A Consistent Cheminformatics Framework for Automated Virtual Screening

Total Page:16

File Type:pdf, Size:1020Kb

A Consistent Cheminformatics Framework for Automated Virtual Screening A consistent cheminformatics framework for automated virtual screening Cumulative Dissertation to receive the degree Dr. rer. nat. at the Faculty of Mathematics, Informatics and Natural Sciences University of Hamburg submitted to the Department of Informatics of the University of Hamburg Sascha Urbaczek born in Mannheim Hamburg, August 2014 1. Reviewer: Prof. Dr. Matthias Rarey 2. Reviewer: JProf. Dr. Tobias Schwabe 3. Reviewer: Prof. Dr. Andreas Hildebrandt Date of thesis defense: 23.01.2015 F¨urmeine Lena Acknowledgements At this point, I would like to acknowledge the people who supported and encouraged me during my doctoral thesis. First and foremost, I extend my sincere gratitude to my supervisor Prof. Matthias Rarey for entrusting me with this interesting research project and providing guidance and support every step of the way. I also thank the Beiersdorf AG for funding the project and Dr. Inken Groth and Prof. Stefan Heuser in particular for their constant support as well as their great interest in my work. Furthermore, I thank the BiosolveIT GmbH for the productive working relationship during and especially after my time at the Center for Bioinformatics. As for the current and former colleagues from the Center of Bioinformatics (which are far too many to list here); I am grateful to have had the opportunity to work in such a remarkably pleasant and productive environment. I really appreciate everyone's hard work and dedication during these (very successful) last years. In particular I owe a great deal of gratitude to Dr. Tobias Lippert from whom I learned a lot and who has become a very dear friend to me. Last but not least I also thank JProf. Tobias Schwabe and to Prof. Alexander Hildebrandt for reviewing my thesis. Kurzfassung Virtuelles Screening hat sich zu einem integralen Bestandteil der industriellen und akademischen Arzneimittelforschung entwickelt. Es wird eingesetzt, um sehr große Sub- stanzdatenbanken mit der Hilfe von computerbasierten Methoden auf eine ¨uberschaubare Zahl vielversprechender Kandidaten zu reduzieren. Um eine m¨oglichst hohe Vorhersage- genauigkeit zu erreichen, wird hierbei versucht, so viele Informationen wie m¨oglich ¨uber das Zielprotein und seine bekannten Bindungspartner in die Berechnungen einfließen zu lassen. Die resultierenden Arbeitsprozesse umfassen deshalb h¨aufigmehrere Schritte, in denen die verschiedenen Informationen ber¨ucksichtigt werden. Aufgrund der Vielzahl verf¨ugbarerMethodiken und des starken Einflusses jedes einzelnen Schrittes auf das Ergebnis, ist virtuelles Screening eine Aufgabe von enormer Komplexit¨atund mit vie- len Fallstricken, die f¨urgew¨ohnlich nur von Spezialisten durchgef¨uhrtwerden kann. Das Ziel der vorliegenden Arbeit war der Aufbau einer verl¨assliche Basis f¨urdie Entwicklung von Software, die eine Integration von Medizinalchemikern in die com- putergest¨utzteWikstoffsuche f¨ordert. Das Ergebnis dieser Bem¨uhungen ist ein neues chemieinformatisches Softwareframework (NAOMI) f¨urvirtuelles Screening, welches speziell auf die damit verbundenen Anforderungen angepasst wurde. Erstens erlaubt NAOMI Medizinalchemikern, basierend auf innovativen und intuitiv verst¨andlichen Konzepten, ihre Erfahrung und ihr Spezialwissen an den Stellen der Berechnungen einzubringen, die f¨urden Erfolg ihrer Projekte maßgeblich sind. Zweitens umfasst NAOMI zahlreiche neue chemieinformatische Methoden, die auf einem konsistenten internen chemischen Modell aufbauen und eine effiziente Ausf¨uhrungder einzelnen Schritte des virtuellen Screenings erlauben. Die so erreichte Effizienz ist jedoch nicht