Learning Elementary Musical Programming with Extempore: Translating Arvo Pärt's Fratres Into Live Code Snippets
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synchronous Programming in Audio Processing Karim Barkati, Pierre Jouvelot
Synchronous programming in audio processing Karim Barkati, Pierre Jouvelot To cite this version: Karim Barkati, Pierre Jouvelot. Synchronous programming in audio processing. ACM Computing Surveys, Association for Computing Machinery, 2013, 46 (2), pp.24. 10.1145/2543581.2543591. hal- 01540047 HAL Id: hal-01540047 https://hal-mines-paristech.archives-ouvertes.fr/hal-01540047 Submitted on 15 Jun 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. A Synchronous Programming in Audio Processing: A Lookup Table Oscillator Case Study KARIM BARKATI and PIERRE JOUVELOT, CRI, Mathématiques et systèmes, MINES ParisTech, France The adequacy of a programming language to a given software project or application domain is often con- sidered a key factor of success in software development and engineering, even though little theoretical or practical information is readily available to help make an informed decision. In this paper, we address a particular version of this issue by comparing the adequacy of general-purpose synchronous programming languages to more domain-specific -
An AI Collaborator for Gamified Live Coding Music Performances
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Falmouth University Research Repository (FURR) Autopia: An AI Collaborator for Gamified Live Coding Music Performances Norah Lorway,1 Matthew Jarvis,1 Arthur Wilson,1 Edward J. Powley,2 and John Speakman2 Abstract. Live coding is \the activity of writing (parts of) regards to this dynamic between the performer and audience, a program while it runs" [20]. One significant application of where the level of risk involved in the performance is made ex- live coding is in algorithmic music, where the performer mod- plicit. However, in the context of the system proposed in this ifies the code generating the music in a live context. Utopia3 paper, we are more concerned with the effect that this has on is a software tool for collaborative live coding performances, the performer themselves. Any performer at an algorave must allowing several performers (each with their own laptop pro- be prepared to share their code publicly, which inherently en- ducing its own sound) to communicate and share code during courages a mindset of collaboration and communal learning a performance. We propose an AI bot, Autopia, which can with live coders. participate in such performances, communicating with human performers through Utopia. This form of human-AI collabo- 1.2 Collaborative live coding ration allows us to explore the implications of computational creativity from the perspective of live coding. Collaborative live coding takes its roots from laptop or- chestra/ensemble such as the Princeton Laptop Orchestra (PLOrk), an ensemble of computer based instruments formed 1 Background at Princeton University [19]. -
Chuck: a Strongly Timed Computer Music Language
Ge Wang,∗ Perry R. Cook,† ChucK: A Strongly Timed and Spencer Salazar∗ ∗Center for Computer Research in Music Computer Music Language and Acoustics (CCRMA) Stanford University 660 Lomita Drive, Stanford, California 94306, USA {ge, spencer}@ccrma.stanford.edu †Department of Computer Science Princeton University 35 Olden Street, Princeton, New Jersey 08540, USA [email protected] Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio programming language, comprising a versatile time-based programming model that allows programmers to flexibly and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and affordances of the language and its future directions are outlined. What Is ChucK? form the notion of a strongly timed computer music programming language. ChucK (Wang 2008) is a computer music program- ming language. First released in 2003, it is designed to support a wide array of real-time and interactive Two Observations about Audio Programming tasks such as sound synthesis, physical modeling, gesture mapping, algorithmic composition, sonifi- Time is intimately connected with sound and is cation, audio analysis, and live performance. -
Confessions-Of-A-Live-Coder.Pdf
Proceedings of the International Computer Music Conference 2011, University of Huddersfield, UK, 31 July - 5 August 2011 CONFESSIONS OF A LIVE CODER Thor Magnusson ixi audio & Faculty of Arts and Media University of Brighton Grand Parade, BN2 0JY, UK ABSTRACT upon writing music with programming languages for very specific reasons and those are rarely comparable. This paper describes the process involved when a live At ICMC 2007, in Copenhagen, I met Andrew coder decides to learn a new musical programming Sorensen, the author of Impromptu and member of the language of another paradigm. The paper introduces the aa-cell ensemble that performed at the conference. We problems of running comparative experiments, or user discussed how one would explore and analyse the studies, within the field of live coding. It suggests that process of learning a new programming environment an autoethnographic account of the process can be for music. One of the prominent questions here is how a helpful for understanding the technological conditioning functional programming language like Impromptu of contemporary musical tools. The author is conducting would influence the thinking of a computer musician a larger research project on this theme: the part with background in an object orientated programming presented in this paper describes the adoption of a new language, such as SuperCollider? Being an avid user of musical programming environment, Impromptu [35], SuperCollider, I was intrigued by the perplexing code and how this affects the author’s musical practice. structure and work patterns demonstrated in the aa-cell performances using Impromptu [36]. I subsequently 1. INTRODUCTION decided to embark upon studying this environment and perform a reflexive study of the process. -
