Applications of Molecular Modeling Techniques in the Design of Xanthine Based Adenosine Receptor Antagonists and the Development

Total Page:16

File Type:pdf, Size:1020Kb

Applications of Molecular Modeling Techniques in the Design of Xanthine Based Adenosine Receptor Antagonists and the Development Applications of molecular modeling techniques in the design of xanthine based adenosine receptor antagonists and the development of the protein function annotation method SALSA by Joslynn S. Lee B.S. in Chemistry-Biochemistry and Cellular Molecular Biology, Fort Lewis College A dissertation submitted to: The Faculty of the College of Science of Northeastern University In partial fulfillment of the requirements for the degree of Doctor of Philosophy February 21, 2014 Dissertation directed by Mary Jo Ondrechen Professor of Chemistry and Chemical Biology Graham B. Jones Professor of Chemistry and Chemical Biology © 2014 Joslynn S. Lee ALL RIGHTS RESERVED Dedication I dedicate this dissertation to my grandparents, Susie & William Pino and Tom & Alice Lee, who inspired me to get a higher education since they were not given the opportunity to go to college. On the Navajo reservation, shinálí asdzáá (my maternal grandmother) would take me to herd goats and pick wild tea (Thelesperma sp). She would use this plant would help with stomach aches and digestion. This was my first memorable experience that peaked my interest in science. Their stories and beliefs passed down to me, have shaped the person I am today. Ahéhee’ and Dawaeh (thank you in Navajo and Kerese) Hózhóogo naasháa doo (In beauty I walk) Shitsijí' hózhóogo naasháa doo (With beauty before me I walk) Shikéédéé hózhóogo naasháa doo (With beauty behind me I walk) Shideigi hózhóogo naasháa doo (With beauty above me I walk) T'áá altso shinaagóó hózhóogo naasháa doo (With beauty around me I walk) Hózhó náhásdlíí' (It has become beauty again) Da wa `eh, he numeh, Joslynn Lee, shawiiti hanu stah `che, Naya eh, Na sge ya, ma mie, stru gu na ma, eh za, uum`atsi, du dra ne, ha ya, s`au du me`tra, no ya zi, eh sw ue no 'ta. (Thank-you, from me, Joslynn Lee of the Parrot Clan of my people. To our Mother Earth and Father Creator, I'm thankful for the blessings and help bestowed upon me to complete my education.) Acknowledgements I want to thank my advisor, mentor and friend Professor Mary Jo Ondrechen for allowing me to join her lab to conduct research. Mary has always shown unconditional support and patience during my time at NU. I want to thank my co-advisor, mentor and friend, Professor Graham Jones for building a collaboration for molecular modeling and research for the A2AAR project (Part I) and support during my time at NU. I want to extend my gratitude, feedback and support to my thesis committee members Professor Carla Mattos and Professor Gene Cooperman. Their guidance has been invaluable. I cannot give enough thanks to previous ORG members: Dr. Srinivas Somarowthru, Dr. Jaeju Ko, Dr. Leo Murga, Dr. Heather Brodkin, Dr. Pengcheng Yin and Dr. Zhouxi Wang, for their help, patience and discussions for my research. I thank the current ORG members Dr. Ramya Parasuram, Caitlyn Mills, Lisa Ngu for their time discussion my research and for their support! My research would not be a great story without the collaborations for the A2AAR and SALSA projects. Rhiannon Thomas-Tran is an amazing individual who helped get the A2AAR project going and also Vincent Chevalier for the scale-up of molecules for in vitro studies. The in vitro studies were performed in the lab of Professor Michail Sitkovsky by Dr. Stephen Hatfield and Dr. Kaisa Selesniemi. The SALSA-DT program could not have been written or optimized without the help from Rohan Garg (CCIS), Liang Tian (Math), Jiajun Cao (CCIS), Professor Gene Cooperman (CCIS) and Professor Alexandru Suciu (Math). The wonderful staff in the Chemistry and Chemical Biology department, Jean Harris, Cara Shockley, Richard Pumphrey and Andrew Bean, they were happy and helpful individuals. I want to thank my undergraduate professors who made an impact on my research career. From FLC, Dr. Leslie Sommerville, Dr. Ron Estler and Dr. Rob Milofsky, were the first to encourage me to pursue research in chemistry. Les for his unconditional support and continued mentoring. Dr. Harry Higgs from Dartmouth University who let me conduct