Linear Dynamics: Clustering Without Identification

Total Page:16

File Type:pdf, Size:1020Kb

Linear Dynamics: Clustering Without Identification Linear Dynamics: Clustering without identification Chloe Ching-Yun Hsuy Michaela Hardty Moritz Hardty University of California, Berkeley Amazon University of California, Berkeley Abstract for LDS parameter estimation, but it is inherently non-convex and can often get stuck in local min- Linear dynamical systems are a fundamental ima [Hazan et al., 2018]. Even when full system iden- and powerful parametric model class. How- tification is hard, is there still hope to learn meaningful ever, identifying the parameters of a linear information about linear dynamics without learning all dynamical system is a venerable task, per- system parameters? We provide a positive answer to mitting provably efficient solutions only in this question. special cases. This work shows that the eigen- We show that the eigenspectrum of the state-transition spectrum of unknown linear dynamics can be matrix of unknown linear dynamics can be identified identified without full system identification. without full system identification. The eigenvalues of We analyze a computationally efficient and the state-transition matrix play a significant role in provably convergent algorithm to estimate the determining the properties of a linear system. For eigenvalues of the state-transition matrix in example, in two dimensions, the eigenvalues determine a linear dynamical system. the stability of a linear dynamical system. Based on When applied to time series clustering, the trace and the determinant of the state-transition our algorithm can efficiently cluster multi- matrix, we can classify a linear system as a stable dimensional time series with temporal offsets node, a stable spiral, a saddle, an unstable node, or an and varying lengths, under the assumption unstable spiral. that the time series are generated from linear To estimate the eigenvalues, we utilize a funda- dynamical systems. Evaluating our algorithm mental correspondence between linear systems and on both synthetic data and real electrocardio- Autoregressive-Moving-Average (ARMA) models. We gram (ECG) signals, we see improvements in establish bi-directional perturbation bounds to prove clustering quality over existing baselines. that two LDSs have similar eigenvalues if and only if their output time series have similar auto-regressive parameters. Based on a consistent estimator for 1 Introduction the autoregressive model parameters of ARMA mod- els [Tsay and Tiao, 1984], we propose a regularized it- Linear dynamical system (LDS) is a simple yet gen- erated least-squares regression method to estimate the eral model for time series. Many machine learn- LDS eigenvalues. Our method runs in time linear in the ing models are special cases of linear dynamical sys- sequence length T and converges to true eigenvalues at tems [Roweis and Ghahramani, 1999], including princi- the rate O (T −1=2). pal component analysis (PCA), mixtures of Gaussians, p Kalman filter models, and hidden Markov models. As one application, our eigenspectrum estimation al- gorithm gives rise to a simple approach for time series When the states are hidden, LDS parameter iden- clustering: First use regularized iterated least-squares tification has provably efficient solutions only in regression to fit the autoregressive parameters; then special cases, see for example [Hazan et al., 2018, cluster the fitted autoregressive parameters. Hardt et al., 2018, Simchowitz et al., 2018]. In prac- tice, the expectation–maximization (EM) algo- This simple and efficient clustering approach captures rithm [Ghahramani and Hinton, 1996] is often used similarity in eigenspectrums, assuming each time series comes from an underlying linear dynamical system. It yThis work was done at Google. is a suitable similarity measure where the main goal for rd Proceedings of the 23 International Conference on Artificial clustering is to characterize state-transition dynamics Intelligence and Statistics (AISTATS) 2020, Palermo, Italy. regardless of change of basis, particularly relevant when PMLR: Volume 108. Copyright 2020 by the author(s). Linear Dynamics: Clustering without identification there are multiple data sources with different measure- Afsari et al., 2012, Vishwanathan et al., 2007], where ment procedures. Our approach bypasses the challenge the observed time series are higher dimensional than of LDS full parameter estimation, while enjoying the the hidden state dimension. Our work is motivated natural flexibility to handle multi-dimensional time by the more challenging sitatuion with a single or a series with time offsets and partial sequences. few output dimensions, common in climatology, energy consumption, finance, medicine, etc. To verify that our method efficiently learns sys- tem eigenvalues on synthetic and real ECG data, Compared to ARMA-parameter based clustering, our we compare our approach to existing baselines, in- method only uses the AR half of the parameters which cluding model-based approaches based on LDS, AR we show to enjoy more reliable convergence. We also and ARMA parameter