NISTIR 7764, Status Report on the Second Round of the SHA-3

Total Page:16

File Type:pdf, Size:1020Kb

NISTIR 7764, Status Report on the Second Round of the SHA-3 NIST Interagency Report 7764 Status Report on the Second Round of the SHA-3 Cryptographic Hash Algorithm Competition Meltem Sönmez Turan Ray Perlner Lawrence E. Bassham William Burr Donghoon Chang Shu-jen Chang Morris J. Dworkin John M. Kelsey Souradyuti Paul Rene Peralta NIST Interagency Report 7764 Status Report on the Second Round of the SHA-3 Cryptographic Hash Algorithm Competition Meltem Sönmez Turan Ray Perlner Lawrence E . Bassham William Burr Donghoon Chang Shu-jen Chang Morris J. Dworkin John M. Kelsey Souradyuti Paul Rene Peralta C O M P U T E R S E C U R I T Y Computer Security Division Information Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-8930 February 2011 U.S. Department of Commerce Gary Locke, Secretary National Institute of Standards and Technology Patrick D. Gallagher, Director Abstract The National Institute of Standards and Technology (NIST) opened a public competition on November 2, 2007 to develop a new cryptographic hash algorithm – SHA-3, which will augment the hash algorithms currently specified in the Federal Information Processing Standard (FIPS) 180-3, Secure Hash Standard. The competition was NIST’s response to advances in the cryptanalysis of hash algorithms. NIST received sixty-four submissions in October 2008, and selected fifty-one candidate algorithms as the first-round candidates on December 10, 2008, and fourteen as the second-round candidates on July 24, 2009. One year was allocated for the public review of the second-round candidates. On December 9, 2010, NIST announced five SHA-3 finalists to advance to the third (and final) round of the competition. This report summarizes the evaluation and selection of the five finalists – BLAKE, Grøstl, JH, Keccak and Skein. KEY WORDS: Cryptographic hash algorithm; Cryptographic hash function; Cryptography; Cryptographic hash competition; SHA-3 competition. Acknowledgements NIST thanks the submitters of all fourteen second-round candidates. NIST is also grateful for the efforts of those in the cryptographic community that provided security, implementation and performance analyses of the candidate algorithms during the second round, including the eBASH and SHA-3 Zoo organizers, and those who provided feedback on the hash forum or published papers on the various technical aspects of the candidates. The authors of this report also thank the other members of NIST’s SHA-3 team, who reviewed the candidate algorithms and the public comments; performed testing; provided technical and administrative support; and participated in numerous meetings to discuss the selection of the finalists. They are: Elaine Barker, Sara J. Caswell, Lily Chen, Quynh Dang, James Nechvatal and Andrew Regenscheid. iii TABLE OF CONTENTS 1. Introduction ...................................................................................................................... 1 1.1 Purpose of this Document......................................................................................... 1 1.2 Background .............................................................................................................. 1 1.3 Organization of this Document .................................................................................. 3 2. Evaluation Criteria ............................................................................................................ 3 3. Selection Process ............................................................................................................. 5 4. Summary of the Second-Round Candidates .................................................................. 6 4.1 BLAKE ...................................................................................................................... 7 4.1.1 Security ......................................................................................................... 7 4.1.2 Performance .................................................................................................. 8 4.1.3 Discussion ..................................................................................................... 8 4.2 Blue Midnight Wish ................................................................................................... 8 4.2.1 Security ......................................................................................................... 8 4.2.2 Performance .................................................................................................. 9 4.2.3 Discussion ..................................................................................................... 9 4.3 CubeHash ................................................................................................................ 9 4.3.1 Security ....................................................................................................... 10 4.3.2 Performance ................................................................................................ 11 4.3.3 Discussion ................................................................................................... 12 4.4 ECHO ..................................................................................................................... 12 4.4.1 Security ....................................................................................................... 12 4.4.2 Performance ................................................................................................ 13 4.4.3 Discussion ................................................................................................... 13 4.5 Fugue ..................................................................................................................... 13 4.5.1 Security ....................................................................................................... 13 4.5.2 Performance ................................................................................................ 14 4.5.3 Discussion ................................................................................................... 14 4.6 Grøstl ..................................................................................................................... 14 4.6.1 Security ....................................................................................................... 14 4.6.2 Performance ................................................................................................ 15 4.6.3 Discussion ................................................................................................... 15 4.7 Hamsi ..................................................................................................................... 