GALOIS THEORY at WORK 1. Examples Example

Total Page:16

File Type:pdf, Size:1020Kb

GALOIS THEORY at WORK 1. Examples Example GALOIS THEORY AT WORK KEITH CONRAD 1. Examples p p Example 1.1. The field extension Q( 2; 3)=Q is Galois of degree 4, so its Galoisp group phas order 4. The elementsp of the Galoisp groupp are determinedp by their values on 2 and 3. The Q-conjugates of 2 and 3 are ± 2 and ± 3, so we get at most four possible automorphisms in the Galois group. Seep Table 1.p Since the Galois group has order 4, these 4 possible assignments of values to σ( 2) and σ( 3) all really exist. p p σ(p 2) σ(p 3) p2 p3 p2 −p 3 −p2 p3 − 2 − 3 Table 1 p p Each nonidentity automorphismp p in Table 1 has order 2. Since Gal(Qp( 2p; 3)=Q) con- tains 3 elements of order 2, Q( 2; 3) has 3 subfields Ki suchp that [Q( 2p; 3) : Ki] = 2, orp equivalently [Ki : Q] = 4=2 = 2. Two such fields are Q( 2) and Q( 3). A third is Q( 6) and that completes the list. Here is a diagram of all the subfields. p p Q( 2; 3) p p p Q( 2) Q( 3) Q( 6) Q p Inp Table 1, the subgroup fixing Q( 2) is the first and secondp row, the subgroup fixing Q( 3) isp the firstp and thirdp p row, and the subgroup fixing Q( 6) is the first and fourth row (since (− 2)(− 3) = p2 3).p p p The effect of Gal(pQ( 2;p 3)=Q) on 2 + 3 is given in Table 2. The 4p valuesp are allp different,p since 2 and 3 are linearlyp independentp over Q. Therefore Q( 2; 3) = Q( 2 + 3). The minimal polynomial of 2 + 3 over Q must be p p p p p p p p (X − ( 2 + 3))(X − (− 2 + 3))(X − ( 2 − 3))(X − (− 2 − 3)) = X4 − 10X2 + 1: In particular, X4 − 10X2 + 1 is irreducible in Q[X] since it's a minimal polynomial over Q. 1 2 KEITH CONRAD p p p p σ(p 2) σ(p 3) σ(p 2 +p 3) p2 p3 p2 + p3 p2 −p 3 p2 − p3 −p2 p3 −p2 + p3 − 2 − 3 − 2 − 3 Table 2 By similar reasoning if a field F does not have characteristicp p 2 and a and b are nonsquares in F such that ab is not a square either, then [F ( a; b): F ] = 4 and all the fields between p p F and F ( a; b) are as in the following diagram. p p F ( a; b) p p p F ( a) F ( b) F ( ab) F p p p p Furthermore, F ( a; b) = F ( a + b). The argument is identical to the special case above. p p p 4 4 4 Example 1.2. The extension Q( 2)=Q is not Galois,p but Q( 2) lies in Q( 2; i), which 4 is Galoisp over Q. We will use Galois theory for Q( 2; i)=Q to find the intermediate fields 4 in Q( 2)=Q. p The Galois group of Q( 4 2; i)=Q equals hr; si, where p p p p r( 4 2) = i 4 2; r(i) = i and s( 4 2) = 4 2; s(i) = −i: p (Viewing elements of Q( 4 2; i) as complex numbers, s acts on them like complex conjuga- tion.) The group hr; si is isomorphic to D4, where r corresponds to a 90 degree rotation of the squarep and s corresponds to a reflectionp across a diagonal. What is the subgroup H of Gal(Q( 4 2; i)=Q) corresponding to Q( 4 2)? p Q( 4 2; i) f1g 2 2 p (1.1) Q( 4 2) H 4 4 Q D4 p 4 Since s isp a nontrivialp element of the Galois group that fixes Q( 2), s 2 H. The size 4 4 of Hp is [Q( 2; i): Q( 2)] = 2, so H p= f1; sg = hsi. By the Galois correspondence for Q( 4 2; i)=Q, fields strictly between Q( 4 2) and Q correspond to subgroups of the Galois group strictly between hsi and hr; si. From the known subgroup structure of D4, the only 2 subgroup lyingp strictly between hspi and hr; si is hr ; si. Therefore only one field lies strictly between Q( 4 2) and Q. Since Q( 2) is such a field