Dictionary of Explosives Has Been and Published, , in the Meantime, Many New Explosives Have V Been Introduced

Total Page:16

File Type:pdf, Size:1020Kb

Dictionary of Explosives Has Been and Published, , in the Meantime, Many New Explosives Have V Been Introduced D I CT I O N A RY O F EXPLOSIVES ARTH UR M AR SHALL F . I . C . F . C . S. CHEM I CAL I NSP ECTOR I N DI AN OR DNANCE DEPARTM ENT PHILADELPHIA ’ P . BLAKI STON S S ON 8: CO . 1 0 1 2 WALNUT STREET I N TR ODUCTION I T is a generation since a dictionary of explosives has been and published, , in the meantime, many new explosives have v been introduced . It is hoped, therefore, that this small olume , giving concise information about these special materials , i may prove useful to those who have to deal w th them . ’ ” Cu ll In ndi and Thomson s Dictionary of Explosives , 1 8 95 e of issued in , there are many entri s the names of inventors and of mixtures which had been proposed but have “ As never been used commercially , nor are likely to be . modern explosives were then in their infancy , it was no doubt wise to insert all the available information whether it appe ared to be important or not ; but now it seems to me better to restrict the scope o f the dictionary so as to keep its size within moderate limits . Practically only explosives with special or proprietary names are therefore dealt with here . For information concerning chemical substances , such - - o as the nitro toluenes and other nitro c mpounds , reference should be made to the text - books on explosives and A a r few words may, however, be s id here about the nit o celluloses . These are made by treating cellulose with a mix ture of nitric and sulphuric acids , and then purifying the product by washing it thoroughly with hot water . The of variety cellulose most used for this purpose is cotton , and f the product obtained rom it is frequently called nitrocotton , of c o three special varieties which are ollodion c tton , pyro collodion and guncotton (q . The only other form of cellulose which is nitrated on a commercial scale is chemical a cellulose obt ined by the treatment of wood or straw . v M1 645 9 3 vi INTRODUCTION Nitrated wood cellulose has long been used fo r the manu f - acture of smokeless powders for shot guns , and during the - War the Germans made powders for rifled fire arms from it . No trouble has been spared to make the dictionary com le t e p and accurate, but there must inevitably be omissions of and errors in it , especially as regards the explosives foreign f countries . The author will be grate ul for any additional information that may be sent him . E d xplosives may be classifie d in various ways , accor ing to of bu of the purpose the classification , t the great majority them fall naturally into two main divisions propellants and high explosives . Propellants explode comparatively slowly , fir - and are used to propel projectiles from e arms . High c explosives are mu h more rapid in their action , and are used b o for ursting and shattering . Propellants are f two sorts , according as they are intended for use in shot -guns or rifled fire - for - arms . Those shot guns burn more rapidly than those for the latter, but both practically always contain a consider i oi able proport on nitrocellulose , gelatinised by means of such - of solvents as acetone or ether alcohol, according as it is high S or low nitration . ome contain also nitroglycerine, and are s then called nitroglycerine powders , wherea those that do not contain this substance are termed nitrocellulose powders . Many powders also contain other ingredients , as may be seen from the compositions given in this dictionary . Of high explosives an impo rtant class is used for charging b A shells and ombs . s a rule, but not necessarily, these are not the same as the explosives use d for mining operations A and other general blasting purposes . nother important of a - w class is that the co l mine explosives , hich are designed to give only a short and comparatively cool flame so as to fi - - diminish the danger of igniting re damp and coal dust . - Nearly half the explosives in this dictionary are . coal mine explosives . The reason for this large number is that no finality has yet been reached as to the best and safest W explosives to use in coal mines . hen more experience has been gained it is probable that the numbe r of these explosives INTRODUCTION vu E an the t d on the market will be reduced . In ngl d Permi te List has re ce ntly b e e n cut down considerably . In Great B ritain these coal -mine explosives have to be e E l submitted to th