCTION Austria has approximately thirty major storage reservoirs built by hy­ dropower companies and operated on a seasonal basis. Since they tend to be located at high altitudes, total stored energy from a combined active storage of 1.3oo hm^ is over 3.5oo GWh for winter and peak power generation, and this forms the backbone of electricity generation in Austria. Taking into account also the smaller reservoirs for daily and weekly storage, approximately 31% of the country's present annual total hydroelectric generation of 34.ooo GWh is controlled by reservoir sto­ rage, with the high degree of control and flexibility this offers. The primary goal in the construction of all storage power schemes in Austria, and the only source of subsequent earnings for the hydro- power companies, is of course electricity generation, but such schemes also involve a whole series of additional utilities that accrue to the general public free of charge. As a rule, significant improvements in flood control are the most important of these spin-offs, although be­ nefits to the local infrastructure and tourism as well as a markable increase of flow during the winter period are not to be underestimated, either.
    [Show full text]
  • Hydroelectric Power -- What Is It? It=S a Form of Energy … a Renewable Resource
    INTRODUCTION Hydroelectric Power -- what is it? It=s a form of energy … a renewable resource. Hydropower provides about 96 percent of the renewable energy in the United States. Other renewable resources include geothermal, wave power, tidal power, wind power, and solar power. Hydroelectric powerplants do not use up resources to create electricity nor do they pollute the air, land, or water, as other powerplants may. Hydroelectric power has played an important part in the development of this Nation's electric power industry. Both small and large hydroelectric power developments were instrumental in the early expansion of the electric power industry. Hydroelectric power comes from flowing water … winter and spring runoff from mountain streams and clear lakes. Water, when it is falling by the force of gravity, can be used to turn turbines and generators that produce electricity. Hydroelectric power is important to our Nation. Growing populations and modern technologies require vast amounts of electricity for creating, building, and expanding. In the 1920's, hydroelectric plants supplied as much as 40 percent of the electric energy produced. Although the amount of energy produced by this means has steadily increased, the amount produced by other types of powerplants has increased at a faster rate and hydroelectric power presently supplies about 10 percent of the electrical generating capacity of the United States. Hydropower is an essential contributor in the national power grid because of its ability to respond quickly to rapidly varying loads or system disturbances, which base load plants with steam systems powered by combustion or nuclear processes cannot accommodate. Reclamation=s 58 powerplants throughout the Western United States produce an average of 42 billion kWh (kilowatt-hours) per year, enough to meet the residential needs of more than 14 million people.
    [Show full text]
  • A Case Study in the Dudh Koshi Basin of Nepal
    water Article Hydropower Potential of Run of River Schemes in the Himalayas under Climate Change: A Case Study in the Dudh Koshi Basin of Nepal Daniele Bocchiola 1,2,* , Mattia Manara 1 and Riccardo Mereu 3 1 Department of Civil and Environmental Engineering (DICA), Politecnico di Milano, L. da Vinci 32, 20133 Milano, Italy; [email protected] 2 EVK2CNR Committee of Italy, S. Bernardino 145, 24122 Bergamo, Italy 3 Department of Energy Engineering (DENG), Politecnico di Milano, Campus-Bovisa, Lambruschini, 4a, 20156 Milano, Italy; [email protected] * Correspondence: [email protected] Received: 20 July 2020; Accepted: 16 September 2020; Published: 19 September 2020 Abstract: In spite of the very large hydropower potential given from the melting snow and ice of Himalayas, Nepal’s population has little hydropower production. The high use of fossil fuels and biomasses results in measurable air pollution, even in the mountain areas. Hydropower planning and implementation, in the face of the changing climate, is therefore paramount important. We focus here on Nepal, and particularly on the Dudh Koshi river basin, with a population of ca. 170,000 people, within an area with large potential for hydropower production. Our main objectives are to (i) preliminarily design a local hydropower grid based on a distributed run of river ROR scheme, and (ii) verify the resilience of the grid against modified hydrology under perspective climate change, until the end of the century. To do so, we set up and tune the Poli-Hydro semi-distributed glacio-hydrological model, mimicking the complex hydrology of the area. We then modify a state of the art algorithm to develop and exploit a heuristic, resource-demand based model, called Poli-ROR.