15 4.7.1 Security ....................................................................................................... 16 4.7.2 Performance ................................................................................................ 16 4.7.3 Discussion ................................................................................................... 17 4.8 JH ........................................................................................................................... 17 4.8.1 Security ....................................................................................................... 17 4.8.2 Performance ................................................................................................ 17 4.8.3 Discussion ................................................................................................... 18 iv 4.9 Keccak ................................................................................................................... 18 4.9.1 Security ....................................................................................................... 18 4.9.2 Performance ................................................................................................ 18 4.9.3 Discussion ................................................................................................... 19 4.10 Luffa ....................................................................................................................... 19 4.10.1 Security ....................................................................................................... 19 4.10.2 Performance ................................................................................................ 19 4.10.3 Discussion ................................................................................................... 20 4.11 Shabal .................................................................................................................... 20 4.11.1 Security ....................................................................................................... 20 4.11.2 Performance ................................................................................................ 21 4.11.3 Discussion ................................................................................................... 21 4.12 SHAvite-3 ............................................................................................................... 21 4.12.1 Security ....................................................................................................... 22 4.12.2 Performance ................................................................................................ 22 4.12.3 Discussion ................................................................................................... 22 4.13 SIMD .....................................................................................................................
Recommended publications
  • GPU-Based Password Cracking on the Security of Password Hashing Schemes Regarding Advances in Graphics Processing Units
    Radboud University Nijmegen Faculty of Science Kerckhoffs Institute Master of Science Thesis GPU-based Password Cracking On the Security of Password Hashing Schemes regarding Advances in Graphics Processing Units by Martijn Sprengers [email protected] Supervisors: Dr. L. Batina (Radboud University Nijmegen) Ir. S. Hegt (KPMG IT Advisory) Ir. P. Ceelen (KPMG IT Advisory) Thesis number: 646 Final Version Abstract Since users rely on passwords to authenticate themselves to computer systems, ad- versaries attempt to recover those passwords. To prevent such a recovery, various password hashing schemes can be used to store passwords securely. However, recent advances in the graphics processing unit (GPU) hardware challenge the way we have to look at secure password storage. GPU's have proven to be suitable for crypto- graphic operations and provide a significant speedup in performance compared to traditional central processing units (CPU's). This research focuses on the security requirements and properties of prevalent pass- word hashing schemes. Moreover, we present a proof of concept that launches an exhaustive search attack on the MD5-crypt password hashing scheme using modern GPU's. We show that it is possible to achieve a performance of 880 000 hashes per second, using different optimization techniques. Therefore our implementation, executed on a typical GPU, is more than 30 times faster than equally priced CPU hardware. With this performance increase, `complex' passwords with a length of 8 characters are now becoming feasible to crack. In addition, we show that between 50% and 80% of the passwords in a leaked database could be recovered within 2 months of computation time on one Nvidia GeForce 295 GTX.
    [Show full text]
  • IMPLEMENTATION and BENCHMARKING of PADDING UNITS and HMAC for SHA-3 CANDIDATES in FPGAS and ASICS by Ambarish Vyas a Thesis Subm
    IMPLEMENTATION AND BENCHMARKING OF PADDING UNITS AND HMAC FOR SHA-3 CANDIDATES IN FPGAS AND ASICS by Ambarish Vyas A Thesis Submitted to the Graduate Faculty of George Mason University in Partial Fulfillment of The Requirements for the Degree of Master of Science Computer Engineering Committee: Dr. Kris Gaj, Thesis Director Dr. Jens-Peter Kaps. Committee Member Dr. Bernd-Peter Paris. Committee Member Dr. Andre Manitius, Department Chair of Electrical and Computer Engineering Dr. Lloyd J. Griffiths. Dean, Volgenau School of Engineering Date: ---J d. / q /9- 0 II Fall Semester 2011 George Mason University Fairfax, VA Implementation and Benchmarking of Padding Units and HMAC for SHA-3 Candidates in FPGAs and ASICs A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science at George Mason University By Ambarish Vyas Bachelor of Science University of Pune, 2009 Director: Dr. Kris Gaj, Associate Professor Department of Electrical and Computer Engineering Fall Semester 2011 George Mason University Fairfax, VA Copyright c 2011 by Ambarish Vyas All Rights Reserved ii Acknowledgments I would like to use this oppurtunity to thank the people who have supported me throughout my thesis. First and foremost my advisor Dr.Kris Gaj, without his zeal, his motivation, his patience, his confidence in me, his humility, his diverse knowledge, and his great efforts this thesis wouldn't be possible. It is difficult to exaggerate my gratitude towards him. I also thank Ekawat Homsirikamol for his contributions to this project. He has significantly contributed to the designs and implementations of the architectures. Additionally, I am indebted to my student colleagues in CERG for providing a fun environment to learn and giving invaluable tips and support.