it is the only one. GALOIS THEORY AT WORK 3 Remark 1.3. While Galois theory provides the most systematic method to find intermedi-p 4 ate fields, it may be possiblep to argue in other ways. Forp example, suppose Q ⊂ F ⊂ Q( 2) with [F : Q] = 2. Then 4 2 has degree 2 over F . Since 4 2 is a root of X4 − 2, its minimal 4 polynomial overp F has to be a quadratic factor of X − 2.p There are three monic quadraticp 4 2 4 factors with 2 as a root, butp only one of them, X − 2, has coefficientsp in Q(p2) (let 2 4 alone in R). Therefore X p− 2 must be the minimal polynomial of 2 over F , so 2 2 F . Since [F : Q] = 2, F = Q( 2) by counting degrees. p 4 2πi=8 Example 1.4. Let's explore Q( 2; ζ8), where ζ8 = ep is a root of unity of order 8, 4 4 whose minimal polynomialp over Q is X + 1. Both Q( 2) and Q(ζ8) have degree 4 over 2 4 4 4 Q. Since ζ8 = i, Q( 2; ζ8) is a splitting field over Q of (X − 2)(X + 1) and therefore is Galois over Q. What is its Galois group? We have the following field diagram. p 4 Q( 2; ζ8) ≤4 ≤4 p 4 Q( 2) Q(ζ8) 4 4 Q p 4 Thus [Q( 2; ζ8): Q] is at mostp 16. We will see the degree is not 16: there are some hidden 4 algebraic relations betweenp 2 and ζ8. 4 Any σ 2 Gal(Q( 2; ζ8)=Q) is determined by its values p p a × 4 b 4 (1.2) σ(ζ8) = ζ8 (a 2 (Z=8Z) ) and σ( 2) = i 2 (b 2 Z=4Z): There are 4 choices each for a and b. Taking independent choices of a and b, there are at most 16 automorphisms in thep Galois group. But the choices of a and b can not be made 4 independently because ζ8 and 2 are linked to each other: π p p 2 (1.3) ζ + ζ−1 = e2πi=8 + e−2πi=8 = 2 cos = 2 = 4 2 : 8 8 4 p p 4 This says 2 belongs top both Q(ζ8p) and Q( 2). Here is a field diagram that emphasizes 4 the common subfield Q( 2) in Q( 2) and Q(ζ8). This subfield is the source of (1.3). p 4 Q( 2; ζ8) ≤4 ≤4 p 4 Q( 2) Q(ζ8) 2 2 2 p Q( 2) Q(i) 2 2 Q 4 KEITH CONRAD p p p −1 2 4 Rewriting ζ8 + ζ8 = 2 as ζ8 − 2ζ8p+ 1 = 0, ζ8 has degree at mostp 2 over Q( 2). 4 4 Sincep ζ8 is not real, it isn't inside Q( 2), so it has degree 2 over Q( 2). Therefore 4 [Q( 2; ζ8): Q] = 2 · 4 = 8 and the degrees marked as \≤ 4" in the diagramp both equalp 2. 4 4 Returning to the Galois group, (1.3) tells us thep effect of σ 2 Gal(Q( 2; ζ8)=Q) on 2 4 2 −1 partially determines it on ζ8, and conversely: (σ( 2)) = σ(ζ8) + σ(ζ8) , which in the notation of (1.2) is the same as ζa + ζ−a (1.4) (−1)b = 8 p 8 : 2 b This tells us that if a ≡ 1; 7 mod 8 then (−1) = 1, so b ≡ 0; 2 mod 4,p while if a ≡ 3; 5 mod 8 b 4 then (−1) = −1, so b ≡ 1; 3 mod 4. For example, σ can't both fix 2 (b = 0) and send ζ8 3 to ζ8 (a = 3) because (1.4) would not hold.p 4 The simplest way to understandp Q( 2; ζ8) is to use a different set of generators. Since 2πi=8 πi=4 ζ8 = e = e = (1 + i)= 2, p4 p4 Q( 2; ζ8) = Q( 2; i); and from the second representation we knowp its Galois group over Q is isomorphic to D4 4 with independent choices of wherep to send 2 (to any fourth root of 2) and i (to any 4 square root of −1) rather than 2 and ζ8. A different choice of field generators can make it easier to see what thep Galois group looks like. We also see immediately from the second 4 representation that [Q( 2; ζ8): Q] = 8. A Galois extension is said to have a given group-theoretic property (being abelian, non- abelian, cyclic, etc.) when its Galois group has that property. Example 1.5. Any quadratic extension of Q is an abelian extension since its Galois group has order 2. It is also a cyclic extension. p Example 1.6. The extension Q( 3 2;!)=Q is called non-abelian since its Galois group is isomorphic to S3, which is a non-abelian group. The term \non-abelian" has nothing to do with the field operations, which of course are always commutative. Theorem 1.7. If L=K is a finite abelian extension then every intermediate field is an abelian extension of K.