nur eine notwendige Voraussetzung f¨urHochdurchsatz-Screening, sondern spielt auch eine zentrale Rolle in interaktiven Anwendungen, die in Kombination mit einer intu- itiven Benutzerschnittstelle eine Schl¨usselrollein der Integration von Medizinalchemik- ern in die computergest¨utzteWirkstoffsuche spielen. Drittens wurde viel Wert darauf gelegt sicherzustellen, dass die Ergebnisse der verschiedenen Rechenschritte chemisch sinnvoll sind und dass eine hoher Grad an Konsistenz zwischen den verschiedenen Kom- ponenten des Prozesses sichergestellt ist. Dies ist von entscheidender Bedeutung, da viele Schritte automatisiert werden m¨ussen,um zu erreichen, dass Medizinalchemiker sich auf die f¨ursie relevanten Teilaspekte konzentrieren k¨onnen.Wie in den Publikatio- nen dieser kumulativen Dissertation gezeigt wird, sind zahlreiche Methoden in NAOMI selbst relevante Beitr¨agein ihren jeweiligen Anwendungsgebieten und ihre Kombination erlaubt den Aufbau effizienter, komplett automatisierter und hoch-adaptiver Screening- Prozesse. Abstract Virtual screening has long since become an integral part of the drug discovery process in both industry and academia. Its main purpose is to reduce huge compound databases to a manageable number of promising drug candidates with the help of computational methods. In order to provide reliable predictions, screening campaigns always aim to incorporate as much knowledge as possible about the target protein and its known binding partners. For that reason, the resulting workflows generally comprise multiple consecutive stages in which the different types of information are processed. The multitude of available methodologies and the strong dependency of the results on each individual step make virtual screening a complex task with numerous pitfalls which is usually only performed by specialized computational chemists. The aim of the presented work was to provide a reliable basis for the development of software applications supporting the inclusion of medicinal chemists in computer-aided drug design activities. The result of this effort is a new cheminformatics framework (NAOMI) for virtual screening which has been specifically designed to meet the de- manding requirements imposed by this scenario. First, based on both innovative and intuitively understandable concepts, NAOMI enables medicinal chemists to contribute their expert knowledge and experience at those points of the calculations that are cru- cial for the success of their current projects. Second, building on the consistent internal chemical model NAOMI comprises numerous novel cheminformatics methods enabling an efficient execution of each individual step of the virtual screening workflow. Apart from being a crucial factor in high-throughput calculations, computational speed is also of the essence in interactive applications which, in combination with intuitive user interfaces, are a key factor in involving medicinal chemists in computational endeavors. Third, great care was taken to ensure that the results of each stage are chemically reasonable and that a high degree of consistency is maintained between the different components of the pipeline. This is important as many steps of the process have to be automated in order to allow medicinal chemists to focus on those aspects relevant for their projects. As is shown in the publications presented in this work, many individual methods included in the NAOMI framework are in themselves relevant contributions to their specific field of application and their combination results in efficient, completely automated, and highly adaptable screening workflows. Contents 1 Introduction 1 1.1 Protein-Ligand Interactions . .3 1.2 Rational Drug Design . .5 1.3 Computer-Aided Drug Design . .7 1.4 Virtual Screening . .9 1.5 Cheminformatics . 