Extreme Adaptive Optics Astrometry of R136

Total Page:16

File Type:pdf, Size:1020Kb

Extreme Adaptive Optics Astrometry of R136 This is a repository copy of Extreme adaptive optics astrometry of R136. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/174500/ Version: Accepted Version Article: Khorrami, Z, Langlois, M, Vakili, F et al. (9 more authors) (2021) Extreme adaptive optics astrometry of R136. Astronomy & Astrophysics, 649. L8. ISSN 0004-6361 https://doi.org/10.1051/0004-6361/202140668 © ESO 2021. This is an author produced version of an article published in Astronomy and Astrophysics. Uploaded in accordance with the publisher's self-archiving policy. Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ Astronomy & Astrophysics manuscript no. 40668corr ©ESO 2021 April 28, 2021 Letter to the Editor Extreme adaptive optics astrometry of R136⋆ Searching for high proper motion stars⋆⋆ Z. Khorrami1, M. Langlois2, F. Vakili3, P. C. Clark1, A. S. M. Buckner4, M. Gonzalez5, P. Crowther6, R. Wünsch7, J. Palouš7, A. Boccaletti8, S. Lumsden9, and E. Moraux5 1 School of Physics and Astronomy, Cardiff University, The Parade, Cardiff CF24 3AA, UK e-mail: [email protected] 2 Universite de Lyon, Universite Lyon 1, CNRS, CRAL UMR5574, Saint-Genis Laval, France 3 Universite Cote d’Azur, OCA, CNRS, Lagrange, France 4 School of Physics and Astronomy, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK 5 Universite Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France 6 Department of Physics and Astronomy, Hounsfield Road, University of Sheffield, Sheffield, S3 7RH, UK 7 Astronomical Institute of the Czech Academy of Sciences, BocníIIˇ 1401/1a, 141 00 Praha 4, Czech Republic 8 LESIA, Observatoire de Paris, CNRS, Universite Paris 7, Universite Paris 6, 5 place Jules Janssen, 92190 Meudon, France 9 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK ABSTRACT We compared high-contrast near-infrared images of the core of R136 taken by VLT/SPHERE, in two epochs separated by 3.06 years. For the first time we monitored the dynamics of the detected sources in the core of R136 from a ground-based telescope with adaptive optics. The aim of these observations was to search for High prOper Motion cAndidates (HOMAs) in the central region of R136 (r < 6”) where it has been challenging for other instruments. Two bright sources (K< 15 mag and V< 16 mag) are located near R136a1 and R136c (massive WR stars) and have been identified as potential HOMAs. These sources have significantly shifted in the images with respect to the mean shift of all reliable detected sources and their neighbours, and six times their own astrometric errors. We calculate their proper motions to be 1.36 ± 0.22 mas/yr (321 ± 52 km/s) and 1.15 ± 0.11 mas/yr (273 ± 26 km/s). We discuss different possible scenarios to explain the magnitude of such extreme proper motions, and argue for the necessity to conduct future observations to conclude on the nature of HOMAs in the core of R136. Key words. star clusters: individual: R136 – Astrometry – Proper motions – Instrumentation: high angular resolution – Instrumen- tation: adaptive optics 1. Introduction sources in the core of R136 searching for High prOper Motion cAndidates (HOMAs1). The presence of such high-velocity stars The R136 star cluster in the 30 Dor region of the Large Mag- in the core of massive young star clusters can explain or change ellanic Cloud (LMC) is a unique astrophysical laboratory; it the hypothesis on the formation of massive stars (if they form is sufficiently young (1.5-2 Myr, de Koter, Heap, & Hubeny either in isolation or were ejected dynamically from the cluster) 1998; Crowther et al. 2016; Bestenlehner et al. 2020) and rich and the dynamics of the 30 Dor region as a whole. (Crowther et al. 2010) to allow the study of the formation and The proper motion (PM) measurement of stars in 30 Dor evolution of the most massive stars. Most of the information relies on HST data taken with various instruments (WFPC2, on R136 comes from Hubble Space Telescope (HST) obser- ACS/WFC, and WFC3/UVIS) and filters in different epochs vations, which was used to study various parameters including (Platais et al. 2015, 2018). There are therefor several difficulties the cluster’s star formation history, stellar content, and kinemat- with obtaining these measurements since the data in each instru- ics (Hunter et al. 1995; Andersen et al. 2009; De Marchi et al. ment (and filter) show coordinate-dependent systematic and geo- 2011; Cignoni et al. 2015). Using the Spectro-Polarimetric High- metric distortions that appear in the transformation of instrument arXiv:2104.12819v1 [astro-ph.SR] 26 Apr 2021 contrast Exoplanet Research (SPHERE, Beuzit et al. 2019) of the pixel coordinates and the PMs. Among the higher-precision PM Very Large Telescope (VLT) in 2015 we obtained the first epoch sources, a handful of stars exceed 1mas/yr, but were excluded observations of the R136 core (Khorrami et al. 2017) in the near- from the analysis by setting an upper limit on the velocity of infrared (NIR), and in 2018 we obtained a second set of observa- stars based on the maximum radial velocity measurements from tions for this region (Khorrami et al. 2021). Comparing the two VLT Flames Tarantula Survey (VFTS) observations (Evans et sets of observations, we monitored the dynamics of the detected al. 2011). The PM measurements in the 30 Dor region, as given ⋆ by HST and recently by Gaia (Lennon et al. 2018), do not de- Catalogue of reliable-consistent sources is only available in tect sources at the core of R136 because of the concentration of electronic form at the CDS via http://cdsweb.u-strasbg.fr/ cgi-bin/qcat?J/A+A/ ⋆⋆ Based on observations made with ESO Telescopes at the La Silla 1 Homa is a mythical bird from Iranian legends that never comes to Paranal Observatory under programme ID 0102.D0271 and 095.D-0309 rest, living its entire life flying invisibly high above the earth. Article number, page 1 of 6 A&A proofs: manuscript no. 40668corr bright sources and their small angular separations. Thus, higher done on the combined left and right images, but separate photo- angular resolution and small pixel sampling are needed to im- metric analyses of the left and right images were required for the prove the PM measurements without overexposing the bright present purpose. sources (and masking their faint neighbours); better estimations The common sources between the two images were defined of the positions of stars are also needed during the photometry according to their position 2, their magnitude difference being for point spread function (PSF) fitting. SPHERE/IRDIS can ob- less than 0.5, and the correlation between their input PSF and serve the core of R136 in the NIR where the flux ratio of stars is detected sources less than 10%. This means that the detected lower than in the optical, and with higher angular resolution and sources in the two images have a very similar PSF shape since pixel sampling (12.25 mas/pix) than the HST (e.g. WFC3/UVIS the input PSF stars are chosen to be the same in all four images. has 40 mas/pix). These parameters make IRDIS the best instru- The number of common sources between the left and right K ment available at present to resolve the higher number of stars images was 705 and 1451 in 2015 and 2018, respectively. Al- in the core of R136. Additionally, IRDIS produces two sets of though in principle we should not see any shift in the position data simultaneously taken within the same filter, overcoming the of the common sources per epoch, our astrometry analysis still instrumental errors such as bad pixels and imperfections of the measures the shift for each detected source in each epoch be- detector, which are critical to the PM measurements. tween the left and right images. This shift can be caused by the instrument, detector bad pixels, locally varying pixel scales, and flux difference between the left and right images. We call this 2. Data the “instrumental shift” because it does not represent potential We used two sets of imaging data over a field of view (FOV) physical movement of the stars. If it is larger than half a pixel, of 11"× 12" centred on the core of R136 in the K band in we withdraw the source from our final astrometry analysis. Af- 2015 (2015-09-22, ID 095.D-0309) and 2018 (2018-10-10, ID ter applying this constraint, a total of 515 (in 2015) and 1059 0102.D-0271). These two sets of epoch data were recorded us- (in 2018) sources in common between the left and right images ing the classical imaging mode of IRDIS (Langlois et al. 2014). remain. The final number of common sources after this selection Using the data taken with the same instrument and exactly the is 494. same configuration, 3.06 yr apart, enabled us to study the dy- namics of the core of R136 with the highest angular resolution to date.
