TSTEREO Spacecraft Mechanical Design, Integration, and Testing

Total Page:16

File Type:pdf, Size:1020Kb

TSTEREO Spacecraft Mechanical Design, Integration, and Testing STEREO MECHANICAL DESIGN, INTEGRATION, AND TESTING STEREO Spacecraft Mechanical Design, Integration, and Testing Stuart W. Hill, Teresa M. Betenbaugh, and Weilun Cheng his article describes the significant mechanical efforts stemming from the Solar TErrestrial RElations Observatory (STEREO) mission. Because of the unique two-observatory mission design, the STEREO observatory mechani- cal design and integration were confronted with several nonstandard difficulties. Impacts to the mechanical effort from the STEREO launch stack, dual-spacecraft requirement, and the observatories’ nearly identical design are addressed. Each sec- tion details these aspects and how they specifically impacted the mechanical effort. Considerable attention is given to the unanticipated issues encountered and how they were either eliminated or mitigated. These issues resulted in several lessons learned, which also are presented, that are being carried forward for future dual- Tspacecraft missions throughout the space community. INTRODUCTION The Solar TErrestrial RElations Observatory the more unique aspects of the mission that forced the (STEREO) spacecraft mechanical effort experienced mechanical team to maintain an adaptable approach to many of the standard challenges that mechanical teams the STEREO mechanical engineering effort. face throughout a spacecraft’s development effort. In addition to these challenges, the STEREO mechanical effort encountered many others specific to the STEREO MECHANICAL DESIGN mission due to the unique dual-spacecraft mission design. The STEREO spacecraft mechanical design under- Many of these challenges were anticipated; however, as went considerable changes from origination to flight. Ini- with all complex engineering efforts, several were unan- tially, the STEREO mission scheduled the two spacecraft ticipated or thought to be of minimal impact to the to be launched independently from each other on two overall effort. This article introduces the evolution of dedicated Athena launch vehicles. Because of Athena the STEREO mission mechanical design and several of launch-vehicle availability problems, the STEREO mis- JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 28, NUMBER 2 (2009) 187­­­­ S. W. HILL, T. M. BETENBAUGH, AND W. CHENG sion was forced to find other candidate launch vehicles. the balance requirement was levied on the STEREO Several different launch vehicles were considered, launch stack by the Delta II launch vehicle. The physi- including a scenario with both spacecraft on a single cal layout and placement of spacecraft components were Space Shuttle flight, as shown in Fig. 1. In the end, the driven by this requirement. As component and instru- STEREO mission determined that a single Delta II ment masses changed during development, the mechan- launch vehicle would be used. The choice to use a single ical layout for both spacecraft had to be modified. Once launch vehicle to deliver the STEREO spacecraft into instruments and components were packaged on the their proper orbits placed a packaging requirement on spacecraft to meet specific field-of-view (FOV) and ther- the physical launch configuration for both spacecraft. mal requirements, the mechanical design space to con- From this requirement, the STEREO spacecraft eventu- figure the spacecraft in a balanced state was very small. ally were designed to launch in a stacked configuration, Figure 2 shows the STEREO launch stack mated to the with STEREO B placed below STEREO A. The stacked Delta II launch vehicle during fairing installation. launch configuration drove much of the mechanical design for the STEREO spacecraft and created unique challenges throughout both the design and the integra- DUAL-SPACECRAFT CHALLENGE tion and testing (I&T) effort for the STEREO mission. The dual-spacecraft mechanical operation car- The final, as-flown mechanical design of both ried with it rather obvious requirements related to the STEREO spacecraft was an efficient primary load- overall amount of hardware and ground-support equip- carrying central cylinder surrounded by honeycomb ment (GSE) needed to process two spacecraft. These decks that supported the majority of the spacecraft’s requirements were relatively easily met. The design stage instruments and components. Each spacecraft structure