summer research in his lab and give me a preview of graduate school level work, pairing me up with Dr. Susie Nicholson- Dykstra. She helped me build my confidence as a budding scientist! Before applying to grad school, Dr. Christopher Brummel from Vertex Pharmaceuticals, assigned me challenging projects to tackle as a research associate but most importantly encouraged me to leave my position to pursue graduate level studies full-time. Dr. Daniel Jay, from Tufts Med School, from the Academy for Future Faculty (AFF) provided his support, along with the amazing cohort of doctoral students, who all inspire me to pursue my goal of becoming a professor. My family has been pivotal in my pursuit of a graduate degree, becoming the first Ph.D. My sister, Rhiannon Lee, who provided her unconditional love and support during graduate school. To her wife, Eliza, for providing me with laugh and constant support, especially a place to stay while writing my dissertation. My parents, Thomas & Valeria Lee, for everything. They believed in me and instilled my cultural beliefs that have shaped the woman I am today. Their continuous support to further my education. My brother Clifton, his wife KC and their kids for being my cheerleading squad filled with unconditional love! My projects were financially supported by the National Science Foundation under grants MCB- 0843603/1158176 and CHE-1305655. Receiving the prestigious NSF graduate research fellowship allowed me to share my results internationally and necessary instrumentation in lab. Other funding sources include Dana Farber Institute and IGERT-NU. Abstract of Dissertation In the field of molecular modeling, theoretical and computational methods are used to study biological structures, dynamics and interactions. Using functional site predictors to identify the binding sites in 3D protein structures provides information that can be used in the fields of drug design and protein function annotation. This dissertation is divided in two parts, each describes the application of molecular modeling techniques in the development of antitumor immunotherapies to target the human A2A adenosine receptor and the development of an automated program, Structurally Aligned Local Sites of Activity (SALSA), to assign function based on local sites of alignment and chemical properties. Cancer cells undergo tumor hypoxia in the earlier stages of growth. Hypoxic tumors generally have poor prognosis and can become resistant to traditional radiation and chemotherapy treatments. In the tumor microenvironment, an overaccumulation of adenosine is produced through the hypoxia-adenosinergic tissue-protecting mechanism that activates A2A adenosine receptors (A2AAR) on the surface of surrounding cells, leading to the protection of cancerous tissues. Targeting the A2AAR with antagonists will disrupt A2AAR signaling, thus preventing the protection of tumor cells. Molecular modeling techniques were applied to the design and optimization of xanthine-based A2AAR antagonists. In silico docking studies, using the programs AutoDock 4.0 and Schrodinger’s GLIDE, yielded similar and favorable binding poses to identify a lead compound. The lead compound was converted to a PEG derivative tested in two in vitro functional binding assays to confirm efficacy. The lead compound performed better than a previously known antagonist. In 2000, the Protein Structure Initiative (PSI) was launched to make the 3D structures of proteins easily attainable from the knowledge of their corresponding DNA sequences. The PSI project generated a large set of 3D structures named structural genomics proteins. To date, there are 12,900 structural genomics (SG) protein structures reported in the Protein Data Bank. These SG proteins were annotated (assigned function) using sequence or structural similarity matching tools. Unfortunately, a number of these SG proteins are listed with unknown, putative and hypothetical function. The computational method, Structurally Aligned Local Sites of Activity (SALSA) is able to reliably assign function to these SG proteins. The strategy of SALSA is to define functional subclasses of characterized members from a protein superfamily. Functional site predictors identify active site residues to create unique signatures for each subclass. Incorporating multiple structure alignment tools, a