11 1.6 Motivation . 12 2 Screening Library 15 2.1 Representation of Molecules . 16 2.2 Representation and Perception of Rings . 20 2.3 Interpretation of Molecules from Chemical File Formats . 25 2.4 Storage of Molecules in Databases . 29 2.5 Selecting Sets of Molecules . 33 2.6 Generation and Selection of Protomers . 37 3 Protein Structure 43 3.1 Representation of Protein Structures . 44 3.2 Structural Data of Protein-Ligand Complexes . 46 3.3 Protomers in Protein-Ligand Complexes . 50 4 Virtual Screening 55 4.1 Representation of Molecular Interactions . 56 4.2 Molecular Docking . 60 4.3 Structure-Based Pharmacophores . 64 4.4 Protomers in Docking . 68 4.5 Virtual High-Throughput Screening . 70 4.6 Inverse Virtual Screening . 72 XI CONTENTS 4.7 Comparison of Binding Pockets . 73 5 Summary and Outlook 75 Bibliography 79 Bibliography of this Dissertation's Publications 95 Appendices 97 A Publications and conference contributions 97 A.1 Publications in scientific journals . 97 A.2 Conferences . 102 B Additional Data 103 B.1 Valence States . 103 B.2 Corresponding Pairs of Valence States . 104 B.3 Substructure Patterns . 106 C Software Architecture 111 C.1 Software Libraries . 111 C.2 Application Software . 117 C.3 Software Testing . 117 D Software Tools 121 E Journal articles 123 XII 1 Introduction Over the course of the last few decades, computers have gained more and more impor- tance throughout all fields of chemistry. They are the only viable means to store and process the huge amount of experimental data produced by chemical research and to perform demanding theoretical calculations with a sufficient level of accuracy. The ever- growing need for more advanced computer-based approaches and improved application programs eventually lead to the establishment of new disciplines, which exclusively focused on the use and development of computational methods to solve chemical prob- lems. The software produced in these fields was initially designed to be used by trained specialists in a supporting capacity. This has, however, considerably changed over the last ten to fifteen years. Nowadays, there is a computer on the desk of nearly every chemist and scientific software
Recommended publications
  • Wannier90 As a Community Code: New
    IOP Journal of Physics: Condensed Matter Journal of Physics: Condensed Matter J. Phys.: Condens. Matter J. Phys.: Condens. Matter 32 (2020) 165902 (25pp) https://doi.org/10.1088/1361-648X/ab51ff 32 Wannier90 as a community code: new 2020 features and applications © 2020 IOP Publishing Ltd Giovanni Pizzi1,29,30 , Valerio Vitale2,3,29 , Ryotaro Arita4,5 , Stefan Bl gel6 , Frank Freimuth6 , Guillaume G ranton6 , JCOMEL ü é Marco Gibertini1,7 , Dominik Gresch8 , Charles Johnson9 , Takashi Koretsune10,11 , Julen Ibañez-Azpiroz12 , Hyungjun Lee13,14 , 165902 Jae-Mo Lihm15 , Daniel Marchand16 , Antimo Marrazzo1 , Yuriy Mokrousov6,17 , Jamal I Mustafa18 , Yoshiro Nohara19 , 4 20 21 G Pizzi et al Yusuke Nomura , Lorenzo Paulatto , Samuel Poncé , Thomas Ponweiser22 , Junfeng Qiao23 , Florian Thöle24 , Stepan S Tsirkin12,25 , Małgorzata Wierzbowska26 , Nicola Marzari1,29 , Wannier90 as a community code: new features and applications David Vanderbilt27,29 , Ivo Souza12,28,29 , Arash A Mostofi3,29 and Jonathan R Yates21,29 Printed in the UK 1 Theory and Simulation of Materials (THEOS) and National Centre for Computational Design and Discovery of Novel Materials (MARVEL), École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 CM Lausanne, Switzerland 2 Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE, United Kingdom 10.1088/1361-648X/ab51ff 3 Departments of Materials and Physics, and the Thomas Young Centre for Theory and Simulation of Materials, Imperial College London, London SW7 2AZ, United Kingdom 4 RIKEN