of the program essentially was carried out as a single- was designed specifically to support the spacecraft’s role spacecraft design to be built twice with the majority of in the launch-stack configuration. STEREO B, which both spacecraft designs being identical. For mechanical supported STEREO A during launch, was designed assembly and I&T, space requirements were double that with a stronger central load-carrying cylinder, whereas the central cylinder for STEREO A was designed to support lifting operations of the entire stack. The honeycomb decks supporting spacecraft components and instruments were consistent between both space- craft and were mounted around the central cylinder, creating internal bays around the cylinder. These inter- nal bays contained the majority of spacecraft compo- nents, whereas the instruments were mounted on the exterior of the panels. With components mounted on both the inside and outside of the spacecraft structure, access to internal components, while not disturbing externally mounted components, became a mechanical design focus. As a part of the launch-vehicle requirements, the launch stack had to be static and dynamically balanced. Before the third-stage release and ignition, the launch stack was spun-up for stability during burn. The third stage had no attitude control system, and because of this, Starboard 1 2 3 4 5 6 7 8 9 10 11 12 13 Port 1 2 3 4 5 6 7 8 9 10 11 12 13 Primary payloads Figure 1. Proposed STEREO launch configuration in Space Shuttle. Figure 2. STEREO stack on Delta II launch vehicle. 188 JOHNS HOPKINS APL TECHNICAL DIGEST, VOLUME 28, NUMBER 2 (2009) STEREO MECHANICAL DESIGN, INTEGRATION, AND TESTING of a traditional spacecraft mission. However, because of far more daunting and challenging than those at the sin- the parallel processing of the New Horizons mission in gle-spacecraft level. Because much of the environmental the APL cleanrooms, both missions were relatively tight testing of the STEREO mission was conducted in the on space. I&T operations were conducted at times in a stacked configuration (vibration, acoustic, spin balance, serial manner, and at other times they were conducted in and mass properties), the stack requirements had to be parallel. All mechanical configurations and operations, fully understood and planned for. Stack-specific require- with the exception of lifts, were conducted at least once ments for testing, such as access and GSE setup, were in parallel. The potential for parallel operations necessi- much more involved than similar requirements for a tated that each piece of required GSE had to be provided single spacecraft. Because of the overall height of the in duplicate. Obviously, operations to assemble and test stack and the unique configurations in which the stack one spacecraft were repeated on the other, and some ended up, the STEREO I&T team was challenged up to overall efficiency was realized by repeating the same effort. the very end of the program. Although this originally was planned as a time-saving feature of the dual-spacecraft processing effort, much of this time was taken up by spacecraft-unique problems “IDENTICAL” SPACECRAFT or dissimilarities that were not foreseen in the original When the STEREO spacecraft are reported in the planning of the STEREO effort. Concurrent operations news, they usually are described as “nearly identical with both spacecraft did provide the capability to switch observatories.” Although the spacecraft were designed from one spacecraft to the other when testing went long similarly, the observatories did have significant dif- or unplanned events took place on one spacecraft. This ferences. These differences became more apparent as feature of the program, which was utilized very well as assembly and I&T operations progressed. The individual the program continued, was the most time-saving and characteristics of each observatory became important to useful aspect of dual-spacecraft processing. understand in order to properly prepare the STEREO Some of the less obvious aspects of the STEREO dual- observatories for launch. Two of the key differences were spacecraft mechanical processing effort are mentioned the design of the top and bottom mounting interfaces below. One item to be noted is that two spacecraft were of the central cylinder and the placement of the In situ assembled, integrated, tested, and launched by a small Measurements of PArticles and Coronal mass ejection mechanical team of