Recommended publications
  • Cfa in the News ~ Week Ending 3 January 2010
    Wolbach Library: CfA in the News ~ Week ending 3 January 2010 1. New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 2. 2009 in science and medicine, ROGER SCHLUETER, Belleville News Democrat (IL), Sunday, January 3, 2010 3. 'Science, celestial bodies have always inspired humankind', Staff Correspondent, Hindu (India), Tuesday, December 29, 2009 4. Why is Carpenter defending scientists?, The Morning Call, Morning Call (Allentown, PA), FIRST ed, pA25, Sunday, December 27, 2009 5. CORRECTIONS, OPINION BY RYAN FINLEY, ARIZONA DAILY STAR, Arizona Daily Star (AZ), FINAL ed, pA2, Saturday, December 19, 2009 6. We see a 'Super-Earth', TOM BEAL; TOM BEAL, ARIZONA DAILY STAR, Arizona Daily Star, (AZ), FINAL ed, pA1, Thursday, December 17, 2009 Record - 1 DIALOG(R) New social science research from G. Sonnert and co-researchers described, Science Letter, p40, Tuesday, January 5, 2010 TEXT: "In this paper we report on testing the 'rolen model' and 'opportunity-structure' hypotheses about the parents whom scientists mentioned as career influencers. According to the role-model hypothesis, the gender match between scientist and influencer is paramount (for example, women scientists would disproportionately often mention their mothers as career influencers)," scientists writing in the journal Social Studies of Science report (see also ). "According to the opportunity-structure hypothesis, the parent's educational level predicts his/her probability of being mentioned as a career influencer (that ism parents with higher educational levels would be more likely to be named). The examination of a sample of American scientists who had received prestigious postdoctoral fellowships resulted in rejecting the role-model hypothesis and corroborating the opportunity-structure hypothesis.
    [Show full text]
  • The VLT-FLAMES Tarantula Survey
    Astronomy & Astrophysics manuscript no. msOrevfinalcorr c ESO 2019 May 8, 2019 The VLT-FLAMES Tarantula Survey XIV. The O-Type Stellar Content of 30 Doradus N. R. Walborn1, H. Sana1,2, S. Sim´on-D´ıaz3,4, J. Ma´ız Apell´aniz5, W. D. Taylor6,7, C. J. Evans7, N. Markova8, D. J. Lennon9, and A. de Koter2,10 1 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 2 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, The Netherlands 3 Instituto de Astrof´ısica de Canarias, E-38200 La Laguna, Tenerife, Spain 4 Departamento de Astrof´ısica, Universidad de La Laguna, E-38205 La Laguna, Tenerife, Spain 5 Instituto de Astrof´ısica de Andaluc´ıa-CSIC, Glorieta de la Astronom´ıa s/n, E-18008 Granada, Spain 6 Scottish Universities Physics Alliance, Institute for Astronomy, University of Edinburgh, Royal Observatory Edinburgh, Blackford Hill, Edinburgh, EH9 3HJ, UK 7 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 8 Institute of Astronomy, National Astronomical Observatory, Bulgarian Academy of Sciences, PO Box 136, 4700 Smoljan, Bulgaria 9 European Space Agency, European Space Astronomy Centre, Camino Bajo del Castillo s/n, Urbanizaci´on Villafranca del Castillo, E-28691 Villanueva de la Ca˜nada, Madrid, Spain 10 Instituut voor Sterrenkunde, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium ABSTRACT Detailed spectral classifications are presented for 352 O–B0 stars in the VLT-FLAMES Tarantula Survey ESO Large Programme, of which 213 O-type are judged of sufficiently high quality for further morphological analysis.