    [Show full text]
  • Minimum Cycle Bases and Their Applications
    Minimum Cycle Bases and Their Applications Franziska Berger1, Peter Gritzmann2, and Sven de Vries3 1 Department of Mathematics, Polytechnic Institute of NYU, Six MetroTech Center, Brooklyn NY 11201, USA [email protected] 2 Zentrum Mathematik, Technische Universit¨at M¨unchen, 80290 M¨unchen, Germany [email protected] 3 FB IV, Mathematik, Universit¨at Trier, 54286 Trier, Germany [email protected] Abstract. Minimum cycle bases of weighted undirected and directed graphs are bases of the cycle space of the (di)graphs with minimum weight. We survey the known polynomial-time algorithms for their con- struction, explain some of their properties and describe a few important applications. 1 Introduction Minimum cycle bases of undirected or directed multigraphs are bases of the cycle space of the graphs or digraphs with minimum length or weight. Their intrigu- ing combinatorial properties and their construction have interested researchers for several decades. Since minimum cycle bases have diverse applications (e.g., electric networks, theoretical chemistry and biology, as well as periodic event scheduling), they are also important for practitioners. After introducing the necessary notation and concepts in Subsections 1.1 and 1.2 and reviewing some fundamental properties of minimum cycle bases in Subsection 1.3, we explain the known algorithms for computing minimum cycle bases in Section 2. Finally, Section 3 is devoted to applications. 1.1 Definitions and Notation Let G =(V,E) be a directed multigraph with m edges and n vertices. Let + E = {e1,...,em},andletw : E → R be a positive weight function on E.A cycle C in G is a subgraph (actually ignoring orientation) of G in which every vertex has even degree (= in-degree + out-degree).
    [Show full text]
  • Accelerating Molecular Docking by Parallelized Heterogeneous Computing – a Case Study of Performance, Quality of Results
    solis vasquez, leonardo ACCELERATINGMOLECULARDOCKINGBY PARALLELIZEDHETEROGENEOUSCOMPUTING–A CASESTUDYOFPERFORMANCE,QUALITYOF RESULTS,ANDENERGY-EFFICIENCYUSINGCPUS, GPUS,ANDFPGAS Printed and/or published with the support of the German Academic Exchange Service (DAAD). ACCELERATINGMOLECULARDOCKINGBYPARALLELIZED HETEROGENEOUSCOMPUTING–ACASESTUDYOF PERFORMANCE,QUALITYOFRESULTS,AND ENERGY-EFFICIENCYUSINGCPUS,GPUS,ANDFPGAS at the Computer Science Department of the Technische Universität Darmstadt submitted in fulfilment of the requirements for the degree of Doctor of Engineering (Dr.-Ing.) Doctoral thesis by Solis Vasquez, Leonardo from Lima, Peru Reviewers Prof. Dr.-Ing. Andreas Koch Prof. Dr. Christian Plessl Date of the oral exam October 14, 2019 Darmstadt, 2019 D 17 Solis Vasquez, Leonardo: Accelerating Molecular Docking by Parallelized Heterogeneous Computing – A Case Study of Performance, Quality of Re- sults, and Energy-Efficiency using CPUs, GPUs, and FPGAs Darmstadt, Technische Universität Darmstadt Date of the oral exam: October 14, 2019 Please cite this work as: URN: urn:nbn:de:tuda-tuprints-92886 URL: https://tuprints.ulb.tu-darmstadt.de/id/eprint/9288 This document is provided by TUprints, The Publication Service of the Technische Universität Darmstadt https://tuprints.ulb.tu-darmstadt.de This work is licensed under a Creative Commons “Attribution-ShareAlike 4.0 In- ternational” license. ERKLÄRUNGENLAUTPROMOTIONSORDNUNG §8 Abs. 1 lit. c PromO Ich versichere hiermit, dass die elektronische Version meiner Disserta- tion mit der schriftlichen Version übereinstimmt. §8 Abs. 1 lit. d PromO Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses Versuchs mitzuteilen. §9 Abs. 1 PromO Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der angegebenen Quellen verfasst wurde.