approximately six to seven individu- Transients (IMPACT) suite of instruments on the +y als. This small team was able to maintain consistency decks. These two externally visible differences were between the two mechanical efforts while enabling les- used as quick references to distinguish STEREO A from sons learned on one spacecraft to be passed quickly to STEREO B. others within the team. Because of this benefit, very few The primary cylinder designs of the two spacecraft failures or problems were repeated on both spacecraft. were driven by the unique launch loads and interfaces Within this small mechanical team, each member spe- required for each spacecraft. STEREO B, which was the cialized in a handful of operations for which they pri- bottom spacecraft in the launch stack, had
Recommended publications
  • Hayabusa2 and the Formation of the Solar System PPS02-25
    PPS02-25 JpGU-AGU Joint Meeting 2017 Hayabusa2 and the formation of the Solar System *Sei-ichiro WATANABE1,2, Hayabusa2 Science Team2 1. Division of Earth and Planetary Sciences, Graduate School of Science, Nagoya University, 2. JAXA/ISAS Explorations of small solar system bodies bring us direct and unique information about the formation and evolution of the Solar system. Asteroids may preserve accretion processes of planetesimals or pebbles, a sequence of destructive events induced by the gas-driven migration of giant planets, and hydrothermal processes on the parent bodies. After successful small-body missions like Rosetta to comet 67P/Churyumov-Gerasimenko, Dawn to Vesta and Ceres, and New Horizons to Pluto, two spacecraft Hayabusa2 and OSIRIS-REx are now traveling to dark primitive asteroids.The Hayabusa2 spacecraft journeys to a C-type near-earth asteroid (162173) Ryugu (1999 JU3) to conduct detailed remote sensing observations and return samples from the surface. The Haybusa2 spacecraft developed by Japan Aerospace Exploration Agency (JAXA) was successfully launched on 3 Dec. 2014 by the H-IIA Launch Vehicle and performed an Earth swing-by on 3 Dec. 2015 to set it on a course toward its target. The spacecraft will reach Ryugu in the summer of 2018, observe the asteroid for 18 months, and sample surface materials from up to three different locations. The samples will be delivered to the Earth in Nov.-Dec. 2020. Ground-based observations have obtained a variety of optical reflectance spectra for Ryugu. Some reported the 0.7 μm absorption feature and steep slope in the short wavelength region, suggesting hydrated minerals.
    [Show full text]
  • New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period
    Hayabusa2 Extended Mission: New Voyage to Rendezvous with a Small Asteroid Rotating with a Short Period M. Hirabayashi1, Y. Mimasu2, N. Sakatani3, S. Watanabe4, Y. Tsuda2, T. Saiki2, S. Kikuchi2, T. Kouyama5, M. Yoshikawa2, S. Tanaka2, S. Nakazawa2, Y. Takei2, F. Terui2, H. Takeuchi2, A. Fujii2, T. Iwata2, K. Tsumura6, S. Matsuura7, Y. Shimaki2, S. Urakawa8, Y. Ishibashi9, S. Hasegawa2, M. Ishiguro10, D. Kuroda11, S. Okumura8, S. Sugita12, T. Okada2, S. Kameda3, S. Kamata13, A. Higuchi14, H. Senshu15, H. Noda16, K. Matsumoto16, R. Suetsugu17, T. Hirai15, K. Kitazato18, D. Farnocchia19, S.P. Naidu19, D.J. Tholen20, C.W. Hergenrother21, R.J. Whiteley22, N. A. Moskovitz23, P.A. Abell24, and the Hayabusa2 extended mission study group. 1Auburn University, Auburn, AL, USA ([email protected]) 2Japan Aerospace Exploration Agency, Kanagawa, Japan 3Rikkyo University, Tokyo, Japan 4Nagoya University, Aichi, Japan 5National Institute of Advanced Industrial Science and Technology, Tokyo, Japan 6Tokyo City University, Tokyo, Japan 7Kwansei Gakuin University, Hyogo, Japan 8Japan Spaceguard Association, Okayama, Japan 9Hosei University, Tokyo, Japan 10Seoul National University, Seoul, South Korea 11Kyoto University, Kyoto, Japan 12University of Tokyo, Tokyo, Japan 13Hokkaido University, Hokkaido, Japan 14University of Occupational and Environmental Health, Fukuoka, Japan 15Chiba Institute of Technology, Chiba, Japan 16National Astronomical Observatory of Japan, Iwate, Japan 17National Institute of Technology, Oshima College, Yamaguchi, Japan 18University of Aizu, Fukushima, Japan 19Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA 20University of Hawai’i, Manoa, HI, USA 21University of Arizona, Tucson, AZ, USA 22Asgard Research, Denver, CO, USA 23Lowell Observatory, Flagstaff, AZ, USA 24NASA Johnson Space Center, Houston, TX, USA 1 Highlights 1.