    [Show full text]
  • THE MAGELLANIC CLOUDS NEWSLETTER an Electronic Publication Dedicated to the Magellanic Clouds, and Astrophysical Phenomena Therein
    THE MAGELLANIC CLOUDS NEWSLETTER An electronic publication dedicated to the Magellanic Clouds, and astrophysical phenomena therein No. 146 — 4 April 2017 http://www.astro.keele.ac.uk/MCnews Editor: Jacco van Loon Figure 1: The remarkable change in spectral of the Luminous Blue Variable R 71 in the LMC during its current major and long-lasting eruption, from B-type to G0. Even more surprising is the appearance of prominent He ii emission before the eruption, totally at odds with its spectral type at the time. Explore more spectra of this and other LBVs in Walborn et al. (2017). 1 Editorial Dear Colleagues, It is my pleasure to present you the 146th issue of the Magellanic Clouds Newsletter. Besides an unusually large abundance of papers on X-ray binaries and massive stars you may be interested in the surprising claim of young stellar objects in mature clusters, while a massive intermediate-age cluster in the SMC shows no evidence for multiple populations. Marvel at the superb image of R 136 and another paper suggesting a scenario for its formation involving gas accreted from the SMC – adding evidence for such interaction to other indications found over the past twelve years. Congratulations with the quarter-centennial birthday of OGLE! They are going to celebrate it, and you are all invited – see the announcement. Further meetings will take place in Heraklion (Be-star X-ray binaries) and Hull (Magellanic Clouds), and again in Poland (RR Lyræ). The Southern African Large Telescope and the South African astronomical community are looking for an inspiring, ambitious and world-leading candidate for the position of SALT chair at a South African university of your choice – please consider the advertisement for this tremendous opportunity.
    [Show full text]
  • The Tarantula Nebula As a Template for Extragalactic Star Forming Regions from VLT/MUSE and HST/STIS
    This is a repository copy of The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/112327/ Version: Accepted Version Proceedings Paper: Crowther, P.A., Caballero-Nieves, S.M., Castro, N. et al. (1 more author) (2016) The Tarantula Nebula as a template for extragalactic star forming regions from VLT/MUSE and HST/STIS. In: Proceedings of the International Astronomical Union. IAUS 329: The Lives and Death-Throes of Massive Stars, 28 Nov - 02 Dec 2016, Auckland, New Zealand. Cambridge University Press , pp. 292-296. https://doi.org/10.1017/S1743921317002484 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The lives and death-throes of massive stars Proceedings IAU Symposium No.
    [Show full text]
  • Jahresbericht 2010 Mitteilungen Der Astronomischen Gesellschaft 94 (2013), 583–627
    Jahresbericht 2010 Mitteilungen der Astronomischen Gesellschaft 94 (2013), 583–627 Potsdam Leibniz-Institut für Astrophysik Potsdam (AIP) An der Sternwarte 16, D-14482 Potsdam Tel. 03317499-0, Telefax: 03317499-267 E-Mail: [email protected] WWW: http://www.aip.de Beobachtungseinrichtungen Robotisches Observatorium STELLA Observatorio del Teide, Izaña E-38205 La Laguna, Teneriffa, Spanien Tel. +34 922 329 138 bzw. 03317499-633 LOFAR-Station DE604 Potsdam-Bornim D-14469 Potsdam Tel. 03317499-291, Telefax: 03317499-352 Observatorium für Solare Radioastronomie Tremsdorf D-14552 Tremsdorf Tel. 03317499-291, Telefax: 03317499-352 Sonnenobservatorium Einsteinturm Telegrafenberg, D-14473 Potsdam Tel. 0331288-2303/-2304, Telefax: 03317499-524 0 Allgemeines Das Leibniz-Institut für Astrophysik Potsdam (AIP) ist eine Stiftung bürgerlichen Rechts zum Zweck der wissenschaftlichen Forschung auf dem Gebiet der Astrophysik. Als außer- universitäre Forschungseinrichtung ist es Mitglied der Leibniz-Gemeinschaft. Seinen For- schungsauftrag führt das AIP im Rahmen von nationalen und internationalen Kooperatio- nen aus. Die Beteiligung am Large Binocular Telescope auf dem Mt Graham in Arizona, dem größten optischen Teleskop der Welt, verdient hierbei besondere Erwähnung. Neben seinen Forschungsarbeiten profiliert sich das Institut zunehmend als Kompetenzzentrum im Bereich der Entwicklung von Forschungstechnologie. Vier gemeinsame Berufungen mit der Universität Potsdam und mehrere außerplanmäßige Professuren und Privatdozenturen an Universitäten in der Region und
    [Show full text]
  • The VLT-FLAMES Tarantula Survey? XXIX