estimation, and PCA, as well differ from AR-model based clustering because fitting as model-agnostic clustering approaches such as dy- AR to an ARMA process results in biased estimates. namic time warping [Cuturi and Blondel, 2017] and Autoregressive parameter estimation. Existing k-Shape [Paparrizos and Gravano, 2015]. spectral analysis methods for estimating AR parame- Organization. We review LDS and ARMA models in ters in ARMA models include high-order Yule-Walker Sec. 3. In Sec. 4 we discuss the main technical results (HOYW), MUSIC, and ESPRIT [Stoica et al., 2005, around the correspondence between LDS and ARMA. Stoica et al., 1988]. Our method is based on iterated re- Sec. 5 presents the regularized iterated regression algo- gression [Tsay and Tiao, 1984], a more flexible method rithm, a consistent estimator of autoregressive parame- for handling observed exogenous inputs (see Appendix ters in ARMA models with applications to clustering. C) in the ARMAX generalization. We carry out eigenvalue estimation and clustering ex- periments on synthetic data and real ECG data in 3 Preliminaries Sec. 6. In the appendix, we describe generalizations to observable inputs and multidimensional outputs, and 3.1 Linear dynamical systems include additional simulation results. A discrete-time linear dynamical system (LDS) with pa- 2 Related Work rameters Θ = (A; B; C; D) receives inputs x1; ··· ; xT 2 k n R , has hidden states h0; ··· ; hT 2 R , and generates m Linear dynamical system identification. The outputs y1; ··· ; yT 2 R according to the following LDS identification problem has been studied since time-invariant recursive equations: the 60s [Kalman, 1960], yet the theoretical bounds are ht = Aht−1 + Bxt + ζt still not fully understood. Recent provably efficient al- (1) gorithms [Simchowitz et al., 2018, Hazan et al., 2018, yt = Cht + Dxt + ξt: Hardt et al., 2018, Dean et al., 2017] require setups Assumptions. We assume that the stochastic noise that are not best-suited for time series clustering, such ζ and ξ are diagonal Gaussians. We also assume the as assuming observable states and focusing on predition t t system is observable, i.e. C; CA; CA2; ··· ;CAn−1 are error instead of parameter recovery. linearly independent. When the LDS is not observable, On recovering system parameters without observed the ARMA model for the output series can be reduced states, Tsiamis et al. recently study a subspace iden- to lower AR order, and there is not enough information tification algorithm with non-asymptotic O(T −1=2) in the output series to recover all the full eigenspectrum. rate [Tsiamis and Pappas, 2019]. While our analysis The model equivalence theorem (Theorem 4.1) and does not provide finite sample complexity bounds, our the approximation theorem (Theorem 4.2) do not re- simple algorithm achieves the same rate asymptotically. quire any additional assumptions for any real matrix Model-based time series clustering. Com- A. When additionally assuming A only has simple mon model choices for clustering include Gaus- eigenvalues in C, i.e. each eigenvalue has multiplicity sian mixture models [Biernacki et al., 2000], autore- 1, we give a better convergence bound. gressive integrated moving average (ARIMA) mod- Distance between linear dynamical systems. els [Kalpakis et al., 2001], and hidden Markov mod- With the main goal to characterize state-transition els [Smyth, 1997]. Gaussian mixture models, ARIMA dynamics, we view systems as equivalent up to change models, and hidden Markov models are all special of basis, and use the ` distance of the spectrum of the cases of the more general linear dynamical system 2 transition matrix A, i.e. d(Θ ; Θ ) = kλ(A )−λ(A )k , model [Roweis and Ghahramani, 1999]. 1 2 1 2 2 where λ(A1) and λ(A2) are the spectrum of A1 and A2 Linear dynamical systems have used to clus- in sorted order. This distance definition satisfies non- ter video trajectories [Chan and Vasconcelos, 2005, negativity, identity, symmetry, and triangle inequality. Chloe Ching-Yun Hsu, Michaela Hardt, Moritz Hardt Two very different time series could still have small dis- and MA(q) models to consider dependencies both on tance in eigenspectrum. This is by design to allow the past time series values and past unpredictable shocks, flexiblity for different measurement procedures, which p q mathematically correspond to different C matricies. yt = c + t + Σi=1'iyt−i + Σi=1θit−i: When there are multiple data sources with different measurement procedures, our approach can compare ARMAX model. ARMA can be generalized to the underlying dynamics of time series across sources. autoregressive–moving-average model with exogenous Jordan canonical basis. Every square real matrix inputs (ARMAX). is similar to a complex block diagonal matrix known as its Jordan canonical form (JCF). In the special case p q r yt = c + t + Σi=1'iyt−i + Σi=1θit−i + Σi=0γixt−i; for diagonalizable matrices, JCF is the same as the diagonal form. Based on JCF, there exists a canonical where fxtg is a known external time series, possibly basis feig consisting only of eigenvectors and gener- multidimensional. In case xt is a vector, the parameters alized eigenvectors of A.