    [Show full text]
  • Lindley Johnson (NASA HQ) – NASA HEOMD – – NASA STMD – Tibor Balint (NASA HQ) – SSERVI – Greg Schmidt (NASA ARC) 19
    September 4, 2014: Planetary Science Subcommittee Nancy Chabot, SBAG Chair 11th SBAG Meeting • July 29-31, 2014: Washington, DC • Highlights of SBAG meeting presentations from major projects • Discussion of findings • New steering committee members • Future meetings 1 NEOWISE Reac,va,on • Reac,vated in Dec 2013, NEOWISE is observing, discovering, and characterizing asteroids & comets using 3.4 and 4.6 µm channels • 7239 minor planets observed, including 157 near-Earth objects (NEOs). • 89 discoveries, including 26 NEOs and 3 comets. • NEO discoveries are large, dark • First data delivery from Reac9vaon: March 2015 to IRSA: • hp://irsa.ipac.caltech.edu/Missions/wise.html • All data from prime WISE/NEOWISE mission are publicly available through IRSA and team Comet P/2014 L2 NEOWISE papers; derived physical proper9es heading to PDS Dawn prepares to encounter Ceres PI: Alan Stern (SwRI) New Horizons Status PM: JHU-APL • Spacecraft is healthy & On-Course for Pluto (Radio) § 1.3x more fuel available for KBO Extended (High-E Plasma) NH Payload Mission phase than originally expected • Payload is healthy and well-calibrated § Finishing final Annual Checkout (ACO-8) • First Pluto OpNav Campaign conducted (UV Spectral) § See image below • Enter final Hibernation on Aug 29th (Vis-Color + IR Spectral) • Pluto Encounter begins on 2015-Jan-15 (Low-E Plasma) • Pluto Closest Approach: 2015-Jul-14 (Pan Imager) Intensive searches with ground-based facilities over the past Pluto OpNav Campaign: 2 years have not yet yielded a KBO target for NH. A 194- Cleanly separate Pluto & orbit Hubble program was started in June; below Charon shows the first potentially targetable KBO found.
    [Show full text]
  • New Horizons Pluto/KBO Mission Impact Hazard
    New Horizons Pluto/KBO Mission Impact Hazard Hal Weaver NH Project Scientist The Johns Hopkins University Applied Physics Laboratory Outline • Background on New Horizons mission • Description of Impact Hazard problem • Impact Hazard mitigation – Hubble Space Telescope plays a key role New Horizons: To Pluto and Beyond The Initial Reconnaissance of The Solar System’s “Third Zone” KBOs Pluto-Charon Jupiter System 2016-2020 July 2015 Feb-March 2007 Launch Jan 2006 PI: Alan Stern (SwRI) PM: JHU Applied Physics Lab New Horizons is NASA’s first New Frontiers Mission Frontier of Planetary Science Explore a whole new region of the Solar System we didn’t even know existed until the 1990s Pluto is no longer an outlier! Pluto System is prototype of KBOs New Horizons gives the first close-up view of these newly discovered worlds New Horizons Now (overhead view) NH Spacecraft & Instruments 2.1 meters Science Team: PI: Alan Stern Fran Bagenal Rick Binzel Bonnie Buratti Andy Cheng Dale Cruikshank Randy Gladstone Will Grundy Dave Hinson Mihaly Horanyi Don Jennings Ivan Linscott Jeff Moore Dave McComas Bill McKinnon Ralph McNutt Scott Murchie Cathy Olkin Carolyn Porco Harold Reitsema Dennis Reuter Dave Slater John Spencer Darrell Strobel Mike Summers Len Tyler Hal Weaver Leslie Young Pluto System Science Goals Specified by NASA or Added by New Horizons New Horizons Resolution on Pluto (Simulations of MVIC context imaging vs LORRI high-resolution "noodles”) 0.1 km/pix The Best We Can Do Now 0.6 km/pix HST/ACS-PC: 540 km/pix New Horizons Science Status •
    [Show full text]
  • Five Aerojet Boosters Set to Lift New Horizons Spacecraft