    [Show full text]
  • CS-466: Applied Cryptography Adam O'neill
    Hash functions CS-466: Applied Cryptography Adam O’Neill Adapted from http://cseweb.ucsd.edu/~mihir/cse107/ Setting the Stage • Today we will study a second lower-level primitive, hash functions. Setting the Stage • Today we will study a second lower-level primitive, hash functions. • Hash functions like MD5, SHA1, SHA256 are used pervasively. Setting the Stage • Today we will study a second lower-level primitive, hash functions. • Hash functions like MD5, SHA1, SHA256 are used pervasively. • Primary purpose is data compression, but they have many other uses and are often treated like a “magic wand” in protocol design. Collision resistance (CR) Collision Resistance n Definition: A collision for a function h : D 0, 1 is a pair x1, x2 D → { } ∈ of points such that h(x1)=h(x2)butx1 = x2. ̸ If D > 2n then the pigeonhole principle tells us that there must exist a | | collision for h. Mihir Bellare UCSD 3 Collision resistance (CR) Collision resistanceCollision Resistance (CR) n Definition: A collision for a function h : D 0, 1 n is a pair x1, x2 D Definition: A collision for a function h : D → {0, 1} is a pair x1, x2 ∈ D of points such that h(x1)=h(x2)butx1 = →x2.{ } ∈ of points such that h(x1)=h(x2)butx1 ≠ x2. ̸ If D > 2n then the pigeonhole principle tells us that there must exist a If |D| > 2n then the pigeonhole principle tells us that there must exist a collision| | for h. collision for h. We want that even though collisions exist, they are hard to find.
    [Show full text]
  • Linearization Framework for Collision Attacks: Application to Cubehash and MD6
    Linearization Framework for Collision Attacks: Application to CubeHash and MD6 Eric Brier1, Shahram Khazaei2, Willi Meier3, and Thomas Peyrin1 1 Ingenico, France 2 EPFL, Switzerland 3 FHNW, Switzerland Abstract. In this paper, an improved differential cryptanalysis framework for finding collisions in hash functions is provided. Its principle is based on lineariza- tion of compression functions in order to find low weight differential characteris- tics as initiated by Chabaud and Joux. This is formalized and refined however in several ways: for the problem of finding a conforming message pair whose differ- ential trail follows a linear trail, a condition function is introduced so that finding a collision is equivalent to finding a preimage of the zero vector under the con- dition function. Then, the dependency table concept shows how much influence every input bit of the condition function has on each output bit. Careful analysis of the dependency table reveals degrees of freedom that can be exploited in ac- celerated preimage reconstruction under the condition function. These concepts are applied to an in-depth collision analysis of reduced-round versions of the two SHA-3 candidates CubeHash and MD6, and are demonstrated to give by far the best currently known collision attacks on these SHA-3 candidates. Keywords: Hash functions, collisions, differential attack, SHA-3, CubeHash and MD6. 1 Introduction Hash functions are important cryptographic primitives that find applications in many areas including digital signatures and commitment schemes. A hash function is a trans- formation which maps a variable-length input to a fixed-size output, called message digest. One expects a hash function to possess several security properties, one of which is collision resistance.