FAUST Tutorial for Functional Programmers
FAUST Tutorial for Functional Programmers Y. Orlarey, S. Letz, D. Fober, R. Michon ICFP 2017 / FARM 2017 What is Faust ? What is Faust? A programming language (DSL) to build electronic music instruments Some Music Programming Languages DARMS Kyma 4CED MCL DCMP LOCO PLAY2 Adagio MUSIC III/IV/V DMIX LPC PMX AML Elody Mars MusicLogo POCO AMPLE EsAC MASC Music1000 POD6 Antescofo Euterpea Max MUSIC7 POD7 Arctic Extempore Musictex PROD Autoklang MidiLisp Faust MUSIGOL Puredata Bang MidiLogo MusicXML PWGL Canon Flavors Band MODE Musixtex Ravel CHANT Fluxus MOM NIFF FOIL Moxc SALIERI Chuck NOTELIST FORMES MSX SCORE CLCE Nyquist FORMULA MUS10 ScoreFile CMIX OPAL Fugue MUS8 SCRIPT Cmusic OpenMusic Gibber MUSCMP SIREN CMUSIC Organum1 GROOVE MuseData SMDL Common Lisp Outperform SMOKE Music GUIDO MusES Overtone SSP Common HARP MUSIC 10 PE Music Haskore MUSIC 11 SSSP Patchwork Common HMSL MUSIC 360 ST Music PILE Notation INV MUSIC 4B Supercollider Pla invokator MUSIC 4BF Symbolic Composer Csound PLACOMP KERN MUSIC 4F Tidal CyberBand PLAY1 Keynote MUSIC 6 Brief Overview to Faust Faust offers end-users a high-level alternative to C to develop audio applications for a large variety of platforms. The role of the Faust compiler is to synthesize the most efficient implementations for the target language (C, C++, LLVM, Javascript, etc.). Faust is used on stage for concerts and artistic productions, for education and research, for open sources projects and commercial applications : What Is Faust Used For ? Artistic Applications Sonik Cube (Trafik/Orlarey), Smartfaust (Gracia), etc. Open-Source projects Guitarix: Hermann Meyer WebAudio Applications YC20 Emulator Thanks to the HTML5/WebAudio API and Asm.js it is now possible to run synthesizers and audio effects from a simple web page ! Sound Spatialization Ambitools: Pierre Lecomte, CNAM Ambitools (Faust Award 2016), 3-D sound spatialization using Ambisonic techniques. -
Estuary: Browser-Based Collaborative Projectional Live Coding of Musical Patterns
Estuary: Browser-based Collaborative Projectional Live Coding of Musical Patterns David Ogborn Jamie Beverley Luis Navarro del Angel McMaster University McMaster University McMaster University [email protected] [email protected] [email protected] Eldad Tsabary Alex McLean Concordia University Deutsches Museum [email protected] [email protected] ABSTRACT This paper describes the initial design and development of Estuary, a browser-based collaborative projectional editing environment built on top of the popular TidalCycles language for the live coding of musical pattern. Key features of Estuary include a strict form of structure editing (making syntactical errors impossible), a click-only border-free approach to interface design, explicit notations to modulate the liveness of different parts of the code, and a server-based network collaboration system that can be used for many simultaneous collaborative live coding performances, as well as to present different views of the same live coding activity. Estuary has been developed using Reflex-DOM, a Haskell-based framework for web development whose strictness promises robustness and security advantages. 1 Goals 1.1 Projectional Editing and Live Coding The interface of the text editor is focused on alphabetic characters rather than on larger tokens that directly represent structures specific to a certain way of notating algorithms. Programmers using text editors, including live coding artists using text-based programming languages as their media, then have to devote cognitive resources to dealing with various kinds of mistakes and delays, including but not limited to accidentally typing the wrong character, not recalling the name of an entity, attempting to use a construct from one language in another, and misrecognition of “where one is” in the hierarchy of structures, among many other possible challenges. -
DVD Program Notes