    [Show full text]
  • Universid Ade De Sã O Pa
    A hardware/software codesign for the chemical reactivity of BRAMS Carlos Alberto Oliveira de Souza Junior Dissertação de Mestrado do Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional (PPG-CCMC) UNIVERSIDADE DE SÃO PAULO DE SÃO UNIVERSIDADE Instituto de Ciências Matemáticas e de Computação Instituto Matemáticas de Ciências SERVIÇO DE PÓS-GRADUAÇÃO DO ICMC-USP Data de Depósito: Assinatura: ______________________ Carlos Alberto Oliveira de Souza Junior A hardware/software codesign for the chemical reactivity of BRAMS Master dissertation submitted to the Instituto de Ciências Matemáticas e de Computação – ICMC- USP, in partial fulfillment of the requirements for the degree of the Master Program in Computer Science and Computational Mathematics. FINAL VERSION Concentration Area: Computer Science and Computational Mathematics Advisor: Prof. Dr. Eduardo Marques USP – São Carlos August 2017 Ficha catalográfica elaborada pela Biblioteca Prof. Achille Bassi e Seção Técnica de Informática, ICMC/USP, com os dados fornecidos pelo(a) autor(a) Souza Junior, Carlos Alberto Oliveira de S684h A hardware/software codesign for the chemical reactivity of BRAMS / Carlos Alberto Oliveira de Souza Junior; orientador Eduardo Marques. -- São Carlos, 2017. 109 p. Dissertação (Mestrado - Programa de Pós-Graduação em Ciências de Computação e Matemática Computacional) -- Instituto de Ciências Matemáticas e de Computação, Universidade de São Paulo, 2017. 1. Hardware. 2. FPGA. 3. OpenCL. 4. Codesign. 5. Heterogeneous-computing. I. Marques, Eduardo, orient. II. Título. Carlos Alberto Oliveira de Souza Junior Um coprojeto de hardware/software para a reatividade química do BRAMS Dissertação apresentada ao Instituto de Ciências Matemáticas e de Computação – ICMC-USP, como parte dos requisitos para obtenção do título de Mestre em Ciências – Ciências de Computação e Matemática Computacional.
    [Show full text]
  • Open Babel Documentation Release 2.3.1
    Open Babel Documentation Release 2.3.1 Geoffrey R Hutchison Chris Morley Craig James Chris Swain Hans De Winter Tim Vandermeersch Noel M O’Boyle (Ed.) December 05, 2011 Contents 1 Introduction 3 1.1 Goals of the Open Babel project ..................................... 3 1.2 Frequently Asked Questions ....................................... 4 1.3 Thanks .................................................. 7 2 Install Open Babel 9 2.1 Install a binary package ......................................... 9 2.2 Compiling Open Babel .......................................... 9 3 obabel and babel - Convert, Filter and Manipulate Chemical Data 17 3.1 Synopsis ................................................. 17 3.2 Options .................................................. 17 3.3 Examples ................................................. 19 3.4 Differences between babel and obabel .................................. 21 3.5 Format Options .............................................. 22 3.6 Append property values to the title .................................... 22 3.7 Filtering molecules from a multimolecule file .............................. 22 3.8 Substructure and similarity searching .................................. 25 3.9 Sorting molecules ............................................ 25 3.10 Remove duplicate molecules ....................................... 25 3.11 Aliases for chemical groups ....................................... 26 4 The Open Babel GUI 29 4.1 Basic operation .............................................. 29 4.2 Options .................................................