    A&A 618, A73 (2018) Astronomy https://doi.org/10.1051/0004-6361/201833433 & c ESO 2018 Astrophysics The VLT-FLAMES Tarantula Survey? XXIX. Massive star formation in the local 30 Doradus starburst F. R. N. Schneider1, O. H. Ramírez-Agudelo2, F. Tramper3, J. M. Bestenlehner4,5, N. Castro6, H. Sana7, C. J. Evans2, C. Sabín-Sanjulián8, S. Simón-Díaz9,10, N. Langer11, L. Fossati12, G. Gräfener11, P. A. Crowther5, S. E. de Mink13, A. de Koter13,7, M. Gieles14, A. Herrero9,10, R. G. Izzard14,15, V. Kalari16, R. S. Klessen17, D. J. Lennon3, L. Mahy7, J. Maíz Apellániz18, N. Markova19, J. Th. van Loon20, J. S. Vink21, and N. R. Walborn22,?? 1 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH, UK e-mail: [email protected] 2 UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK 3 European Space Astronomy Centre, Mission Operations Division, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain 4 Max-Planck-Institut für Astronomie, Königstuhl 17, 69117 Heidelberg, Germany 5 Department of Physics and Astronomy, Hicks Building, Hounsfield Road, University of Sheffield, Sheffield S3 7RH, UK 6 Department of Astronomy, University of Michigan, 1085 S. University Avenue, Ann Arbor, MI 48109-1107, USA 7 Institute of Astrophysics, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 8 Departamento de Física y Astronomía, Universidad de La Serena, Avda. Juan Cisternas 1200, Norte, La Serena, Chile 9 Instituto de Astrofísica de Canarias, 38205 La Laguna,
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS. II
    This is a repository copy of The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/166782/ Version: Accepted Version Article: Bestenlehner, J.M. orcid.org/0000-0002-0859-5139, Crowther, P.A., Caballero-Nieves, S.M. et al. (11 more authors) (2020) The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136. Monthly Notices of the Royal Astronomical Society. ISSN 0035-8711 https://doi.org/10.1093/mnras/staa2801 This is a pre-copyedited, author-produced version of an article accepted for publication in Monthly Notices of the Royal Astronomical Society following peer review. The version of record [Joachim M Bestenlehner, Paul A Crowther, Saida M Caballero-Nieves, Fabian R N Schneider, Sergio Simón-Díaz, Sarah A Brands, Alex de Koter, Götz Gräfener, Artemio Herrero, Norbert Langer, Daniel J Lennon, Jesus Maíz Apellániz, Joachim Puls, Jorick S Vink, The R136 star cluster dissected with Hubble Space Telescope/STIS. II. Physical properties of the most massive stars in R136, Monthly Notices of the Royal Astronomical Society, , staa2801] is available online at: https://doi.org/10.1093/mnras/staa2801 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version.
    [Show full text]
  • R136: the Core of the Lonizing Cluster of 30 Doradus J
    R136: The Core of the lonizing Cluster of 30 Doradus J. Me/nick, ESO Introduction crucial role in the whole story, I will give abrief description of this remarkable object. I first read that R136 contained a supermassive object some time ago in the Sunday edition of the Chilean daily newspaper The 30 Doradus Nebula and R136 EI Mercurio, where it was announced that ... "European astronomers discover the most massive star in the Universe!". The 30 Doradus nebula (thus named because it lies in the Since EI Mercurio is almost always wrang I did not take the Constellation of Doradus) is an outstanding complex of gas, announcement very seriously until the paper by Feitzinger and dust and stars in the Large Magellanic Cloud (LMC), the Co-workers (henceforth the Bochum graup) appeared in nearest galaxy to our own. Beautiful colour photographs of the Astronomy and Astrophysics in 1980. More or less simultane­ LMC and the 30 Doradus region can be found in the December ously with the publication of these optical observations, a graup 1982 issue of The Messenger. The diameter of 30 Dor is of observers from the University of Wisconsin, headed by J. several hundred parsecs and, although emission nebulae as Cassinelli (henceforth the Wisconsin group) reached the same large or larger than 30 Dor exist in other galaxies, none is found Conclusion on the basis of ultraviolet observations obtained in our own. The visual light emitted by the nebula is produced with the International Ultraviolet Explorer (IUE). almost entirely by hydrogen recombination lines and in orderte . After these papers where published, and since I have been maintain this radiation the equivalent of about 10004stars (the Interested in R136 for a long time, I started to consider the hottest stars known have spectral type 03) are required.