Recommended publications
  • APPLICATIONS of GALOIS THEORY 1. Finite Fields Let F Be a Finite Field
    CHAPTER IX APPLICATIONS OF GALOIS THEORY 1. Finite Fields Let F be a finite field. It is necessarily of nonzero characteristic p and its prime field is the field with p r elements Fp.SinceFis a vector space over Fp,itmusthaveq=p elements where r =[F :Fp]. More generally, if E ⊇ F are both finite, then E has qd elements where d =[E:F]. As we mentioned earlier, the multiplicative group F ∗ of F is cyclic (because it is a finite subgroup of the multiplicative group of a field), and clearly its order is q − 1. Hence each non-zero element of F is a root of the polynomial Xq−1 − 1. Since 0 is the only root of the polynomial X, it follows that the q elements of F are roots of the polynomial Xq − X = X(Xq−1 − 1). Hence, that polynomial is separable and F consists of the set of its roots. (You can also see that it must be separable by finding its derivative which is −1.) We q may now conclude that the finite field F is the splitting field over Fp of the separable polynomial X − X where q = |F |. In particular, it is unique up to isomorphism. We have proved the first part of the following result. Proposition. Let p be a prime. For each q = pr, there is a unique (up to isomorphism) finite field F with |F | = q. Proof. We have already proved the uniqueness. Suppose q = pr, and consider the polynomial Xq − X ∈ Fp[X]. As mentioned above Df(X)=−1sof(X) cannot have any repeated roots in any extension, i.e.
    [Show full text]
  • THE INTERSECTION of NORM GROUPS(I) by JAMES AX
    THE INTERSECTION OF NORM GROUPS(i) BY JAMES AX 1. Introduction. Let A be a global field (either a finite extension of Q or a field of algebraic functions in one variable over a finite field) or a local field (a local completion of a global field). Let C(A,n) (respectively: A(A, n), JV(A,n) and £(A, n)) be the set of Xe A such that X is the norm of every cyclic (respectively: abelian, normal and arbitrary) extension of A of degree n. We show that (*) C(A, n) = A(A,n) = JV(A,n) = £(A, n) = A" is "almost" true for any global or local field and any natural number n. For example, we prove (*) if A is a number field and %)(n or if A is a function field and n is arbitrary. In the case when (*) is false we are still able to determine C(A, n) precisely. It then turns out that there is a specified X0e A such that C(A,n) = r0/2An u A". Since we always have C(A,n) =>A(A,n) =>N(A,n) r> £(A,n) =>A", there are thus two possibilities for each of the three middle sets. Determining which is true seems to be a delicate question; our results on this problem, which are incomplete, are presented in §5. 2. Preliminaries. We consider an algebraic number field A as a subfield of the field of all complex numbers. If p is a nonarchimedean prime of A then there is a natural injection A -> Ap where Ap denotes the completion of A at p.