    [Show full text]
  • Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics
    energies Article Underground Pumped-Storage Hydropower (UPSH) at the Martelange Mine (Belgium): Underground Reservoir Hydraulics Vasileios Kitsikoudis 1,*, Pierre Archambeau 1 , Benjamin Dewals 1, Estanislao Pujades 2, Philippe Orban 3, Alain Dassargues 3 , Michel Pirotton 1 and Sebastien Erpicum 1 1 Hydraulics in Environmental and Civil Engineering, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.A.); [email protected] (B.D.); [email protected] (M.P.); [email protected] (S.E.) 2 Department of Computational Hydrosystems, UFZ—Helmholtz Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany; [email protected] 3 Hydrogeology and Environmental Geology, Urban and Environmental Engineering Research Unit, Liege University, 4000 Liege, Belgium; [email protected] (P.O.); [email protected] (A.D.) * Correspondence: [email protected] or [email protected]; Tel.: +32-478-112388 Received: 22 April 2020; Accepted: 6 July 2020; Published: 8 July 2020 Abstract: The intermittent nature of most renewable energy sources requires their coupling with an energy storage system, with pumped storage hydropower (PSH) being one popular option. However, PSH cannot always be constructed due to topographic, environmental, and societal constraints, among others. Underground pumped storage hydropower (UPSH) has recently gained popularity as a viable alternative and may utilize abandoned mines for the construction of the lower reservoir in the underground. Such underground mines may have complex geometries and the injection/pumping of large volumes of water with high discharge could lead to uneven water level distribution over the underground reservoir subparts. This can temporarily influence the head difference between the upper and lower reservoirs of the UPSH, thus affecting the efficiency of the plant or inducing structural stability problems.
    [Show full text]
  • Hydropower Technologies Program — Harnessing America’S Abundant Natural Resources for Clean Power Generation
    U.S. Department of Energy — Energy Efficiency and Renewable Energy Wind & Hydropower Technologies Program — Harnessing America’s abundant natural resources for clean power generation. Contents Hydropower Today ......................................... 1 Enhancing Generation and Environmental Performance ......... 6 Large Turbine Field-Testing ............................... 9 Providing Safe Passage for Fish ........................... 9 Improving Mitigation Practices .......................... 11 From the Laboratories to the Hydropower Communities ..... 12 Hydropower Tomorrow .................................... 14 Developing the Next Generation of Hydropower ............ 15 Integrating Wind and Hydropower Technologies ............ 16 Optimizing Project Operations ........................... 17 The Federal Wind and Hydropower Technologies Program ..... 19 Mission and Goals ...................................... 20 2003 Hydropower Research Highlights Alden Research Center completes prototype turbine tests at their facility in Holden, MA . 9 Laboratories form partnerships to develop and test new sensor arrays and computer models . 10 DOE hosts Workshop on Turbulence at Hydroelectric Power Plants in Atlanta . 11 New retrofit aeration system designed to increase the dissolved oxygen content of water discharged from the turbines of the Osage Project in Missouri . 11 Low head/low power resource assessments completed for conventional turbines, unconventional systems, and micro hydropower . 15 Wind and hydropower integration activities in 2003 aim to identify potential sites and partners . 17 Cover photo: To harness undeveloped hydropower resources without using a dam as part of the system that produces electricity, researchers are developing technologies that extract energy from free flowing water sources like this stream in West Virginia. ii HYDROPOWER TODAY Water power — it can cut deep canyons, chisel majestic mountains, quench parched lands, and transport tons — and it can generate enough electricity to light up millions of homes and businesses around the world.
    [Show full text]
  • Desalination Technology Trends
    Desalination Technology Trends Tom Pankratz1 Abstract Texas’ increased interest in desalination reflects a worldwide trend to include it as a viable alternative water supply option in any long-term water strategy. Recent technological developments and new methods of project delivery are driving this heightened level of interest to the point that desalination is now being seriously evaluated on projects where it would not have been considered ten years ago. The most significant trend in desalination is the increased growth of the reverse osmosis (RO) market. Technological improvements have both dramatically increased the performance of RO membranes. Today’s membranes are more efficient, more durable, and much less expensive. Improvements in membrane technology are complimented by improvements in pretreatment technology, which allow RO membranes to be considered on a much wider range of applications. Energy costs are directly related to the salt content of the water source, and may represent up to 50% of a system’s operational costs. There has been a growing trend to reduce energy costs through improvements in membrane performance and by employing modern, mechanical energy recovery devices that reduce energy requirements by 10-50%. The growing trend to build larger desalination plants recognizes the inherent modularity of RO systems and the fact that the development, design, and permitting costs are somewhat independent of plant size. The result is that larger plants are being constructed to take advantage of economies-of-scale, which reduce the unit cost of desalinated water. Other trends that will be reviewed in more detail include the co-siting of desalination plants with electric power generating plants and other industrial facilities, and the hybridization of distillation and membrane processes.
    [Show full text]