    [Show full text]
  • The R136 Star Cluster Dissected with Hubble Space Telescope/STIS
    MNRAS 000, 1–39 (2015) Preprint 29 January 2016 Compiled using MNRAS LATEXstylefilev3.0 The R136 star cluster dissected with Hubble Space Telescope/STIS. I. Far-ultraviolet spectroscopic census and the origin of He ii λ1640 in young star clusters Paul A. Crowther1⋆, S.M. Caballero-Nieves1, K.A. Bostroem2,3,J.Ma´ız Apell´aniz4, F.R.N. Schneider5,6,N.R.Walborn2,C.R.Angus1,7,I.Brott8,A.Bonanos9, A. de Koter10,11,S.E.deMink10,C.J.Evans12,G.Gr¨afener13,A.Herrero14,15, I.D. Howarth16, N. Langer6,D.J.Lennon17,J.Puls18,H.Sana2,11,J.S.Vink13 1Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK 2Space Telescope Science Institute, 3700 San Martin Drive, Baltimore MD 21218, USA 3Department of Physics, University of California, Davis, 1 Shields Ave, Davis CA 95616, USA 4Centro de Astrobiologi´a, CSIC/INTA, Campus ESAC, Apartado Postal 78, E-28 691 Villanueva de la Ca˜nada, Madrid, Spain 5 Department of Physics, University of Oxford, Denys Wilkinson Building, Keble Road, Oxford, OX1 3RH, UK 6 Argelanger-Institut fur¨ Astronomie der Universit¨at Bonn, Auf dem Hugel¨ 71, D-53121 Bonn, Germany 7 Department of Physics, University of Warwick, Gibbet Hill Rd, Coventry CV4 7AL, UK 8 Institute for Astrophysics, Tuerkenschanzstr. 17, AT-1180 Vienna, Austria 9 Institute of Astronomy & Astrophysics, National Observatory of Athens, I. Metaxa & Vas. Pavlou St, P. Penteli 15236, Greece 10 Astronomical Institute Anton Pannekoek, University of Amsterdam, Kruislaan 403, 1098 SJ, Amsterdam, Netherlands 11 Institute of Astronomy, KU Leuven, Celestijnenlaan
    [Show full text]
  • VLT-FLAMES Tarantula Survey
    VLT-FLAMES Tarantula Survey Alex de Koter University of Amsterdam & KU Leuven C.J. Evans (PI), W.D. Taylor, V. Hénault-Brunet, H. Sana, A. de Koter (O-star coordinator), S. Simón- Díaz, G. Carraro, T. Bagnoli, N. Bastian, J.M. Bestenlehner, A.Z. Bonanos, E. Bressert, I. Brott, M.A. Campbell, M. Cantiello, J.S. Clark, E. Costa, P.A. Crowther, S.E. de Mink, E. Doran, P.L. Dufton (B-star coordinator), P.R. Dunstall, K. Friedrich, M. Garcia, M. Gieles, G. Gräfener, A. Herrero, I.D. Howarth, R. G. Izzard, N. Langer, D.J. Lennon, J. Maíz Apellániz, N. Markova, F. Najarro, J. Puls, O.H. Ramirez, C. Sabín-Sanjulián, S.J. Smartt, V.E. Stroud, J.Th. van Loon, J.S. Vink, N.R. Walborn VLT-FLAMES Tarantula Survey PI: C. Evans Main catalogues Dynamics of the central region 1. Observing campaign and YSOs (Evans+2011) 11. Evidence for cluster rotation 2. Spectral typing & special categories (Walborn+2014) (Hénault-Brunet+ 2012a) 20XX) 12. R136 is virialized (Hénault-Brunet+ 2012b) 20XX) Individual objects Population properties 3. VFTS 016: most massive runaway star (Evans+2010) 13-14. Spin of the single O & B stars 4. R139: most massive evolved O-star pair (Taylor+2011) (Dufton+ 2013, Ramírez-Agudelo+2013) 4. VFTS 102: fastest spinning O star (Dufton+2011) 15. Spin of O star primaries (Ramírez-Agudelo+ in prep) 4. VFTS 698: peculiar B[e] supergiant (Dunstall+2012) 16-17. Multiplicity of the O & B stars (Sana+2013, Dunstall+2015) 5. VFTS 682: a 150 M star in appartent isolation (Bestenlehner+2011) 18.