local spatial pattern of the active site residues is established for each functional subclass and this can be used to sort a superfamily according to biochemical function. An automated version of SALSA, SALSA-DT, utilizes Delaunay triangulation to better match the local active sites of 3D protein structures for faster structural alignments within the superfamily. The application of the SALSA and SALSA-DT methods applied to the ribulose phosphate binding barrel (RPBB) superfamily, successfully sorts the superfamily and 27 SG proteins are evaluated. Additionally, SALSA revealed more information about the structural architecture of the active sites within the superfamily. Table of Contents Dedication …………………………………………………………………………… iii Acknowledgements ……………..………………………………………………………... iv Abstract of Dissertation …………………………………………………………………. vi Table of Contents ……..………………………………………………………..………. viii List of Figures …………………………………………………………………………… xv List of Tables …………………………………………………………………………… xxii List of Abbreviations …….………………………………………………………………… xxv Part I – Using molecular modeling techniques in designing small molecules to target the human A2A adenosine receptor
Recommended publications
  • Wannier90 As a Community Code: New
    IOP Journal of Physics: Condensed Matter Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 32 (2020) 165902 (25pp) https://doi.org/10.1088/1361-648X/ab51ff 32 Wannier90 as a community code: new 2020 features and applications © 2020 IOP Publishing Ltd Giovanni Pizzi1,29,30 , Valerio Vitale2,3,29 , Ryotaro Arita4,5 , Stefan Bl gel6 , Frank Freimuth6 , Guillaume G ranton6 , JCOMEL ü é Marco Gibertini1,7 , Dominik Gresch8 , Charles Johnson9 , Takashi Koretsune10,11 , Julen Ibañez-Azpiroz12 , Hyungjun Lee13,14 , 165902 Jae-Mo Lihm15 , Daniel Marchand16 , Antimo Marrazzo1 , Yuriy Mokrousov6,17 , Jamal I Mustafa18 , Yoshiro Nohara19 , 4 20 21 G Pizzi et al Yusuke Nomura , Lorenzo Paulatto , Samuel Poncé , Thomas Ponweiser22 , Junfeng Qiao23 , Florian Thöle24 , Stepan S Tsirkin12,25 , Małgorzata Wierzbowska26 , Nicola Marzari1,29 , Wannier90 as a community code: new features and applications David Vanderbilt27,29 , Ivo Souza12,28,29 , Arash A Mostofi3,29 and Jonathan R Yates21,29 Printed in the UK 1 Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 CM Lausanne, Switzerland 2 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom 10.1088/1361-648X/ab51ff 3 Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom 4 RIKEN
    [Show full text]
  • Accelerating Molecular Docking by Parallelized Heterogeneous Computing – a Case Study of Performance, Quality of Results
    solis vasquez, leonardo ACCELERATINGMOLECULARDOCKINGBY PARALLELIZEDHETEROGENEOUSCOMPUTING–A CASESTUDYOFPERFORMANCE,QUALITYOF RESULTS,ANDENERGY-EFFICIENCYUSINGCPUS, GPUS,ANDFPGAS Printed and/or published with the support of the German Academic Exchange Service (DAAD). ACCELERATINGMOLECULARDOCKINGBYPARALLELIZED HETEROGENEOUSCOMPUTING–ACASESTUDYOF PERFORMANCE,QUALITYOFRESULTS,AND ENERGY-EFFICIENCYUSINGCPUS,GPUS,ANDFPGAS at the Computer Science Department of the Technische Universität Darmstadt submitted in fulfilment of the requirements for the degree of Doctor of Engineering (Dr.-Ing.) Doctoral thesis by Solis Vasquez, Leonardo from Lima, Peru Reviewers Prof. Dr.-Ing. Andreas Koch Prof. Dr. Christian Plessl Date of the oral exam October 14, 2019 Darmstadt, 2019 D 17 Solis Vasquez, Leonardo: Accelerating Molecular Docking by Parallelized Heterogeneous Computing – A Case Study of Performance, Quality of Re- sults, and Energy-Efficiency using CPUs, GPUs, and FPGAs Darmstadt, Technische Universität Darmstadt Date of the oral exam: October 14, 2019 Please cite this work as: URN: urn:nbn:de:tuda-tuprints-92886 URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/9288 This document is provided by TUprints, The Publication Service of the Technische Universität Darmstadt https://tuprints.ulb.tu-darmstadt.de This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 In- ternational” license. ERKLÄRUNGENLAUTPROMOTIONSORDNUNG §8 Abs. 1 lit. c PromO Ich versichere hiermit, dass die elektronische Version meiner Disserta- tion mit der schriftlichen Version übereinstimmt. §8 Abs. 1 lit. d PromO Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen. §9 Abs. 1 PromO Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde.