    January 15, 2006 Five Aerojet Boosters Set to Lift New Horizons Spacecraft Aerojet Propulsion Will Support Both Launch Vehicle and Spacecraft for Mission to Pluto SACRAMENTO, Calif., Jan. 15 /PRNewswire/ -- Aerojet, a GenCorp Inc. (NYSE: GY) company, will provide five solid rocket boosters for the launch vehicle and a propulsion system for the spacecraft when a Lockheed Martin Atlas® V launches the Pluto New Horizons spacecraft January 17 from Cape Canaveral, AFB. The launch window opens at 1:24 p.m. EST on January 17 and extends through February 14. The New Horizons mission, dubbed by NASA as the "first mission to the last planet," will study Pluto and its moon, Charon, in detail during a five-month- long flyby encounter. Pluto is the solar system's most distant planet, averaging 3.6 billion miles from the sun. Aerojet's solid rocket boosters (SRBs), each 67-feet long and providing an average of 250,000 pounds of thrust, will provide the necessary added thrust for the New Horizons mission. The SRBs have flown in previous vehicle configurations using two and three boosters; this is the first flight utilizing the five boosters. Additionally, 12 Aerojet monopropellant (hydrazine) thrusters on the Atlas V Centaur upper stage will provide roll, pitch, and yaw control settling burns for the launch vehicle main engines. Aerojet also supplies 8 retro rockets for Atlas Centaur separation. Aerojet also provided the spacecraft propulsion system, comprised of a propellant tank, 16 thrusters and various other components, which will control pointing and navigation for the spacecraft on its journey and during encounters with Pluto- Charon and, as part of a possible extended mission, to more distant, smaller objects in the Kuiper Belt.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • 1 the Atmosphere of Pluto As Observed by New Horizons G
    The Atmosphere of Pluto as Observed by New Horizons G. Randall Gladstone,1,2* S. Alan Stern,3 Kimberly Ennico,4 Catherine B. Olkin,3 Harold A. Weaver,5 Leslie A. Young,3 Michael E. Summers,6 Darrell F. Strobel,7 David P. Hinson,8 Joshua A. Kammer,3 Alex H. Parker,3 Andrew J. Steffl,3 Ivan R. Linscott,9 Joel Wm. Parker,3 Andrew F. Cheng,5 David C. Slater,1† Maarten H. Versteeg,1 Thomas K. Greathouse,1 Kurt D. Retherford,1,2 Henry Throop,7 Nathaniel J. Cunningham,10 William W. Woods,9 Kelsi N. Singer,3 Constantine C. C. Tsang,3 Rebecca Schindhelm,3 Carey M. Lisse,5 Michael L. Wong,11 Yuk L. Yung,11 Xun Zhu,5 Werner Curdt,12 Panayotis Lavvas,13 Eliot F. Young,3 G. Leonard Tyler,9 and the New Horizons Science Team 1Southwest Research Institute, San Antonio, TX 78238, USA 2University of Texas at San Antonio, San Antonio, TX 78249, USA 3Southwest Research Institute, Boulder, CO 80302, USA 4National Aeronautics and Space Administration, Ames Research Center, Space Science Division, Moffett Field, CA 94035, USA 5The Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA 6George Mason University, Fairfax, VA 22030, USA 7The Johns Hopkins University, Baltimore, MD 21218, USA 8Search for Extraterrestrial Intelligence Institute, Mountain View, CA 94043, USA 9Stanford University, Stanford, CA 94305, USA 10Nebraska Wesleyan University, Lincoln, NE 68504 11California Institute of Technology, Pasadena, CA 91125, USA 12Max-Planck-Institut für Sonnensystemforschung, 37191 Katlenburg-Lindau, Germany 13Groupe de Spectroscopie Moléculaire et Atmosphérique, Université Reims Champagne-Ardenne, 51687 Reims, France *To whom correspondence should be addressed.