    [Show full text]
  • JRC QSAR Model Database
    JRC QSAR Model Database EURL ECVAM DataBase service on ALternative Methods to animal experimentation To promote the development and uptake of alternative and advanced methods in toxicology and biomedical sciences SDF - STRUCTURE DATA FORMAT: How to create from SMILES The European Commission’s science and knowledge service Joint Research Centre Directorate F Health, Consumers & Reference Materials Chemicals Safety & Alternative Methods Unit The European Commission’s science and knowledge service Joint Research Centre EUR 28708 EN This publication is a Tutorial by the Joint Research Centre (JRC), the European Commission’s science and knowledge service. It aims to provide user support. The scientific output expressed does not imply a policy position of the European Commission. Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use that might be made of this publication. Contact information Email: [email protected] JRC Science Hub https://ec.europa.eu/jrc JRC107492 EUR 28708 EN PDF ISBN 978-92-79-71294-4 ISSN 1831-9424 doi:10.2760/952280 Print ISBN 978-92-79-71295-1 ISSN 1018-5593 doi:10.2760/668595 Luxembourg: Publications Office of the European Union, 2017 Ispra: European Commission, 2017 © European Union, 2017 The reuse of the document is authorised, provided the source is acknowledged and the original meaning or message of the texts are not distorted. The European Commission shall not be held liable for any consequences stemming from the reuse. How to cite this document: Triebe
    [Show full text]
  • Lab05 - Matroid Exercises for Algorithms by Xiaofeng Gao, 2016 Spring Semester
    Lab05 - Matroid Exercises for Algorithms by Xiaofeng Gao, 2016 Spring Semester Name: Student ID: Email: 1. Provide an example of (S; C) which is an independent system but not a matroid. Give an instance of S such that v(S) 6= u(S) (should be different from the example posted in class). 2. Matching matroid MC : Let G = (V; E) be an arbitrary undirected graph. C is the collection of all vertices set which can be covered by a matching in G. (a) Prove that MC = (V; C) is a matroid. (b) Given a graph G = (V; E) where each vertex vi has a weight w(vi), please give an algorithm to find the matching where the weight of all covered vertices is maximum. Prove the correctness and analyze the time complexity of your algorithm. Note: Given a graph G = (V; E), a matching M in G is a set of pairwise non-adjacent edges; that is, no two edges share a common vertex. A vertex is covered (or matched) if it is an endpoint of one of the edges in the matching. Otherwise the vertex is uncovered. 3. A Dyck path of length 2n is a path in the plane from (0; 0) to (2n; 0), with steps U = (1; 1) and D = (1; −1), that never passes below the x-axis. For example, P = UUDUDUUDDD is a Dyck path of length 10. Each Dyck path defines an up-step set: the subset of [2n] consisting of the integers i such that the i-th step of the path is U.
    [Show full text]
  • BIOINFORMATICS Doi:10.1093/Bioinformatics/Btt213
    Vol. 29 ISMB/ECCB 2013, pages i352–i360 BIOINFORMATICS doi:10.1093/bioinformatics/btt213 Haplotype assembly in polyploid genomes and identical by descent shared tracts Derek Aguiar and Sorin Istrail* Department of Computer Science and Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA ABSTRACT Standard genome sequencing workflows produce contiguous Motivation: Genome-wide haplotype reconstruction from sequence DNA segments of an unknown chromosomal origin. De novo data, or haplotype assembly, is at the center of major challenges in assemblies for genomes with two sets of chromosomes (diploid) molecular biology and life sciences. For complex eukaryotic organ- or more (polyploid) produce consensus sequences in which the isms like humans, the genome is vast and the population samples are relative haplotype phase between variants is undetermined. The growing so rapidly that algorithms processing high-throughput set of sequencing reads can be mapped to the phase-ambiguous sequencing data must scale favorably in terms of both accuracy and reference genome and the diploid chromosome origin can be computational efficiency. Furthermore, current models and methodol- determined but, without knowledge of the haplotype sequences, ogies for haplotype assembly (i) do not consider individuals sharing reads cannot be mapped to the particular haploid chromosome haplotypes jointly, which reduces the size and accuracy of assembled sequence. As a result, reference-based genome assembly algo- haplotypes, and (ii) are unable to model genomes having more than rithms also produce unphased assemblies. However, sequence two sets of homologous chromosomes (polyploidy). Polyploid organ- reads are derived from a single haploid fragment and thus pro- isms are increasingly becoming the target of many research groups vide valuable phase information when they contain two or more variants.