    [Show full text]
  • Determining the Galois Group of a Rational Polynomial
    Determining the Galois group of a rational polynomial Alexander Hulpke Department of Mathematics Colorado State University Fort Collins, CO, 80523 [email protected] http://www.math.colostate.edu/˜hulpke JAH 1 The Task Let f Q[x] be an irreducible polynomial of degree n. 2 Then G = Gal(f) = Gal(L; Q) with L the splitting field of f over Q. Problem: Given f, determine G. WLOG: f monic, integer coefficients. JAH 2 Field Automorphisms If we want to represent automorphims explicitly, we have to represent the splitting field L For example as splitting field of a polynomial g Q[x]. 2 The factors of g over L correspond to the elements of G. Note: If deg(f) = n then deg(g) n!. ≤ In practice this degree is too big. JAH 3 Permutation type of the Galois Group Gal(f) permutes the roots α1; : : : ; αn of f: faithfully (L = Spl(f) = Q(α ; α ; : : : ; α ). • 1 2 n transitively ( (x α ) is a factor of f). • Y − i i I 2 This action gives an embedding G S . The field Q(α ) corresponds ≤ n 1 to the subgroup StabG(1). Arrangement of roots corresponds to conjugacy in Sn. We want to determine the Sn-class of G. JAH 4 Assumption We can calculate “everything” about Sn. n is small (n 20) • ≤ Can use table of transitive groups (classified up to degree 30) • We can approximate the roots of f (numerically and p-adically) JAH 5 Reduction at a prime Let p be a prime that does not divide the discriminant of f (i.e.
    [Show full text]
  • The Kronecker-Weber Theorem
    The Kronecker-Weber Theorem Lucas Culler Introduction The Kronecker-Weber theorem is one of the earliest known results in class field theory. It says: Theorem. (Kronecker-Weber-Hilbert) Every abelian extension of the rational numbers Q is con- tained in a cyclotomic extension. Recall that an abelian extension is a finite field extension K/Q such that the galois group Gal(K/Q) th is abelian, and a cyclotomic extension is an extension of the form Q(ζ), where ζ is an n root of unity. This paper consists of two proofs of the Kronecker-Weber theorem. The first is rather involved, but elementary, and uses the theory of higher ramification groups. The second is a simple application of the main results of class field theory, which classifies abelian extension of an arbitrary number field. An Elementary Proof Now we will present an elementary proof of the Kronecker-Weber theoerem, in the spirit of Hilbert’s original proof. The particular strategy used here is given as a series of exercises in Marcus [1]. Minkowski’s Theorem We first prove a classical result due to Minkowski. Theorem. (Minkowski) Any finite extension of Q has nonzero discriminant. In particular, such an extension is ramified at some prime p ∈ Z. Proof. Let K/Q be a finite extension of degree n, and let A = OK be its ring of integers. Consider the embedding: r s A −→ R ⊕ C x 7→ (σ1(x), ..., σr(x), τ1(x), ..., τs(x)) where the σi are the real embeddings of K and the τi are the complex embeddings, with one embedding chosen from each conjugate pair, so that n = r + 2s.