Recommended publications
  • Linear Systems
    Linear Systems Professor Yi Ma Professor Claire Tomlin GSI: Somil Bansal Scribe: Chih-Yuan Chiu Department of Electrical Engineering and Computer Sciences University of California, Berkeley Berkeley, CA, U.S.A. May 22, 2019 2 Contents Preface 5 Notation 7 1 Introduction 9 1.1 Lecture 1 . .9 2 Linear Algebra Review 15 2.1 Lecture 2 . 15 2.2 Lecture 3 . 22 2.3 Lecture 3 Discussion . 28 2.4 Lecture 4 . 30 2.5 Lecture 4 Discussion . 35 2.6 Lecture 5 . 37 2.7 Lecture 6 . 42 3 Dynamical Systems 45 3.1 Lecture 7 . 45 3.2 Lecture 7 Discussion . 51 3.3 Lecture 8 . 55 3.4 Lecture 8 Discussion . 60 3.5 Lecture 9 . 61 3.6 Lecture 9 Discussion . 67 3.7 Lecture 10 . 72 3.8 Lecture 10 Discussion . 86 4 System Stability 91 4.1 Lecture 12 . 91 4.2 Lecture 12 Discussion . 101 4.3 Lecture 13 . 106 4.4 Lecture 13 Discussion . 117 4.5 Lecture 14 . 120 4.6 Lecture 14 Discussion . 126 4.7 Lecture 15 . 127 3 4 CONTENTS 4.8 Lecture 15 Discussion . 148 5 Controllability and Observability 157 5.1 Lecture 16 . 157 5.2 Lecture 17 . 163 5.3 Lectures 16, 17 Discussion . 176 5.4 Lecture 18 . 182 5.5 Lecture 19 . 185 5.6 Lecture 20 . 194 5.7 Lectures 18, 19, 20 Discussion . 211 5.8 Lecture 21 . 216 5.9 Lecture 22 . 222 6 Additional Topics 233 6.1 Lecture 11 . 233 6.2 Hamilton-Jacobi-Bellman Equation . 254 A Appendix to Lecture 12 259 A.1 Cayley-Hamilton Theorem: Alternative Proof 1 .
    [Show full text]
  • 3.3 Diagonalization and Eigenvalues
    3.3. Diagonalization and Eigenvalues 171 n 1 3 0 1 Exercise 3.2.33 Show that adj (uA)= u − adj A for all 1 Exercise 3.2.28 If A− = 0 2 3 find adj A. n n A matrices . 3 1 1 × − Exercise 3.2.34 Let A and B denote invertible n n ma- Exercise 3.2.29 If A is 3 3 and det A = 2, find × 1 × trices. Show that: det (A− + 4 adj A). 0 A Exercise 3.2.30 Show that det = det A det B a. adj (adj A) = (det A)n 2A (here n 2) [Hint: See B X − ≥ Example 3.2.8.] when A and B are 2 2. What ifA and Bare 3 3? × × 0 I [Hint: Block multiply by .] b. adj (A 1) = (adj A) 1 I 0 − − Exercise 3.2.31 Let A be n n, n 2, and assume one c. adj (AT ) = (adj A)T column of A consists of zeros.× Find≥ the possible values of rank (adj A). d. adj (AB) = (adj B)(adj A) [Hint: Show that AB adj (AB)= AB adj B adj A.] Exercise 3.2.32 If A is 3 3 and invertible, compute × det ( A2(adj A) 1). − − 3.3 Diagonalization and Eigenvalues The world is filled with examples of systems that evolve in time—the weather in a region, the economy of a nation, the diversity of an ecosystem, etc. Describing such systems is difficult in general and various methods have been developed in special cases. In this section we describe one such method, called diag- onalization, which is one of the most important techniques in linear algebra.