    [Show full text]
  • Estimation of Reflectance Properties of Small Solar System Bodies from Optical Remote Sensing
    Estimation of Reflectance Properties of Small Solar System Bodies from Optical Remote Sensing German Title: Abschätzung von Reflexionseigenschaften von Kleinkörperoberflächen aus optischen Fernerkundungsdaten by Peter Dorman A thesis presented for the degree Bachelor of Science 1st Examiner: Dr. Marco Scharringhausen Deutsches Zentrum für Luft- und Raumfahrt (DLR) 2nd Examiner: Prof. Dr. rer. nat. Claus Lämmerzahl Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM) Diese Erklärungen sind in jedes Exemplar der Abschlussarbeit mit einzubinden. Name:__________________________ Matrikel-Nr.: ________________ Urheberrechtliche Erklärung Erklärung gem. § 10 (10) Allgemeiner Teil der BPO vom 27.10.2010 Hiermit versichere ich, dass ich meine Bachelorarbeit ohne fremde Hilfe angefertigt habe, und dass ich keine anderen als die von mir angegebenen Quellen und Hilfsmittel benutzt habe. Alle Stellen, die wörtlich oder sinngemäß aus Veröffentlichungen entnommen sind, habe ich unter Angabe der Quellen als solche kenntlich gemacht. Die Bachelorarbeit darf nach Abgabe nicht mehr verändert werden. Datum: _________________ Unterschrift: _______________________ Erklärung zur Veröffentlichung von Abschlussarbeiten Bitte auswählen und ankreuzen: o Ich bin damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf. o Ich bin damit einverstanden, dass meine Abschlussarbeit nach 30 Jahren (gem. §7 Abs.2 BremArchivG) im Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf. o Ich bin nicht damit einverstanden, dass meine Abschlussarbeit im Universitätsarchiv für wissenschaftliche Zwecke von Dritten eingesehen werden darf. Datum: __________________ Unterschrift: _________________________ - 1 - 1 Contents 1 Motivation 3 2 Aim of study 4 3 Introduction 4 3.1 Small Solar System Bodies & Dwarf Planets . .4 3.2 Asteroids . .5 3.2.1 C-type asteroids .
    [Show full text]
  • A Possible Flyby Anomaly for Juno at Jupiter
    A possible flyby anomaly for Juno at Jupiter L. Acedo,∗ P. Piqueras and J. A. Mora˜no Instituto Universitario de Matem´atica Multidisciplinar, Building 8G, 2o Floor, Camino de Vera, Universitat Polit`ecnica de Val`encia, Valencia, Spain December 14, 2017 Abstract In the last decades there have been an increasing interest in im- proving the accuracy of spacecraft navigation and trajectory data. In the course of this plan some anomalies have been found that cannot, in principle, be explained in the context of the most accurate orbital models including all known effects from classical dynamics and general relativity. Of particular interest for its puzzling nature, and the lack of any accepted explanation for the moment, is the flyby anomaly discov- ered in some spacecraft flybys of the Earth over the course of twenty years. This anomaly manifest itself as the impossibility of matching the pre and post-encounter Doppler tracking and ranging data within a single orbit but, on the contrary, a difference of a few mm/s in the asymptotic velocities is required to perform the fitting. Nevertheless, no dedicated missions have been carried out to eluci- arXiv:1711.08893v2 [astro-ph.EP] 13 Dec 2017 date the origin of this phenomenon with the objective either of revising our understanding of gravity or to improve the accuracy of spacecraft Doppler tracking by revealing a conventional origin. With the occasion of the Juno mission arrival at Jupiter and the close flybys of this planet, that are currently been performed, we have developed an orbital model suited to the time window close to the ∗E-mail: [email protected] 1 perijove.