    [Show full text]
  • Infinite Galois Theory
    Infinite Galois Theory Haoran Liu May 1, 2016 1 Introduction For an finite Galois extension E/F, the fundamental theorem of Galois Theory establishes an one-to-one correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F), the Galois group of the extension. With this correspondence, we can examine the the finite field extension by using the well-established group theory. Naturally, we wonder if this correspondence still holds if the Galois extension E/F is infinite. It is very tempting to assume the one-to-one correspondence still exists. Unfortu- nately, there is not necessary a correspondence between the intermediate fields of E/F and the subgroups of Gal(E/F)whenE/F is a infinite Galois extension. It will be illustrated in the following example. Example 1.1. Let F be Q,andE be the splitting field of a set of polynomials in the form of x2 p, where p is a prime number in Z+. Since each automorphism of E that fixes F − is determined by the square root of a prime, thusAut(E/F)isainfinitedimensionalvector space over F2. Since the number of homomorphisms from Aut(E/F)toF2 is uncountable, which means that there are uncountably many subgroups of Aut(E/F)withindex2.while the number of subfields of E that have degree 2 over F is countable, thus there is no bijection between the set of all subfields of E containing F and the set of all subgroups of Gal(E/F). Since a infinite Galois group Gal(E/F)normally have ”too much” subgroups, there is no subfield of E containing F can correspond to most of its subgroups.
    [Show full text]
  • The Kronecker-Weber Theorem
    18.785 Number theory I Fall 2017 Lecture #20 11/15/2017 20 The Kronecker-Weber theorem In the previous lecture we established a relationship between finite groups of Dirichlet characters and subfields of cyclotomic fields. Specifically, we showed that there is a one-to- one-correspondence between finite groups H of primitive Dirichlet characters of conductor dividing m and subfields K of Q(ζm) under which H can be viewed as the character group of the finite abelian group Gal(K=Q) and the Dedekind zeta function of K factors as Y ζK (x) = L(s; χ): χ2H Now suppose we are given an arbitrary finite abelian extension K=Q. Does the character group of Gal(K=Q) correspond to a group of Dirichlet characters, and can we then factor the Dedekind zeta function ζK (s) as a product of Dirichlet L-functions? The answer is yes! This is a consequence of the Kronecker-Weber theorem, which states that every finite abelian extension of Q lies in a cyclotomic field. This theorem was first stated in 1853 by Kronecker [2], who provided a partial proof for extensions of odd degree. Weber [7] published a proof 1886 that was believed to address the remaining cases; in fact Weber's proof contains some gaps (as noted in [5]), but in any case an alternative proof was given a few years later by Hilbert [1]. The proof we present here is adapted from [6, Ch. 14] 20.1 Local and global Kronecker-Weber theorems We now state the (global) Kronecker-Weber theorem.
    [Show full text]
  • A Second Course in Algebraic Number Theory
    A second course in Algebraic Number Theory Vlad Dockchitser Prerequisites: • Galois Theory • Representation Theory Overview: ∗ 1. Number Fields (Review, K; OK ; O ; ClK ; etc) 2. Decomposition of primes (how primes behave in eld extensions and what does Galois's do) 3. L-series (Dirichlet's Theorem on primes in arithmetic progression, Artin L-functions, Cheboterev's density theorem) 1 Number Fields 1.1 Rings of integers Denition 1.1. A number eld is a nite extension of Q Denition 1.2. An algebraic integer α is an algebraic number that satises a monic polynomial with integer coecients Denition 1.3. Let K be a number eld. It's ring of integer OK consists of the elements of K which are algebraic integers Proposition 1.4. 1. OK is a (Noetherian) Ring 2. , i.e., ∼ [K:Q] as an abelian group rkZ OK = [K : Q] OK = Z 3. Each can be written as with and α 2 K α = β=n β 2 OK n 2 Z Example. K OK Q Z ( p p [ a] a ≡ 2; 3 mod 4 ( , square free) Z p Q( a) a 2 Z n f0; 1g a 1+ a Z[ 2 ] a ≡ 1 mod 4 where is a primitive th root of unity Q(ζn) ζn n Z[ζn] Proposition 1.5. 1. OK is the maximal subring of K which is nitely generated as an abelian group 2. O`K is integrally closed - if f 2 OK [x] is monic and f(α) = 0 for some α 2 K, then α 2 OK . Example (Of Factorisation).