    [Show full text]
  • Universid Ade De Sã O Pa
    A hardware/software codesign for the chemical reactivity of BRAMS Carlos Alberto Oliveira de Souza Junior Dissertação de Mestrado do Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional (PPG-CCMC) UNIVERSIDADE DE SÃO PAULO DE SÃO UNIVERSIDADE Instituto de Ciências Matemáticas e de Computação Instituto Matemáticas de Ciências SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: ______________________ Carlos Alberto Oliveira de Souza Junior A hardware/software codesign for the chemical reactivity of BRAMS Master dissertation submitted to the Instituto de Ciências Matemáticas e de Computação – ICMC- USP, in partial fulfillment of the requirements for the degree of the Master Program in Computer Science and Computational Mathematics. FINAL VERSION Concentration Area: Computer Science and Computational Mathematics Advisor: Prof. Dr. Eduardo Marques USP – São Carlos August 2017 Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi e Seção Técnica de Informática, ICMC/USP, com os dados fornecidos pelo(a) autor(a) Souza Junior, Carlos Alberto Oliveira de S684h A hardware/software codesign for the chemical reactivity of BRAMS / Carlos Alberto Oliveira de Souza Junior; orientador Eduardo Marques. -- São Carlos, 2017. 109 p. Dissertação (Mestrado - Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional) -- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2017. 1. Hardware. 2. FPGA. 3. OpenCL. 4. Codesign. 5. Heterogeneous-computing. I. Marques, Eduardo, orient. II. Título. Carlos Alberto Oliveira de Souza Junior Um coprojeto de hardware/software para a reatividade química do BRAMS Dissertação apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Mestre em Ciências – Ciências de Computação e Matemática Computacional.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • BIOINFORMATICS APPLICATIONS NOTE Doi:10.1093/Bioinformatics/Btu426
    Vol. 30 no. 20 2014, pages 2981–2982 BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btu426 Structural bioinformatics Advance Access publication July 4, 2014 YASARA View—molecular graphics for all devices—from smartphones to workstations Elmar Krieger* and Gert Vriend Centre for Molecular and Biomolecular Informatics, NCMLS, Radboud University Nijmegen Medical Centre, 6500 HB Nijmegen, the Netherlands Downloaded from https://academic.oup.com/bioinformatics/article-abstract/30/20/2981/2422272 by guest on 17 March 2019 Associate Editor: Janet Kelso ABSTRACT 2 METHODS Summary: Today’s graphics processing units (GPUs) compose the The general idea is very simple and has been used ever since texture scene from individual triangles. As about 320 triangles are needed to mapping became part of 3D graphics: if an object is too complex (like approximate a single sphere—an atom—in a convincing way, visualiz- the 960 triangles required to draw a single water molecule in Fig. 1A) it is ing larger proteins with atomic details requires tens of millions of tri- replaced with ‘impostors’, i.e. fewer triangles that have precalculated tex- angles, far too many for smooth interactive frame rates. We describe a tures attached, which make them look like the original object. Texture mapping means that a triangle is not rendered with a single color, but an new approach to solve this ‘molecular graphics problem’, which image (the texture) is attached to it instead. For each of the three triangle shares the work between GPU and multiple CPU cores, generates vertices, the programmer can specify the corresponding 2D coordinates in high-quality results with perfectly round spheres, shadows and ambi- the texture, and the hardware interpolates in between.
    [Show full text]
  • “One Ring to Rule Them All”
    OpenMM library “One ring to rule them all” https://simtk.org/home/openmm CHARMM * Abalone Presto * ACEMD NAMD * ADUN * Ascalaph Gromacs AMBER * COSMOS ??? HOOMD * Desmond * Culgi * ESPResSo Tinker * GROMOS * GULP * Hippo LAMMPS * Kalypso MD * LPMD * MacroModel * MDynaMix * MOLDY * Materials Studio * MOSCITO * ProtoMol The OpenM(olecular)M(echanics) API * RedMD * YASARA * ORAC https://simtk.org/home/openmm * XMD Goals of OpenMM l Complete library l provide what is most needed l easy to learn and use l Fast, general, extensible l optimize for speed l hide hardware specifics l support new hardware l add new force fields, integration methods etc. l Available APIs in C++, Fortran95, Python l Advantages l Object oriented l Modular l Extensible l Disadvantages l Programs written in other languages need to invoke it through a layer of C++ code Features • Electrostatics: cut-off, Ewald, PME • Implicit solvent • Integrators: Verlet, Langevin, Brownian, custom • Thermostat: Andersen • Barostat: MonteCarlo • Others: energy minimization, virtual sites 5 The OpenMM Architecture Public Interface OpenMM Public API Platform Independent Code OpenMM Implementation Layer Platform Abstraction Layer OpenMM Low Level API Computational Kernels CUDA/OpenCL/Brook/MPI etc. Public API Classes (1) l System l A collection of interaction particles l Defines the mass of each particle (needed for integration) l Specifies distance restraints l Contains a list of Force objects that define the interactions l OpenMMContext l Contains all state information for a particular simulation − Positions, velocities, other parmeters Public API Classes (2) l Force l Anything that affects the system's behavior: forces, barostats, thermostats, etc. l A Force may: − Apply forces to particles − Contribute to the potential energy − Define adjustable parameters − Modify positions, velocities, and parameters at the start of each time step l Existing Force subclasses − HarmonicBond, HarmonicAngle, PeriodicTorsion, RBTorsion, Nonbonded, GBSAOBC, AndersenThermostat, CMMotionRemover..