    [Show full text]
  • Permutation-Based Encryption, Authentication and Authenticated Encryption
    Permutation-based encryption, authentication and authenticated encryption Permutation-based encryption, authentication and authenticated encryption Joan Daemen1 Joint work with Guido Bertoni1, Michaël Peeters2 and Gilles Van Assche1 1STMicroelectronics 2NXP Semiconductors DIAC 2012, Stockholm, July 6 . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric Modern-day cryptography is block-cipher centric (Standard) hash functions make use of block ciphers SHA-1, SHA-256, SHA-512, Whirlpool, RIPEMD-160, … So HMAC, MGF1, etc. are in practice also block-cipher based Block encryption: ECB, CBC, … Stream encryption: synchronous: counter mode, OFB, … self-synchronizing: CFB MAC computation: CBC-MAC, C-MAC, … Authenticated encryption: OCB, GCM, CCM … . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric Structure of a block cipher . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric Structure of a block cipher (inverse operation) . Permutation-based encryption, authentication and authenticated encryption Modern-day cryptography is block-cipher centric When is the inverse block cipher needed? Indicated in red: Hashing and its modes HMAC, MGF1, … Block encryption: ECB, CBC, … Stream encryption: synchronous: counter mode, OFB, … self-synchronizing: CFB MAC computation: CBC-MAC, C-MAC, … Authenticated encryption: OCB, GCM, CCM … So a block cipher
    [Show full text]
  • Indifferentiable Authenticated Encryption
    Indifferentiable Authenticated Encryption Manuel Barbosa1 and Pooya Farshim2;3 1 INESC TEC and FC University of Porto, Porto, Portugal [email protected] 2 DI/ENS, CNRS, PSL University, Paris, France 3 Inria, Paris, France [email protected] Abstract. We study Authenticated Encryption with Associated Data (AEAD) from the viewpoint of composition in arbitrary (single-stage) environments. We use the indifferentiability framework to formalize the intuition that a \good" AEAD scheme should have random ciphertexts subject to decryptability. Within this framework, we can then apply the indifferentiability composition theorem to show that such schemes offer extra safeguards wherever the relevant security properties are not known, or cannot be predicted in advance, as in general-purpose crypto libraries and standards. We show, on the negative side, that generic composition (in many of its configurations) and well-known classical and recent schemes fail to achieve indifferentiability. On the positive side, we give a provably indifferentiable Feistel-based construction, which reduces the round complexity from at least 6, needed for blockciphers, to only 3 for encryption. This result is not too far off the theoretical optimum as we give a lower bound that rules out the indifferentiability of any construction with less than 2 rounds. Keywords. Authenticated encryption, indifferentiability, composition, Feistel, lower bound, CAESAR. 1 Introduction Authenticated Encryption with Associated Data (AEAD) [54,10] is a funda- mental building block in cryptographic protocols, notably those enabling secure communication over untrusted networks. The syntax, security, and constructions of AEAD have been studied in numerous works. Recent, ongoing standardization processes, such as the CAESAR competition [14] and TLS 1.3, have revived interest in this direction.
    [Show full text]
  • The Boomerang Attacks on the Round-Reduced Skein-512 *
    The Boomerang Attacks on the Round-Reduced Skein-512 ? Hongbo Yu1, Jiazhe Chen3, and Xiaoyun Wang2;3 1 Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China 2 Institute for Advanced Study, Tsinghua University, Beijing 100084, China fyuhongbo,[email protected] 3 Key Laboratory of Cryptologic Technology and Information Security, Ministry of Education, School of Mathematics, Shandong University, Jinan 250100, China [email protected] Abstract. The hash function Skein is one of the ¯ve ¯nalists of the NIST SHA-3 competition; it is based on the block cipher Three¯sh which only uses three primitive operations: modular addition, rotation and bitwise XOR (ARX). This paper studies the boomerang attacks on Skein-512. Boomerang distinguishers on the compression function reduced to 32 and 36 rounds are proposed, with complexities 2104:5 and 2454 respectively. Examples of the distinguishers on 28-round and 31- round are also given. In addition, the boomerang distinguishers are applicable to the key-recovery attacks on reduced Three¯sh-512. The complexities for key-recovery attacks reduced to 32-/33- /34-round are about 2181, 2305 and 2424. Because Laurent et al. [14] pointed out that the previous boomerang distinguishers for Three¯sh-512 are in fact not compatible, our attacks are the ¯rst valid boomerang attacks for the ¯nal round Skein-512. Key words: Hash function, Boomerang attack, Three¯sh, Skein 1 Introduction Cryptographic hash functions, which provide integrity, authentication and etc., are very impor- tant in modern cryptology. In 2005, as the most widely used hash functions MD5 and SHA-1 were broken by Wang et al.