    [Show full text]
  • Binet-Cauchy Kernels on Dynamical Systems and Its Application to the Analysis of Dynamic Scenes ∗
    Binet-Cauchy Kernels on Dynamical Systems and its Application to the Analysis of Dynamic Scenes ∗ S.V.N. Vishwanathan Statistical Machine Learning Program National ICT Australia Canberra, 0200 ACT, Australia Tel: +61 (2) 6125 8657 E-mail: [email protected] Alexander J. Smola Statistical Machine Learning Program National ICT Australia Canberra, 0200 ACT, Australia Tel: +61 (2) 6125 8652 E-mail: [email protected] Ren´eVidal Center for Imaging Science, Department of Biomedical Engineering, Johns Hopkins University 308B Clark Hall, 3400 N. Charles St., Baltimore MD 21218 Tel: +1 (410) 516 7306 E-mail: [email protected] October 5, 2010 Abstract. We propose a family of kernels based on the Binet-Cauchy theorem, and its extension to Fredholm operators. Our derivation provides a unifying framework for all kernels on dynamical systems currently used in machine learning, including kernels derived from the behavioral framework, diffusion processes, marginalized kernels, kernels on graphs, and the kernels on sets arising from the subspace angle approach. In the case of linear time-invariant systems, we derive explicit formulae for computing the proposed Binet-Cauchy kernels by solving Sylvester equations, and relate the proposed kernels to existing kernels based on cepstrum coefficients and subspace angles. We show efficient methods for computing our kernels which make them viable for the practitioner. Besides their theoretical appeal, these kernels can be used efficiently in the comparison of video sequences of dynamic scenes that can be modeled as the output of a linear time-invariant dynamical system. One advantage of our kernels is that they take the initial conditions of the dynamical systems into account.
    [Show full text]
  • Arxiv:1908.01039V3 [Cs.LG] 29 Feb 2020 LDS Eigenvalues
    Linear Dynamics: Clustering without identification Chloe Ching-Yun Hsuy Michaela Hardty Moritz Hardty University of California, Berkeley Amazon University of California, Berkeley Abstract for LDS parameter estimation, but it is inherently non-convex and can often get stuck in local min- Linear dynamical systems are a fundamental ima [Hazan et al., 2018]. Even when full system iden- and powerful parametric model class. How- tification is hard, is there still hope to learn meaningful ever, identifying the parameters of a linear information about linear dynamics without learning all dynamical system is a venerable task, per- system parameters? We provide a positive answer to mitting provably efficient solutions only in this question. special cases. This work shows that the eigen- We show that the eigenspectrum of the state-transition spectrum of unknown linear dynamics can be matrix of unknown linear dynamics can be identified identified without full system identification. without full system identification. The eigenvalues of We analyze a computationally efficient and the state-transition matrix play a significant role in provably convergent algorithm to estimate the determining the properties of a linear system. For eigenvalues of the state-transition matrix in example, in two dimensions, the eigenvalues determine a linear dynamical system. the stability of a linear dynamical system. Based on When applied to time series clustering, the trace and the determinant of the state-transition our algorithm can efficiently cluster multi- matrix, we can classify a linear system as a stable dimensional time series with temporal offsets node, a stable spiral, a saddle, an unstable node, or an and varying lengths, under the assumption unstable spiral.