    [Show full text]
  • Foldx 5.0: Working with RNA, Small Molecules and a New Graphical Interface Javier Delgado1,†, Leandro G
    Bioinformatics, 35(20), 2019, 4168–4169 doi: 10.1093/bioinformatics/btz184 Advance Access Publication Date: 15 March 2019 Applications Note Structural bioinformatics FoldX 5.0: working with RNA, small molecules and a new graphical interface Javier Delgado1,†, Leandro G. Radusky1,†, Damiano Cianferoni1 and Luis Serrano1,2,3,* 1Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, 08003 Barcelona, Spain, 2Universitat Pompeu Fabra (UPF), Barcelona, Spain and 3Institucio´ Catalana de Recerca i Estudis Avanc¸ats (ICREA), 08010 Barcelona, Spain *To whom correspondence should be addressed. †The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors. Associate Editor: Alfonso Valencia Received on November 20, 2018; revised on January 29, 2019; editorial decision on March 9, 2019; accepted on March 14, 2019 Abstract Summary: A new version of FoldX, whose main new features allows running classic FoldX com- mands on structures containing RNA molecules and includes a module that allows parametrization of ligands or small molecules (ParamX) that were not previously recognized in old versions, has been released. An extended FoldX graphical user interface has also being developed (available as a python plugin for the YASARA molecular viewer) allowing user-friendly parametrization of new custom user molecules encoded using JSON format. Availability and implementation: http://foldxsuite.crg.eu/ Contact: [email protected] 1 Introduction 2 Implementation and requirements The FoldX toolsuite (Guerois et al., 2002; Schymkowitz et al., FoldX 5.0 was written in Cþþ, and has been compiled as a univer- 2005) was developed for the rapid evaluation of the effect of muta- sal and portable binary file for each of the three main platforms tions on the stability, folding and dynamics of proteins.
    [Show full text]
  • ACPYPE - Antechamber Python Parser Interface Alan W Sousa Da Silva1,2,3* and Wim F Vranken2,4
    da Silva and Vranken BMC Research Notes 2012, 5:367 http://www.biomedcentral.com/1756-0500/5/367 TECHNICAL NOTE Open Access ACPYPE - AnteChamber PYthon Parser interfacE Alan W Sousa da Silva1,2,3* and Wim F Vranken2,4 Abstract Background: ACPYPE (or AnteChamber PYthon Parser interfacE) is a wrapper script around the ANTECHAMBER software that simplifies the generation of small molecule topologies and parameters for a variety of molecular dynamics programmes like GROMACS, CHARMM and CNS. It is written in the Python programming language and was developed as a tool for interfacing with other Python based applications such as the CCPN software suite (for NMR data analysis) and ARIA (for structure calculations from NMR data). ACPYPE is open source code, under GNU GPL v3, and is available as a stand-alone application at http://www.ccpn.ac.uk/acpype and as a web portal application at http://webapps.ccpn.ac.uk/acpype. Findings: We verified the topologies generated by ACPYPE in three ways: by comparing with default AMBER topologies for standard amino acids; by generating and verifying topologies for a large set of ligands from the PDB; and by recalculating the structures for 5 protein–ligand complexes from the PDB. Conclusions: ACPYPE is a tool that simplifies the automatic generation of topology and parameters in different formats for different molecular mechanics programmes, including calculation of partial charges, while being object oriented for integration with other applications. Keywords: MD, GROMACS, AMBER, CNS, ANTECHAMBER, NMR, Ligand, Topology Findings Background Here we introduce ACPYPE, a tool based on Molecular Mechanics (MM) has evolved substantially ANTECHAMBER [1] for generating automatic topolo- over the last decades, not only because of major advances gies and parameters in different formats for different in computational power, but also due to more accurate molecular mechanics programmes, including calcula- and diverse force field descriptions.