    [Show full text]
  • An Analytic Attack Against ARX Addition Exploiting Standard Side-Channel Leakage
    An Analytic Attack Against ARX Addition Exploiting Standard Side-Channel Leakage Yan Yan1, Elisabeth Oswald1 and Srinivas Vivek2 1University of Klagenfurt, Klagenfurt, Austria 2IIIT Bangalore, India fyan.yan, [email protected], [email protected] Keywords: ARX construction, Side-channel analysis, Hamming weight, Chosen plaintext attack Abstract: In the last few years a new design paradigm, the so-called ARX (modular addition, rotation, exclusive-or) ciphers, have gained popularity in part because of their non-linear operation’s seemingly ‘inherent resilience’ against Differential Power Analysis (DPA) Attacks: the non-linear modular addition is not only known to be a poor target for DPA attacks, but also the computational complexity of DPA-style attacks grows exponentially with the operand size and thus DPA-style attacks quickly become practically infeasible. We however propose a novel DPA-style attack strategy that scales linearly with respect to the operand size in the chosen-message attack setting. 1 Introduction ever are different: they offer a potentially ‘high reso- lution’ for the adversary. In principle, under suitably Ciphers that base their round function on the sim- strong assumptions, adversaries can not only observe ple combination of modular addition, rotation, and leaks for all instructions that are executed on a proces- exclusive-or, (short ARX) have gained recent popu- sor, but indeed attribute leakage points (more or less larity for their lightweight implementations that are accurately) to instructions (Mangard et al., 2007). suitable for resource constrained devices. Some re- Achieving security in this scenario has proven to cent examples include Chacha20 (Nir and Langley, be extremely challenging, and countermeasures such 2015) and Salsa20 (Bernstein, 2008) family stream as masking (secret sharing) are well understood but ciphers, SHA-3 finalists BLAKE (Aumasson et al., costly (Schneider et al., 2015).
    [Show full text]
  • SHA-3 Conference, March 2012, Skein: More Than Just a Hash Function
    Skein More than just a hash function Third SHA-3 Candidate Conference 23 March 2012 Washington DC 1 Skein is Skein-512 • Confusion is common, partially our fault • Skein has two special-purpose siblings: – Skein-256 for extreme memory constraints – Skein-1024 for the ultra-high security margin • But for SHA-3, Skein is Skein-512 – One hash function for all output sizes 2 Skein Architecture • Mix function is 64-bit ARX • Permutation: relocation of eight 64-bit words • Threefish: tweakable block cipher – Mix + Permutation – Simple key schedule – 72 rounds, subkey injection every four rounds – Tweakable-cipher design key to speed, security • Skein chains Threefish with UBI chaining mode – Tweakable mode based on MMO – Provable properties – Every hashed block is unique • Variable size output means flexible to use! – One function for any size output 3 The Skein/Threefish Mix 4 Four Threefish Rounds 5 Skein and UBI chaining 6 Fastest in Software • 5.5 cycles/byte on 64-bit reference platform • 17.4 cycles/byte on 32-bit reference platform • 4.7 cycles/byte on Itanium • 15.2 cycles/byte on ARM Cortex A8 (ARMv7) – New numbers, best finalist on ARMv7 (iOS, Samsung, etc.) 7 Fast and Compact in Hardware • Fast – Skein-512 at 32 Gbit/s in 32 nm in 58 k gates – (57 Gbit/s if processing two messages in parallel) • To maximize hardware performance: – Use a fast adder, rely on simple control structure, and exploit Threefish's opportunities for pipelining – Do not trust your EDA tool to generate an efficient implementation • Compact design: – Small FPGA
    [Show full text]
  • BLAKE2: Simpler, Smaller, Fast As MD5
    BLAKE2: simpler, smaller, fast as MD5 Jean-Philippe Aumasson1, Samuel Neves2, Zooko Wilcox-O'Hearn3, and Christian Winnerlein4 1 Kudelski Security, Switzerland [email protected] 2 University of Coimbra, Portugal [email protected] 3 Least Authority Enterprises, USA [email protected] 4 Ludwig Maximilian University of Munich, Germany [email protected] Abstract. We present the hash function BLAKE2, an improved version of the SHA-3 finalist BLAKE optimized for speed in software. Target applications include cloud storage, intrusion detection, or version control systems. BLAKE2 comes in two main flavors: BLAKE2b is optimized for 64-bit platforms, and BLAKE2s for smaller architectures. On 64- bit platforms, BLAKE2 is often faster than MD5, yet provides security similar to that of SHA-3: up to 256-bit collision resistance, immunity to length extension, indifferentiability from a random oracle, etc. We specify parallel versions BLAKE2bp and BLAKE2sp that are up to 4 and 8 times faster, by taking advantage of SIMD and/or multiple cores. BLAKE2 reduces the RAM requirements of BLAKE down to 168 bytes, making it smaller than any of the five SHA-3 finalists, and 32% smaller than BLAKE. Finally, BLAKE2 provides a comprehensive support for tree-hashing as well as keyed hashing (be it in sequential or tree mode). 