    [Show full text]
  • Linear Dynamical Systems As a Core Computational Primitive
    Linear Dynamical Systems as a Core Computational Primitive Shiva Kaul Computer Science Department Carnegie Mellon University Pittsburgh, PA 15213 [email protected] Abstract Running nonlinear RNNs for T steps takes Ω(T ) time. Our construction, called LDStack, approximately runs them in O(log T ) parallel time, and obtains arbitrarily low error via repetition. First, we show nonlinear RNNs can be approximated by a stack of multiple-input, multiple-output (MIMO) LDS. This replaces nonlinearity across time with nonlinearity along depth. Next, we show that MIMO LDS can be approximated by an average or a concatenation of single-input, multiple-output (SIMO) LDS. Finally, we present an algorithm for running (and differentiating) SIMO LDS in O(log T ) parallel time. On long sequences, LDStack is much faster than traditional RNNs, yet it achieves similar accuracy in our experiments. Furthermore, LDStack is amenable to linear systems theory. Therefore, it improves not only speed, but also interpretability and mathematical tractability. 1 Introduction Nonlinear RNNs have two crucial shortcomings. The first is computational: running an RNN for T steps is a sequential operation which takes Ω(T ) time. The second is analytical: it is challenging to gain intuition about the behavior of a nonlinear RNN, and even harder to prove this behavior is desirable. These shortcomings have motivated practitioners to abandon RNNs altogether and to model time series by other means. These include hierarchies of (dilated) convolutions [Oord et al., 2016, Gehring et al., 2017] and attention mechanisms which are differentiable analogues of key-value lookups [Bahdanau et al., 2014, Vaswani et al., 2017].
    [Show full text]
  • Dynamical Systems and Matrix Algebra
    Dynamical Systems and Matrix Algebra K. Behrend August 12, 2018 Abstract This is a review of how matrix algebra applies to linear dynamical systems. We treat the discrete and the continuous case. 1 Contents Introduction 4 1 Discrete Dynamical Systems 4 1.1 A Markov Process . 4 A migration example . 4 Translating the problem into matrix algebra . 4 Finding the equilibrium . 7 The line of fixed points . 9 1.2 Fibonacci's Example . 11 Description of the dynamical system . 11 Model using rabbit vectors . 12 Starting the analysis . 13 The method of eigenvalues . 13 Finding the eigenvalues . 17 Finding the eigenvectors . 18 Qualitative description of the long-term behaviour . 20 The second eigenvalue . 20 Exact solution . 22 Finding the constants . 24 More detailed analysis . 25 The Golden Ratio . 26 1.3 Predator-Prey System . 27 Frogs and flies . 27 The model . 28 Solving the system . 29 Discussion of the solution . 31 The phase portrait . 32 The method of diagonalization . 34 Concluding remarks . 39 1.4 Summary of the Method . 40 The method of undetermined coefficients . 41 The method of diagonalization . 41 The long term behaviour . 42 1.5 Worked Examples . 44 A 3-dimensional dynamical system . 44 The powers of a matrix . 49 2 1.6 More on Markov processes . 53 1.7 Exercises . 59 2 Continuous Dynamical Systems 60 2.1 Flow Example . 60 2.2 Discrete Model . 61 2.3 Refining the Discrete Model . 62 2.4 The continuous model . 63 2.5 Solving the system of differential equations . 64 One homogeneous linear differential equation . 64 Our system of linear differential equations .