    [Show full text]
  • MACSIMUS Manual
    1 MACSIMUS manual benzocaine (ethylaminobenzoate) parameter_set = charmm21 HA | HA-CT-HA | HA-CT-HA | OSn.2 | Cp.7=On.5 | C6R--C6R-HA Most often used links: | | HA-C6R C6R-HA 2.2 Blend synopsis and options | | HA-C6R--C6R-NPn.5^-Hp.25 9.2 Cook synopsis and options | 9.2.5 Cook input data Hp.25 MACromolecule SIMUlation Software © Jiˇr´ıKolafa 1993{2020 MACSIMUS may be distributed under the terms of the GNU General Public Licence Credits: ray: Mark VandeWettering \reasonably intelligent raytracer" CHARMM force field (files: charmm*.par, charmm*/*.rsd) GROMOS force field (files: gromos*.par, gromos*/*.rsd) amoeba implementation by Z. Wagner moil support by J. Schofield several bug fixes by T. Trnka bug discovered by N. Parfenov Contents I Program `blend' version 2.4b 14 1 Introduction 16 1.1 Force fields...................................... 16 1.2 `blend' overview.................................... 16 1.3 Versions........................................ 17 2 Running blend 18 2.1 Environment...................................... 18 2.2 Synopsis........................................ 19 2.2.1 Global options................................. 19 2.2.2 par-options and parameter files....................... 20 2.2.3 mol-options and molecular files....................... 22 2.2.4 Extra-options ................................. 29 2.3 File extensions.................................... 34 2.4 Run-time control................................... 37 2.4.1 get data format for input........................... 37 2.4.2 Scrolling.................................... 38 2.4.3 Error handling................................ 39 2.4.4 Interrupts................................... 40 2.5 Showing molecules graphically............................ 40 2.5.1 X11 Graphics................................. 40 2.5.2 Playback output............................... 44 2.6 Energy minimization................................. 44 2.7 Missing coordinates.................................. 45 3 Force field and the parameter file 46 3.1 Structure of the parameter file...........................
    [Show full text]
  • Short Cycles
    Short Cycles Minimum Cycle Bases of Graphs from Chemistry and Biochemistry Dissertation zur Erlangung des akademischen Grades Doctor rerum naturalium an der Fakultat¨ fur¨ Naturwissenschaften und Mathematik der Universitat¨ Wien Vorgelegt von Petra Manuela Gleiss im September 2001 An dieser Stelle m¨ochte ich mich herzlich bei all jenen bedanken, die zum Entstehen der vorliegenden Arbeit beigetragen haben. Allen voran Peter Stadler, der mich durch seine wissenschaftliche Leitung, sein ub¨ er- w¨altigendes Wissen und seine Geduld unterstutzte,¨ sowie Josef Leydold, ohne den ich so manch tieferen Einblick in die Mathematik nicht gewonnen h¨atte. Ivo Hofacker, dermich oftmals aus den unendlichen Weiten des \Computer Universums" rettete. Meinem Bruder Jurgen¨ Gleiss, fur¨ die Einfuhrung¨ und Hilfstellungen bei meinen Kampf mit C++. Daniela Dorigoni, die die Daten der atmosph¨arischen Netzwerke in den Computer eingeben hat. Allen Kolleginnen und Kollegen vom Institut, fur¨ die Hilfsbereitschaft. Meine Eltern Erika und Franz Gleiss, die mir durch ihre Unterstutzung¨ ein Studium erm¨oglichten. Meiner Oma Maria Fischer, fur¨ den immerw¨ahrenden Glauben an mich. Meinen Schwiegereltern Irmtraud und Gun¨ ther Scharner, fur¨ die oftmalige Betreuung meiner Kinder. Zum Schluss Roland Scharner, Florian und Sarah Gleiss, meinen drei Liebsten, die mich immer wieder aufbauten und in die reale Welt zuruc¨ kfuhrten.¨ Ich wurde teilweise vom osterreic¨ hischem Fonds zur F¨orderung der Wissenschaftlichen Forschung, Proj.No. P14094-MAT finanziell unterstuzt.¨ Zusammenfassung In der Biochemie werden Kreis-Basen nicht nur bei der Betrachtung kleiner einfacher organischer Molekule,¨ sondern auch bei Struktur Untersuchungen hoch komplexer Biomolekule,¨ sowie zur Veranschaulichung chemische Reaktionsnetzwerke herange- zogen. Die kleinste kanonische Menge von Kreisen zur Beschreibung der zyklischen Struk- tur eines ungerichteten Graphen ist die Menge der relevanten Kreis (Vereingungs- menge aller minimaler Kreis-Basen).