    [Show full text]
  • Development of Chemoinformatic Tools to Enumerate Functional Groups in Molecules for Organic Aerosol Characterization G
    Manuscript prepared for Atmos. Chem. Phys. with version 2015/04/24 7.83 Copernicus papers of the LATEX class copernicus.cls. Date: 1 March 2016 Technical Note: Development of chemoinformatic tools to enumerate functional groups in molecules for organic aerosol characterization G. Ruggeri1 and S. Takahama1 1ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland Correspondence to: Satoshi Takahama (satoshi.takahama@epfl.ch) Abstract. Functional groups (FGs) can be used as a reduced representation of organic aerosol composition in both ambient and environmental controlled chamber studies, as they retain a cer- tain chemical specificity. Furthermore, FG composition has been informative for source apportion- ment, and various models based on a group contribution framework have been developed to calcu- 5 late physicochemical properties of organic compounds. In this work, we provide a set of validated chemoinformatic patterns that correspond to: 1) a complete set of functional groups that can entirely describe the molecules comprised in the α-pinene and 1,3,5-trimethylbenzene MCMv3.2 oxidation schemes, 2) FGs that are measurable by Fourier transform infrared spectroscopy (FTIR), 3) groups incorporated in the SIMPOL.1 vapor pressure estimation model, and 4) bonds necessary for the cal- 10 culation of carbon oxidation state. We also provide example applications for this set of patterns. We compare available aerosol composition reported by chemical speciation measurements and FTIR for different emission sources, and calculate the FG contribution to the O:C ratio of simulated gas phase composition generated from α-pinene photooxidation (using MCMv3.2 oxidation scheme). 1 Introduction 15 Atmospheric aerosols are complex mixtures of inorganic salts, mineral dust, sea salt, black carbon, metals, organic compounds, and water (Seinfeld and Pandis, 2006).
    [Show full text]
  • Ballview a Molecular Viewer and Modeling Tool
    BALLView A molecular viewer and modeling tool Dissertation zur Erlangung des Grades des Doktors der Ingenieurwissenschaften der Naturwissenschaftlich– Technischen Fakultäten der Universität des Saarlandes vorgelegt von Diplom-Biologe Andreas Moll Saarbrücken im Mai 2007 Tag des Kolloquiums: 18. Juli 2007 Dekan: Prof. Dr. Thorsten Herfet Mitglieder des Prüfungsausschusses: Prof. Dr. Philipp Slusallek Prof. Dr. Hans-Peter Lenhof Prof. Dr. Oliver Kohlbacher Dr. Dirk Neumann Acknowledgments The work on this thesis was carried out during the years 2002-2007 at the Center for Bioinformatics in the group of Prof. Dr. Hans-Peter Lenhof who also was the supervisor of the thesis. With his deeply interesting lecture on bioinformatics, Prof. Dr. Hans-Peter Lenhof kindled my interest in this field and gave me the freedom to do research in those areas that fascinated me most. The implementation of BALLView would have been unthinkable without the help of all the people who contributed code and ideas. In particular, I want to thank Prof. Dr. Oliver Kohlbacher for his splendid work on the BALL library, on which this thesis is based on. Furthermore, Prof. Kohlbacher had at any time an open ear for my questions. Next I want to thank Dr. Andreas Hildebrandt, who had good advices for the majority of problems that I was confronted with. In addition he contributed code for database access, field line calculations, spline points calculations, 2D depiction of molecules, and for the docking in- terface. Heiko Klein wrote the precursor of the VIEW library. Anne Dehof implemented the peptide builder, the secondary structure assignment, and a first version of the editing mo- de.