DVD Program Notes Part One: Thor Magnusson, Alex Click Nilson is a Swedish avant McLean, Nick Collins, Curators garde codisician and code-jockey. He has explored the live coding of human performers since such Curators’ Note early self-modifiying algorithmic text pieces as An Instructional Game [Editor’s note: The curators attempted for One to Many Musicians (1975). to write their Note in a collaborative, He is now actively involved with improvisatory fashion reminiscent Testing the Oxymoronic Potency of of live coding, and have left the Language Articulation Programmes document open for further interaction (TOPLAP), after being in the right from readers. See the following URL: bar (in Hamburg) at the right time (2 https://docs.google.com/document/d/ AM, 15 February 2004). He previously 1ESzQyd9vdBuKgzdukFNhfAAnGEg curated for Leonardo Music Journal LPgLlCe Mw8zf1Uw/edit?hl=en GB and the Swedish Journal of Berlin Hot &authkey=CM7zg90L&pli=1.] Drink Outlets. Alex McLean is a researcher in the area of programming languages for Figure 1. Sam Aaron. the arts, writing his PhD within the 1. Overtone—Sam Aaron Intelligent Sound and Music Systems more effectively and efficiently. He group at Goldsmiths College, and also In this video Sam gives a fast-paced has successfully applied these ideas working within the OAK group, Uni- introduction to a number of key and techniques in both industry versity of Sheffield. He is one-third of live-programming techniques such and academia. Currently, Sam the live-coding ambient-gabba-skiffle as triggering instruments, scheduling leads Improcess, a collaborative band Slub, who have been making future events, and synthesizer design. -
Live Coding Practice
Proceedings of the 2007 Conference on New Interfaces for Musical Expression (NIME07), New York, NY, USA Live Coding Practice Click Nilson University of Sussex Department of Informatics Falmer, Brighton, BN1 9QH +44 (0)1273 877837 [email protected] ABSTRACT I wish to discuss the practice of live coding, not only as an area of investigation and activity, but also in the sense of Live coding is almost the antithesis of immediate physical actually practising to improve ability. I shall describe the musicianship, and yet, has attracted the attentions of a number results of a month long experiment where live coding was of computer-literate musicians, as well as the music-savvy undertaken every day in an attempt to cast live coding as akin programmers that might be more expected. It is within the to more familiar forms of musical practice. context of live coding that I seek to explore the question of practising a contemporary digital musical instrument, which is Exercises will be discussed that may be found efficacious to often raised as an aside but more rarely carried out in research improve live coding abilities. In relation to these, literature (though see [12]). At what stage of expertise are the members from developmental and educational psychology (both of of the live coding movement, and what practice regimes might music and computing), and theories of expertise and skill help them to find their true potential? acquisition, were consulted. The possibility of expert performance [7] in live coding is discussed. Keywords I should state at the outset that I will be focusing primarily on Practice, practising, live coding one particular form of live coding in this paper, that of programming a computer on a concert platform as a performance act, often as an unaccompanied soloist. -
Virtual Agents in Live Coding: a Short Review
FINAL DRAFT – Submitted to eContact! (https://econtact.ca) Special issue: 21.1 — Take Back the Stage: Live coding, live audiovisual, laptop orchestra… Virtual Agents in Live Coding: A Short Review ...................................................................................... 2 Introduction ................................................................................................................................................................. 2 Conceptual Foundations .......................................................................................................................................... 3 Broader Context ............................................................................................................................................................................ 3 Virtuality, Agency, and Virtual Agency ............................................................................................................................... 4 Machine Musicianship, Musical Metacreation, and Musical Cyborgs .................................................................... 5 Theoretical Frameworks ........................................................................................................................................................... 6 Examples in Practice ................................................................................................................................................. 7 Betablocker .................................................................................................................................................................................... -
Quaverseries: a Live Coding Environment for Music Performance Using Web Technologies