    [Show full text]
  • GALOIS THEORY for ARBITRARY FIELD EXTENSIONS Contents 1
    GALOIS THEORY FOR ARBITRARY FIELD EXTENSIONS PETE L. CLARK Contents 1. Introduction 1 1.1. Kaplansky's Galois Connection and Correspondence 1 1.2. Three flavors of Galois extensions 2 1.3. Galois theory for algebraic extensions 3 1.4. Transcendental Extensions 3 2. Galois Connections 4 2.1. The basic formalism 4 2.2. Lattice Properties 5 2.3. Examples 6 2.4. Galois Connections Decorticated (Relations) 8 2.5. Indexed Galois Connections 9 3. Galois Theory of Group Actions 11 3.1. Basic Setup 11 3.2. Normality and Stability 11 3.3. The J -topology and the K-topology 12 4. Return to the Galois Correspondence for Field Extensions 15 4.1. The Artinian Perspective 15 4.2. The Index Calculus 17 4.3. Normality and Stability:::and Normality 18 4.4. Finite Galois Extensions 18 4.5. Algebraic Galois Extensions 19 4.6. The J -topology 22 4.7. The K-topology 22 4.8. When K is algebraically closed 22 5. Three Flavors Revisited 24 5.1. Galois Extensions 24 5.2. Dedekind Extensions 26 5.3. Perfectly Galois Extensions 27 6. Notes 28 References 29 Abstract. 1. Introduction 1.1. Kaplansky's Galois Connection and Correspondence. For an arbitrary field extension K=F , define L = L(K=F ) to be the lattice of 1 2 PETE L. CLARK subextensions L of K=F and H = H(K=F ) to be the lattice of all subgroups H of G = Aut(K=F ). Then we have Φ: L!H;L 7! Aut(K=L) and Ψ: H!F;H 7! KH : For L 2 L, we write c(L) := Ψ(Φ(L)) = KAut(K=L): One immediately verifies: L ⊂ L0 =) c(L) ⊂ c(L0);L ⊂ c(L); c(c(L)) = c(L); these properties assert that L 7! c(L) is a closure operator on the lattice L in the sense of order theory.
    [Show full text]
  • ON R-EXTENSIONS of ALGEBRAIC NUMBER FIELDS Let P Be a Prime
    ON r-EXTENSIONS OF ALGEBRAIC NUMBER FIELDS KENKICHI IWASAWA1 Let p be a prime number. We call a Galois extension L of a field K a T-extension when its Galois group is topologically isomorphic with the additive group of £-adic integers. The purpose of the present paper is to study arithmetic properties of such a T-extension L over a finite algebraic number field K. We consider, namely, the maximal unramified abelian ^-extension M over L and study the structure of the Galois group G(M/L) of the extension M/L. Using the result thus obtained for the group G(M/L)> we then define two invariants l(L/K) and m(L/K)} and show that these invariants can be also de­ termined from a simple formula which gives the exponents of the ^-powers in the class numbers of the intermediate fields of K and L. Thus, giving a relation between the structure of the Galois group of M/L and the class numbers of the subfields of L, our result may be regarded, in a sense, as an analogue, for L, of the well-known theorem in classical class field theory which states that the class number of a finite algebraic number field is equal to the degree of the maximal unramified abelian extension over that field. An outline of the paper is as follows: in §1—§5, we study the struc­ ture of what we call T-finite modules and find, in particular, invari­ ants of such modules which are similar to the invariants of finite abelian groups.