1 Introduction The SHA-3 Competition succeeded in selecting a hash function that comple- ments SHA-2 and is much faster than SHA-2 in hardware [1]. There is nev- ertheless a demand for fast software hashing for applications such as integrity checking and deduplication in filesystems and cloud storage, host-based intrusion detection, version control systems, or secure boot schemes.
    [Show full text]
  • Nasha, Cubehash, SWIFFTX, Skein
    6.857 Homework Problem Set 1 # 1-3 - Open Source Security Model Aleksandar Zlateski Ranko Sredojevic Sarah Cheng March 12, 2009 NaSHA NaSHA was a fairly well-documented submission. Too bad that a collision has already been found. Here are the security properties that they have addressed in their submission: • Pseudorandomness. The paper does not address pseudorandomness directly, though they did show proof of a fairly fast avalanching effect (page 19). Not quite sure if that is related to pseudorandomness, however. • First and second preimage resistance. On page 17, it references a separate document provided in the submission. The proofs are given in the file Part2B4.pdf. The proof that its main transfunction is one-way can be found on pages 5-6. • Collision resistance. Same as previous; noted on page 17 of the main document, proof given in Part2B4.pdf. • Resistance to linear and differential attacks. Not referenced in the main paper, but Part2B5.pdf attempts to provide some justification for this. • Resistance to length extension attacks. Proof of this is given on pages 4-5 of Part2B4.pdf. We should also note that a collision in the n = 384 and n = 512 versions of the hash function. It was claimed that the best attack would be a birthday attack, whereas a collision was able to be produced within 2128 steps. CubeHash According to the author, CubeHash is a very simple cryptographic hash function. The submission does not include almost any of the security details, and for the ones that are included the analysis is very poor. But, for the sake of making this PSet more interesting we will cite some of the authors comments on different security issues.
    [Show full text]
  • The Missing Difference Problem, and Its Applications to Counter Mode
    The Missing Difference Problem, and its Applications to Counter Mode Encryption? Ga¨etanLeurent and Ferdinand Sibleyras Inria, France fgaetan.leurent,[email protected] Abstract. The counter mode (CTR) is a simple, efficient and widely used encryption mode using a block cipher. It comes with a security proof that guarantees no attacks up to the birthday bound (i.e. as long as the number of encrypted blocks σ satisfies σ 2n=2), and a matching attack that can distinguish plaintext/ciphertext pairs from random using about 2n=2 blocks of data. The main goal of this paper is to study attacks against the counter mode beyond this simple distinguisher. We focus on message recovery attacks, with realistic assumptions about the capabilities of an adversary, and evaluate the full time complexity of the attacks rather than just the query complexity. Our main result is an attack to recover a block of message with complexity O~(2n=2). This shows that the actual security of CTR is similar to that of CBC, where collision attacks are well known to reveal information about the message. To achieve this result, we study a simple algorithmic problem related to the security of the CTR mode: the missing difference problem. We give efficient algorithms for this problem in two practically relevant cases: where the missing difference is known to be in some linear subspace, and when the amount of data is higher than strictly required. As a further application, we show that the second algorithm can also be used to break some polynomial MACs such as GMAC and Poly1305, with a universal forgery attack with complexity O~(22n=3).
    [Show full text]