    [Show full text]
  • Refinement of the Docking Component of Virtual Screening for Pparγ Therapeutics Using Pharmacophore Analysis and Molecular Dynamics
    Refinement of the Docking Component of Virtual Screening for PPARγ Therapeutics Using Pharmacophore Analysis and Molecular Dynamics Stephanie Nicole Lewis Dissertation submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy In Genetics, Bioinformatics, and Computational Biology David R. Bevan, Chair Josep Bassaganya-Riera Jill Sible Liqing Zhang June 11, 2013 Blacksburg, VA Keywords: Virtual screening, PPARγ, Drug discovery, Molecular docking, Pharmacophore screening, Molecular dynamics Copyright 2013, Stephanie Nicole Lewis Refinement of the Docking Component of Virtual Screening for PPARγ Therapeutics Using Pharmacophore Analysis and Molecular Dynamics Stephanie Nicole Lewis ABSTRACT Exploration of peroxisome proliferator-activated receptor-gamma (PPARγ) as a drug target holds applications for treating a wide variety of chronic inflammation-related diseases. Type 2 diabetes (T2D), which is a metabolic disease influenced by chronic inflammation, is quickly reaching epidemic proportions. Although some treatments are available to control T2D, more efficacious compounds with fewer side effects are in great demand. Drugs targeting PPARγ typically are compounds that function as agonists toward this receptor, which means they bind to and activate the protein. Identifying compounds that bind to PPARγ (i.e. binders) using computational docking methods has proven difficult given the large binding cavity of the protein, which yields a large target area and variations in ligand positions within the binding site. We applied a combined computational and experimental concept for characterizing PPARγ and identifying binders. The goal was to establish a time- and cost-effective way to screen a large, diverse compound database potentially containing natural and synthetic compounds for PPARγ agonists that are more efficacious and safer than currently available T2D treatments.
    [Show full text]
  • Pemodelan Dan Simulasi Dinamika
    PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI PEMODELAN DAN SIMULASI DINAMIKA MOLEKUL HUMAN MATRIX METALLOPROTEINASE 9 (hMMP9) UTUH SEBAGAI TARGET VIRTUAL PENEMUAN LIGAN PADA CATALYTIC SITE MAUPUN HEMOPEXIN-LIKE DOMAIN TESIS Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Magister Farmasi (M.Farm.) Program Studi Magister Farmasi Diajukan oleh: Roy Gunawan Wicaksono, S.Farm. Nomor Induk Mahasiswa: 188122101 FAKULTAS FARMASI UNIVERSITAS SANATA DHARMA YOGYAKARTA 2020 PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI PEMODELAN DAN SIMULASI DINAMIKA MOLEKUL HUMAN MATRIX METALLOPROTEINASE 9 (hMMP9) UTUH SEBAGAI TARGET VIRTUAL PENEMUAN LIGAN PADA CATALYTIC SITE MAUPUN HEMOPEXIN-LIKE DOMAIN TESIS Diajukan untuk Memenuhi Salah Satu Syarat Memperoleh Gelar Magister Farmasi (M.Farm.) Program Studi Magister Farmasi Diajukan oleh: Roy Gunawan Wicaksono, S.Farm. Nomor Induk Mahasiswa: 188122101 FAKULTAS FARMASI UNIVERSITAS SANATA DHARMA YOGYAKARTA 2020 PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI }ERSETUJUAN PEMBIMBING PEMODELAN DAN SIMULASI DINAMIKA MIOLF]KTJL HUMAN MATRD( METALLOPROTEINASE 9 (hMNTPg) IITUH SEBAGAT TARGET VTRTUAL PENEMUAN LIGAN PADA CATALYTIC SITEiMAI|PIITN HEMOPEXIN DOfuLAIN Tesis yang diajukan oleh: Roy Crunawan Wicaksono, S.Farm. (f 88122101) T€lah disetujui tar.ggdZr 19 ot"t, Dosen ing Utarna Enade Ph.D., Apt. o,lPP/NrD 1969/050608790 I ) PLAGIAT MERUPAKAN TINDAKAN TIDAK TERPUJI PENGESAIIAN TESIS BERJUDT]L PEMODELAIT DAN SIMULASI DINAMIKA MOLEKIJL HUMAN MATRD( METALLOPROTEINASE 9 (htvfrvfp9) UTUH SEBAGAI TARGET VIRTUAL PENEMUAN LIGA}I PADA CITALYTIC SITE MAUI{JN HEMOPHfiN-LIEE DOMAIN oleh: Roy Gunawan Wicaksono, S.Farm. (188122101) Dipertahankan di hadapan panitia penguji tesis Fakultas Farmasi Universitas Sanata Dharma Pada tanggal 23 lanuai 2020 Mengetahui Fakultas Farmasi Universitas Sanata Dharma tr!? ,: utl >-_ | {'2-_ Hartini, Apt. Panitia Penguji: l.
    [Show full text]