    [Show full text]
  • Pseudo Real Closed Field, Pseudo P-Adically Closed Fields and NTP2
    Pseudo real closed fields, pseudo p-adically closed fields and NTP2 Samaria Montenegro∗ Université Paris Diderot-Paris 7† Abstract The main result of this paper is a positive answer to the Conjecture 5.1 of [15] by A. Chernikov, I. Kaplan and P. Simon: If M is a PRC field, then T h(M) is NTP2 if and only if M is bounded. In the case of PpC fields, we prove that if M is a bounded PpC field, then T h(M) is NTP2. We also generalize this result to obtain that, if M is a bounded PRC or PpC field with exactly n orders or p-adic valuations respectively, then T h(M) is strong of burden n. This also allows us to explicitly compute the burden of types, and to describe forking. Keywords: Model theory, ordered fields, p-adic valuation, real closed fields, p-adically closed fields, PRC, PpC, NIP, NTP2. Mathematics Subject Classification: Primary 03C45, 03C60; Secondary 03C64, 12L12. Contents 1 Introduction 2 2 Preliminaries on pseudo real closed fields 4 2.1 Orderedfields .................................... 5 2.2 Pseudorealclosedfields . .. .. .... 5 2.3 The theory of PRC fields with n orderings ..................... 6 arXiv:1411.7654v2 [math.LO] 27 Sep 2016 3 Bounded pseudo real closed fields 7 3.1 Density theorem for PRC bounded fields . ...... 8 3.1.1 Density theorem for one variable definable sets . ......... 9 3.1.2 Density theorem for several variable definable sets. ........... 12 3.2 Amalgamation theorems for PRC bounded fields . ........ 14 ∗[email protected]; present address: Universidad de los Andes †Partially supported by ValCoMo (ANR-13-BS01-0006) and the Universidad de Costa Rica.
    [Show full text]
  • Galois Theory on the Line in Nonzero Characteristic
    BULLETIN (New Series) OF THE AMERICANMATHEMATICAL SOCIETY Volume 27, Number I, July 1992 GALOIS THEORY ON THE LINE IN NONZERO CHARACTERISTIC SHREERAM S. ABHYANKAR Dedicated to Walter Feit, J-P. Serre, and e-mail 1. What is Galois theory? Originally, the equation Y2 + 1 = 0 had no solution. Then the two solutions i and —i were created. But there is absolutely no way to tell who is / and who is —i.' That is Galois Theory. Thus, Galois Theory tells you how far we cannot distinguish between the roots of an equation. This is codified in the Galois Group. 2. Galois groups More precisely, consider an equation Yn + axY"-x +... + an=0 and let ai , ... , a„ be its roots, which are assumed to be distinct. By definition, the Galois Group G of this equation consists of those permutations of the roots which preserve all relations between them. Equivalently, G is the set of all those permutations a of the symbols {1,2,...,«} such that (t>(aa^, ... , a.a(n)) = 0 for every «-variable polynomial (j>for which (j>(a\, ... , an) — 0. The co- efficients of <f>are supposed to be in a field K which contains the coefficients a\, ... ,an of the given polynomial f = f(Y) = Y" + alY"-l+--- + an. We call G the Galois Group of / over K and denote it by Galy(/, K) or Gal(/, K). This is Galois' original concrete definition. According to the modern abstract definition, the Galois Group of a normal extension L of a field K is defined to be the group of all AT-automorphisms of L and is denoted by Gal(L, K).
    [Show full text]
  • Techniques for the Computation of Galois Groups
    Techniques for the Computation of Galois Groups Alexander Hulpke School of Mathematical and Computational Sciences, The University of St. Andrews, The North Haugh, St. Andrews, Fife KY16 9SS, United Kingdom [email protected] Abstract. This note surveys recent developments in the problem of computing Galois groups. Galois theory stands at the cradle of modern algebra and interacts with many areas of mathematics. The problem of determining Galois groups therefore is of interest not only from the point of view of number theory (for example see the article [39] in this volume), but leads to many questions in other areas of mathematics. An example is its application in computer algebra when simplifying radical expressions [32]. Not surprisingly, this task has been considered in works from number theory, group theory and algebraic geometry. In this note I shall give an overview of methods currently used. While the techniques used for the identification of Galois groups were known already in the last century [26], the involved calculations made it almost imprac- tical to do computations beyond trivial examples. Thus the problem was only taken up again in the last 25 years with the advent of computers. In this note we will restrict ourselves to the case of the base field Q. Most methods generalize to other fields like Q(t), Qp, IFp(t) or number fields. The results presented here are the work of many mathematicians. I tried to give credit by references wherever possible. 1 Introduction We are given an irreducible polynomial f Q[x] of degree n and asked to determine the Galois group of its splitting field2 L = Spl(f).
    [Show full text]