    [Show full text]
  • A Cycle-Based Formulation for the Distance Geometry Problem
    A cycle-based formulation for the Distance Geometry Problem Leo Liberti, Gabriele Iommazzo, Carlile Lavor, and Nelson Maculan Abstract The distance geometry problem consists in finding a realization of a weighed graph in a Euclidean space of given dimension, where the edges are realized as straight segments of length equal to the edge weight. We propose and test a new mathematical programming formulation based on the incidence between cycles and edges in the given graph. 1 Introduction The Distance Geometry Problem (DGP), also known as the realization problem in geometric rigidity, belongs to a more general class of metric completion and embedding problems. DGP. Given a positive integer K and a simple undirected graph G = ¹V; Eº with an edge K weight function d : E ! R≥0, establish whether there exists a realization x : V ! R of the vertices such that Eq. (1) below is satisfied: fi; jg 2 E kxi − xj k = dij; (1) 8 K where xi 2 R for each i 2 V and dij is the weight on edge fi; jg 2 E. L. Liberti LIX CNRS Ecole Polytechnique, Institut Polytechnique de Paris, 91128 Palaiseau, France, e-mail: [email protected] G. Iommazzo LIX Ecole Polytechnique, France and DI Università di Pisa, Italy, e-mail: giommazz@lix. polytechnique.fr C. Lavor IMECC, University of Campinas, Brazil, e-mail: [email protected] N. Maculan COPPE, Federal University of Rio de Janeiro (UFRJ), Brazil, e-mail: [email protected] 1 2 L. Liberti et al. In its most general form, the DGP might be parametrized over any norm.
    [Show full text]
  • Dominating Cycles in Halin Graphs*
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Discrete Mathematics 86 (1990) 215-224 215 North-Holland DOMINATING CYCLES IN HALIN GRAPHS* Mirosiawa SKOWRONSKA Institute of Mathematics, Copernicus University, Chopina 12/18, 87-100 Torun’, Poland Maciej M. SYStO Institute of Computer Science, University of Wroclaw, Przesmyckiego 20, 51-151 Wroclaw, Poland Received 2 December 1988 A cycle in a graph is dominating if every vertex lies at distance at most one from the cycle and a cycle is D-cycle if every edge is incident with a vertex of the cycle. In this paper, first we provide recursive formulae for finding a shortest dominating cycle in a Hahn graph; minor modifications can give formulae for finding a shortest D-cycle. Then, dominating cycles and D-cycles in a Halin graph H are characterized in terms of the cycle graph, the intersection graph of the faces of H. 1. Preliminaries The various domination problems have been extensively studied. Among them is the problem whether a graph has a dominating cycle. All graphs in this paper have no loops and multiple edges. A dominating cycle in a graph G = (V(G), E(G)) is a subgraph C of G which is a cycle and every vertex of V(G) \ V(C) is adjacent to a vertex of C. There are graphs which have no dominating cycles, and moreover, determining whether a graph has a dominating cycle on at most 1 vertices is NP-complete even in the class of planar graphs [7], chordal, bipartite and split graphs [3].
    [Show full text]