    [Show full text]
  • Lecture Notes for EE263
    Lecture Notes for EE263 Stephen Boyd Introduction to Linear Dynamical Systems Autumn 2007-08 Copyright Stephen Boyd. Limited copying or use for educational purposes is fine, but please acknowledge source, e.g., “taken from Lecture Notes for EE263, Stephen Boyd, Stanford 2007.” Contents Lecture 1 – Overview Lecture 2 – Linear functions and examples Lecture 3 – Linear algebra review Lecture 4 – Orthonormal sets of vectors and QR factorization Lecture 5 – Least-squares Lecture 6 – Least-squares applications Lecture 7 – Regularized least-squares and Gauss-Newton method Lecture 8 – Least-norm solutions of underdetermined equations Lecture 9 – Autonomous linear dynamical systems Lecture 10 – Solution via Laplace transform and matrix exponential Lecture 11 – Eigenvectors and diagonalization Lecture 12 – Jordan canonical form Lecture 13 – Linear dynamical systems with inputs and outputs Lecture 14 – Example: Aircraft dynamics Lecture 15 – Symmetric matrices, quadratic forms, matrix norm, and SVD Lecture 16 – SVD applications Lecture 17 – Example: Quantum mechanics Lecture 18 – Controllability and state transfer Lecture 19 – Observability and state estimation Lecture 20 – Some final comments Basic notation Matrix primer Crimes against matrices Solving general linear equations using Matlab Least-squares and least-norm solutions using Matlab Exercises EE263 Autumn 2007-08 Stephen Boyd Lecture 1 Overview • course mechanics • outline & topics • what is a linear dynamical system? • why study linear systems? • some examples 1–1 Course mechanics • all class
    [Show full text]
  • Dynamical Systems Dennis Pixton
    Dynamical Systems Version 0.2 Dennis Pixton E-mail address: [email protected] Department of Mathematical Sciences Binghamton University Copyright 2009{2010 by the author. All rights reserved. The most current version of this book is available at the website http://www.math.binghamton.edu/dennis/dynsys.html. This book may be freely reproduced and distributed, provided that it is reproduced in its entirety from one of the versions which is posted on the website above at the time of reproduction. This book may not be altered in any way, except for changes in format required for printing or other distribution, without the permission of the author. Contents Chapter 1. Discrete population models 1 1.1. The basic model 1 1.2. Discrete dynamical systems 3 1.3. Some variations 4 1.4. Steady states and limit states 6 1.5. Bounce graphs 8 Exercises 12 Chapter 2. Continuous population models 15 2.1. The basic model 15 2.2. Continuous dynamical systems 18 2.3. Some variations 19 2.4. Steady states and limit states 26 2.5. Existence and uniqueness 29 Exercises 34 Chapter 3. Discrete Linear models 37 3.1. A stratified population model 37 3.2. Matrix powers, eigenvalues and eigenvectors. 40 3.3. Non negative matrices 44 3.4. Networks; more examples 45 3.5. Google PageRank 51 3.6. Complex eigenvalues 55 Exercises 60 Chapter 4. Linear models: continuous version 65 4.1. The exponential function 65 4.2. Some models 72 4.3. Phase portraits 78 Exercises 87 Chapter 5. Non-linear systems 90 5.1.
    [Show full text]
  • An Elementary Introduction to Linear Dynamical System
    An elementary introduction to linear dynamical system Bijan Bagchi Department of Applied Mathematics University of Calcutta E-mail : bbagchi123@rediffmail.com 18.01.2012 1 What is a dynamical system (DS)? Mathematically, a DS deals with an initial value problem of the type d−!x −! = f (t; −!x ; u) dt −! k where x denotes a vector having components (x1; x2; :::; xk) 2 R ; t is the −! −! time, f is a vector flow : f = (f1; f2; :::; fk); fug is a set of auxiliary objects −! and there exist a set of initial conditions x0 = [x1(0); x2(0); :::; xk(0)]. Thus we write 0 1 0 1 0 1 x1 f1 x1(0) B C B C B C B C B C B C B x2 C B f2 C B x2(0) C B C B C B C B C B C B C −! B : C −! B : C −! B : C x = B C, f = B C, x0 = B C. B C B C B C B : C B : C B : C B C B C B C B C B C B C B : C B : C B : C @ A @ A @ A xk fk xk(0) The case k = 1 is trivial implying a scalar equation with the solution Z t x = x0 + f(s; x; u) ds: 0 The case k = 2 has the form (with no explicit presence of t) x_i = fi(x1; x2) i = 1; 2 where we also assume fi(x1; x2) to be continuously differentiable in the neigh- borhood of [x1(0); x2(0)].