QuaverSeries: A Live Coding Environment for Music Performance Using Web Technologies Qichao Lan Alexander Refsum Jensenius RITMO RITMO Department of Musicology Department of Musicology University of Oslo University of Oslo [email protected] [email protected] ABSTRACT live coding languages is mainly borrowed from other pro- QuaverSeries consists of a domain-specific language and a gramming languages. For example, the use of parentheses single-page web application for collaborative live coding in is ubiquitous in programming languages, and it is adopted music performances. Its domain-specific language borrows in almost every live coding language. That is the case even principles from both programming and digital interface de- though live coding without the parentheses is (more) read- sign in its syntax rules, and hence adopts the paradigm able for humans [12]. of functional programming. The collaborative environment Inheriting standard programming syntax may create dif- features the concept of `virtual rooms', in which performers ficulties for non-programmers who want to get started with can collaborate from different locations, and the audience live coding. We have therefore been exploring how it is pos- can watch the collaboration at the same time. Not only is sible to design a live coding syntax based on the design prin- the code synchronised among all the performers and online ciples of digital musical interface design. This includes ele- audience connected to the server, but the code executing ments such as audio effect chains, sequencers, patches, and command is also broadcast. This communication strategy, so on. The aim has been to only create a rule by 1) bor- achieved by the integration of the language design and the rowing from digital musicians' familiarity with the digital environment design, provides a new form of interaction for interfaces mentioned above, or 2) reusing the syntax from web-based live coding performances. -
Live Coding for Human-In- The-Loop Simulation
Live coding for Human-in- the-Loop Simulation Ben Swift Research School of Computer Science Australian National University live coding the practice of writing & editing live programs Outline • Extempore: a software environment for live coding • Live demo: particle-in-Cell (PIC) simulation • Future directions: human-in-the-loop processing in simulation, modelling & decision support extempore • Open-source (MIT Licence) & available for OSX, Linux & Windows (http://github.com/digego/extempore) • Lisp-style syntax (Scheme-inspired) • High-performance compiled code (LLVM JIT) • Toll-free interop with C & Fortran • Hot-swappable at a function level programmer TCP extempore (local or remote) extempore Extempore code assembler & LLVM IR machine code any function can be redefined on-the-fly programmer extempore extempore extempore extempore extempore extempore extempore extempore extempore C/Fortran output main Extempore program C/Fortran output main extempore Extempore program changes main C/Fortran output init push solve extempore Extempore program changes main push C/Fortran output solve init extempore Extempore program changes main push C/Fortran output print init solve extempore Extempore program changes main push C/Fortran output print init solve extempore Extempore program changes main push C/Fortran output print init solve extempore Extempore program changes main push C/Fortran vis init solve extempore Extempore program changes main init push vis solve extempore The power of live programming • Change parameters on the fly, with feedback • Interactively add debug output (no loss of state) • Switch optimisers/solvers etc. on-the-fly (modularity in codebase & libraries helps) what does this have to do with DSI? Similarities • Numerical modelling (HPC-style problems) • High-dimensional, non-linear parameter spaces • Long-running jobs = long delays for feedback Opportunities • Joint simulation, experimentation and wargaming (e.g. -
Alistair Riddell
[email protected] [email protected] [email protected] http://www.alistairriddell.com au.linkedin.com/in/alistairriddell? https://www.researchgate.net https://independent.academia.edu/AlistairRiddell Alistair Riddell Brief Biography Over the past 40 years Melbourne born Alistair Riddell has been active as a musician, composer, performer, creative coder, installation artist, collaborator, educator, supervisor, writer and promoter of evolving digital creative practices. Beginning with a focus on music composition using technology in the 1980s, his interests have ranged widely over the digital domain where he developed particular interests in the processes of interaction between the creative mind and physical objects. He has spent considerable time experimenting with technology and ideas, and many of his completed works have been publicly presented in a diverse range of curated contexts. Alistair holds degrees in Music and Computer Science from La Trobe University and a PhD in music composition from Princeton University. He lectured in Sound Art and Physical Computing at the Australian National University after which he returned to Melbourne and has worked as a freelance artist/researcher collaborating on projects around Australia. 2 Education Princeton University (New Jersey, USA) Naumberg Fellowship 1993 PhD Thesis title: Composing the Interface 1991 Master of Fine Arts La Trobe University (Melbourne, Australia) 1989 Master of Arts Thesis title: A Perspective on the Acoustic Piano as a Performance Medium under Machine Control 1986 Post Graduate Diploma in Computer Science 1981 BA (Hons) Job History/Appointments/Projects (2000 onwards) Carillon Keyboard Project. National Capital Authority. Canberra. (October/November 2019) Collective Social Intelligence (@ foysarcade.com ) Research work (June 2017 – Nov 2019) Australian Catholic University.