    [Show full text]
  • Descargar (6,72
    UNIVERSO LQ NÚMERO 2 AÑO DE 2012 Revista trimestral gratuita de Latinquasar.org TECNOLOGÍA ESPACIAL Japón en el espacio CIELO AUSTRAL La gran nube de Magallanes HISTORIA DE LA ASTRONOMÍA Los Mayas y el fin del mundo ASTROBIOLOGÍA Bioquímicas alternativas ASTROBRICOLAJE Montura Eq6, toma de contacto SISTEMA SOLAR Y CUERPOS MENORES Lovejoy ASTROCACHARROS NUESTRAS FOTOGRAFÍAS EFEMÉRIDES COMETAS CALENDARIO DE LANZAMIENTOS CRÓNICAS EN ESTE NÚMERO ENCONTRARÁS TECNOLOGÍA ESPACIAL Japón en el espacio...........................................................................................................Página 3 CALENDARIO DE LANZAMIENTOS Calendario de lanzamientos..............................................................................................Página 9 SISTEMA SOLAR Y CUERPOS MENORES Cometas de Enero,Febrero y Marzo...............................................................................Página 18 SISTEMA SOLAR Y CUERPOS MENORES II Cometa Lovejoy................................................................................................................Página 26 CIELO AUSTRAL La gran nube de Magallanes...........................................................................................Página 37 HISTORIA DE LA ASTRONOMÍA Los conocimientos astronómicos de los Mayas y el fenómeno 2012........................Página 41 ASTROBIOLOGÍA Bioquímicas hipotéticas.................................................................................................Página 47 ASTROBRICOLAJE Eq6, más de diez años acompañandonos en las frías
    [Show full text]
  • Molecular Clouds in Extreme Enviroments of the Low-Metallicity Magellanic System
    UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE ASTRONOMÍA MOLECULAR CLOUDS IN EXTREME ENVIROMENTS OF THE LOW-METALLICITY MAGELLANIC SYSTEM TESIS PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN ASTRONOMÍA MARÍA TERESA VALDIVIA MENA PROFESOR GUÍA: MÓNICA SOLANGE RUBIO LÓPEZ MIEMBROS DE LA COMISIÓN: ALBERTO BOLATTO VIVIANA GUZMÁN VELOSO LAURA PÉREZ MUÑOZ Este trabajo ha sido parcialmente financiado por beca CONICYT-PFCHA/MagísterNacional/2018 - 22180279, proyecto FONDECYT no. 1190684, proyecto FONDECYT no. 1140839 y VID grant ENL22/18 SANTIAGO DE CHILE 2020 RESUMEN DE LA MEMORIA PARA OPTAR AL GRADO DE MAGÍSTER EN CIENCIAS, MENCIÓN ASTRONOMÍA POR: MARÍA TERESA VALDIVIA MENA FECHA: 2020 PROF. GUÍA: MÓNICA SOLANGE RUBIO LÓPEZ MOLECULAR CLOUDS IN EXTREME ENVIROMENTS OF THE LOW-METALLICITY MAGELLANIC SYSTEM The goal of this thesis is to study the physical properties of the molecular clouds in Magellanic Bridge A, the source with the highest 870 µm excess of emission found in single dish surveys, and in the vicinity of the young massive cluster R136 in 30 Doradus (30Dor), using high-resolution ALMA and APEX (single dish) observations. Magellanic Bridge A breaks up into two molecular clouds, North and South, in 870 µm continuum emission and in 12CO(2-1) line emission. Dust in the North source, according to our best parameters from fitting the far-infrarred fluxes, is ≈ 3 K colder than in the South source in correspondence to its less developed star formation. Both dust sources present large submillimeter excesses E, E(870µm) ∼ 7 and E(870µm) ∼ 3 for the North and South sources respectively, based on APEX single-dish LABOCA observations.
    [Show full text]