    [Show full text]
  • Lecture Notes for Introduction to Dynamical Systems: CM131A 2018-2019
    Lecture notes for Introduction to Dynamical Systems: CM131A Based on notes by A. Annibale, R. K¨uhnand H.C. Rae 2018-2019 Lecturer: G. Watts 1 Contents 1 Overview of the course 4 1.1 Revision Exercises . .9 I Differential Equations 10 2 First order Differential Equations 11 2.1 Basic Ideas . 11 2.2 First order differential equations . 12 2.3 General solution of specific equations . 13 2.3.1 First order, explicit . 13 2.3.2 First order, variables separable . 14 2.3.3 First order, linear . 16 2.3.4 First order, homogeneous . 18 2.4 Initial value problems . 20 2.5 Existence and Uniqueness of Solutions | Picard's theorem . 23 2.5.1 Picard iterates . 24 2.6 Exercises . 28 3 Second order Differential Equations 31 3.1 Second order differential equations . 31 3.1.1 Second order linear, with constant coefficients . 32 3.2 Existence and Uniqueness of Solutions | Picard's theorem . 38 3.3 Exercises . 41 II Dynamical Systems 44 4 Introduction to Dynamical Systems 45 Version of Mar 14, 2019 2 5 First Order Autonomous Systems 50 5.1 Trajectories, orbits and phase portraits . 50 5.2 Termination of Motion . 55 5.3 Estimating times of Motion . 60 5.4 Stability | A More General Discussion . 66 5.4.1 Stability of Fixed Points . 66 5.4.2 Structural Stability . 68 5.4.3 Stability of Motion . 71 5.5 Asymptotic Analysis . 72 5.5.1 Asymptotic Analysis and Dynamical Systems . 74 5.6 Exercises . 80 6 Second Order Autonomous Systems 85 6.1 Phase Space and Phase Portraits .
    [Show full text]
  • Mathematical Description of Linear Dynamical Systems* R
    J.S.I.A.M. CONTROI Ser. A, Vol. 1, No. Printed in U.,q.A., 1963 MATHEMATICAL DESCRIPTION OF LINEAR DYNAMICAL SYSTEMS* R. E. KALMAN Abstract. There are two different ways of describing dynamical systems: (i) by means of state w.riables and (if) by input/output relations. The first method may be regarded as an axiomatization of Newton's laws of mechanics and is taken to be the basic definition of a system. It is then shown (in the linear case) that the input/output relations determine only one prt of a system, that which is completely observable and completely con- trollable. Using the theory of controllability and observability, methods are given for calculating irreducible realizations of a given impulse-response matrix. In par- ticular, an explicit procedure is given to determine the minimal number of state varibles necessary to realize a given transfer-function matrix. Difficulties arising from the use of reducible realizations are discussed briefly. 1. Introduction and summary. Recent developments in optimM control system theory are bsed on vector differential equations as models of physical systems. In the older literature on control theory, however, the same systems are modeled by ransfer functions (i.e., by the Laplace trans- forms of the differential equations relating the inputs to the outputs). Two differet languages have arisen, both of which purport to talk about the same problem. In the new approach, we talk about state variables, tran- sition equations, etc., and make constant use of abstract linear algebra. In the old approach, the key words are frequency response, pole-zero pat- terns, etc., and the main mathematical tool is complex function theory.
    [Show full text]
  • STABILITY Math 21B, O. Knill
    STABILITY Math 21b, O. Knill LINEAR DYNAMICAL SYSTEM. A linear map x Ax defines a dynamical system. Iterating the map 2 7! n produces an orbit x0; x1 = Ax; x2 = A = AAx; :::. The vector xn = A x0 describes the situation of the system at time n. Where does xn go when time evolves? Can one describe what happens asymptotically when time n goes to infinity? In the case of the Fibonacci sequence xn which gives the number of rabbits in a rabbit population at time n, the population grows essentially exponentially. Such a behavior would be called unstable. On the other hand, if A is a rotation, then An~v stays bounded which is a type of stability. If A is a dilation with a dilation factor < 1, then An~v 0 for all ~v, a thing which we will call asymptotic stability. The next pictures show experiments with some!orbits An~v with different matrices. 0:99 1 0:54 1 0:99 1 − − − 1 0 0:95 0 0:99 0 stable (not asymptotic asymptotic asymptotic) stable stable 0:54 1 2:5 1 1 0:1 − − 1:01 0 1 0 0 1 unstable unstable unstable ASYMPTOTIC STABILITY. The origin ~0 is invariant under a linear map T (~x) = A~x. It is called asymptot- ically stable if An(~x) ~0 for all ~x IRn. ! 2 p q EXAMPLE. Let A = be a dilation rotation matrix. Because multiplication wich such a matrix is q −p analogue to the multiplication with a complex number z = p+iq, the matrix An corresponds to a multiplication with (p+iq)n.
    [Show full text]