    [Show full text]
  • The New Horizons Spacecraft
    The New Horizons Spacecraft Glen H. Fountaina , David Y. Kusnierkiewicz a, Christopher B. Hersmana , Timothy S. Herdera , Thomas B. Coughlin a, William C. Gibsonb , Deborah A. Clancya , Christopher C. DeBoya , T. Adrian Hilla , James D. Kinnisona , Douglas S. Mehoke a, Geffrey K. Ottmana , Gabe D. Rogers a, S. Alan Sternc , James M. Strattona , Steven R. Vernona , Stephen P. Williams a aThe Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, MD 20723 bSouth west Research Institute, 6220 Culebra Rd., San Antonio, TX 78238, cSouth west Research Institute, 1050 Walnut St., Suite 400, Boulder, CO 80302 Abstract. The New Horizons spacecraft was launched on 19 January 2006. The spacecraft was designed to provide a platform for seven instruments designated by the science team to collect and return data from Pluto in 2015. The design meets the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO­OSS­01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one­way light time during the Pluto fly­by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a radioisotope thermoelectric generator (RTG) to supply electrical power.
    [Show full text]
  • 1 the New Horizons Spacecraft Glen H. Fountain, David Y
    The New Horizons Spacecraft Glen H. Fountain, David Y. Kusnierkiewicz, Christopher B. Hersman, Timothy S. Herder, Thomas B Coughlin, William T. Gibson, Deborah A. Clancy, Christopher C. DeBoy, T. Adrian Hill, James D. Kinnison, Douglas S. Mehoke, Geffrey K. Ottman, Gabe D. Rogers, S. Alan Stern, James M. Stratton, Steven R. Vernon, Stephen P. Williams Abstract The New Horizons spacecraft was launched on January 19, 2006. The spacecraft was designed to provide a platform for the seven instruments designated by the science team to collect and return data from Pluto in 2015 that would meet the requirements established by the National Aeronautics and Space Administration (NASA) Announcement of Opportunity AO-OSS-01. The design drew on heritage from previous missions developed at The Johns Hopkins University Applied Physics Laboratory (APL) and other NASA missions such as Ulysses. The trajectory design imposed constraints on mass and structural strength to meet the high launch acceleration consistent with meeting the AO requirement of returning data prior to the year 2020. The spacecraft subsystems were designed to meet tight resource allocations (mass and power) yet provide the necessary control and data handling finesse to support data collection and return when the one way light time during the Pluto fly-by is 4.5 hours. Missions to the outer regions of the solar system (where the solar irradiance is 1/1000 of the level near the Earth) require a Radioisotope Thermoelectric Generator (RTG) to supply electrical power. One RTG was available for use by New Horizons. To accommodate this constraint, the spacecraft electronics were designed to operate on less than 200 W.
    [Show full text]
  • New Planetary Science from Dawn, Rosetta, and New Horizons
    New Planetary Science from Dawn, Rosetta, and New Horizons We have many active probes exploring deep space now. Image: The Planetary Society Three of them are giving us great new science from minor planets. ●Dawn ● NASA mission ● Asteroid Vesta and asteroid and dwarf planet Ceres ● First asteroid orbiter ● First to orbit two different deep space targets ●Rosetta ● European Space Agency mission ● Comet 67P/Churyumov–Gerasimenko ● First comet orbiter and landing ● Hopes the be the first to make two landings on a comet ●New Horizons ● NASA mission ● Dwarf planet Pluto and other Kuiper belt objects beyond ● First mission to Pluto But first, a surprise guest appearance by Messenger ●Launched August 2004 by NASA. ●March 2011 arrived at Mercury. ●April 2015 crashed into Mercury. Photo: NASA Significant Science by Messenger at Mercury ●Crashed into the planet April 30 2015. ●For earlier mission highlights, see RAC program by Brenda Conway October 2011. ●Last few orbits were as low as possible. ●Highest resolution photos ever of the surface. ●Unexpected discovery that Mercury's magnetic field grows and shrinks in response to the Sun's level of activity. Significant Science by Messenger at Mercury ●Discovered unexpected hollows on the surface. ●Younger than impact craters around them (some are in or on craters - the surface collapsed some time after the impact). ●Mercury was believed to be geologically inactive. ● First evidence there are dynamic processes on the surface of Mercury today. Photo: NASA Significant Science by Messenger at Mercury ● The last image sent by Messenger before its crash. Photo: NASA Dawn ●Launched September 2007. ●February 2009 Mars flyby and gravity assist.
    [Show full text]