Inspectors of xp osives , and are subj ected o If to tests f r safety and strength . they pass they are placed ” of s on the list Permitted Explo ives , and the compositions C M are published in the Explosives in oal ines Orders . In these Orders the upper and lower limits of the percentage of int e rme each constituent are given , but in this dictionary diate percentages are given so that the sum for any explosive 1 00 Co M amounts to . In the Explosives in al ines Orders the percentage of such a substance as wood, meal or starch , is given in the dried condition , but here it is given in the air-dry state on the assumption that it then contains about 1 0 per cent . of moisture . In France and B elgium also the compositions of the coal ul mine explosives are published, but in Germany, as a r e, only a list of the constituents is given , and sometimes an upper or lower limit for one or more of the principal constituents . Moreover, it is not stated explicitly whether the explosives are intended for use in coal mines or for general blasting in purposes . In the United States of America , explosives tended for use in coal mines are examined by the B ureau of M the ines , which , however, has no power to prevent use of others because regulations on this matter are made by the i i ind v dual states . If they pass they are placed on the list ” s E of Permis ible xplosives . The compositions are not f published , but the class o composition is stated . f of Until the second hal the nineteenth century, gunpowder was practically the only explosive used on a considerable for C scale, and it was employed all purposes . onsequently of it does not fall into any the classes mentioned, or rather it could be placed in several of them . Another class of explosives that has not yet been men tione d u is that of the primary igniters , of which f l minate of of mercury may be taken as typical . The characteristic these is that they can be exploded or ignited by a spark or moderate INTR ODUCTION n friction , and conseque tly they can be employed to fire other , n less se sitive explosives . There are, however, practically no explosives of this class which possess special or proprietary t names , and consequently they are not deal with in this dictionary . C LASSIF I CATION COAL -M INE EXPLOSIVES Ame rican P e rmissible Explosive s . Aetna Coal Mine Powder . Guardian . B e ntal . 2 . Coal Powder . Hecla No H ra B i uminit de . t e . yg Coal Powder ' K amt e Black Diamond . Lo mit e Cameron Mine Powder . Lo wi i n t e . t . Coali e . Meteor ’ Coal Special . Miners Friend . -it e Collier Powder . Min . M onobe l Cronit e . D o e t - e t nit . Ni ro Low Flame R e d . Du Pont Permissible . H E ureka . Trojan Coal Powder . t For Pitt Mine Powder . - it e Fuel . i Giant Coal M ne Powder . Austrian S P B e lgian Explosifs . G. Alsilit e Gri ou . s tit e . de S fire t é In éli e Antigel . g t . B a l ni e e t e . M ine rit e . Colinit e a nti ri o u g s ute se . D i v e ns t e . Pul e rl t e . an i i a n i i t r sout e use . t r soute use Dynamite g Sabulite g . E s Se curO hore Favier xplo ives . p . Fla mmivore Wallonit e . a n i ri o Yon ki t ut c t e . Forcite g s e use . F ra ct ori e t . (There were also several s Gri outine II . plosives made in Germany. ) x CLASSIFICATION B ritish. * b i * l A bc t e H r u it . e c e * * e t . Ab li e . Kent Powder * Ajax Powder . * Albioni *K o a x t e . * * Amasit e K oi Su r . ax ( pe * "‘ a K narkite Ammon l . y *K i n t e . Ammonite . y * * Amvis . Melling Powder . * * Anchorite . Mersey Powder . * * A hosit e M init e . p . * t M onarkit e . Arki e . * M onobe l Barking Powder . * M onobe l . Bellite . Powder * Nationalit e Bobbinite . * B rit onit e . Negro Powder . * * u Ne onal . B ll Dog . * mb t - n i a rit De s t e . C e . Ni ro * * Carbonite . Nobel Ammonia Powder . * l * rma Ce t it e . No nit e . * * Cliflit Oa klit e . e . * Cliflit e O it e (Super d . * * Cl dit e . y . Permon Powder * * P e rmonit e Cornish Powder .
Recommended publications
  • Phosphate-Based Treatments for Conservation of Stone
    RILEM Technical Letters (2017) 2: 14‐19 DOI: http://dx.doi.org/10.21809/rilemtechlett.2017.34 Phosphate‐based treatments for conservation of stone Enrico Sassoni a* a Department of Civil, Chemical, Environmental and Materials Engineering, University of Bologna, Via Terracini 28, 40131, Bologna, Italy Received: 30 May 2017 / Accepted: 09 August 2017 / Published online: 9 October 2017 © The Author(s) 2017. This article is published with open access and licensed under a Creative Commons Attribution 4.0 International License. Abstract To overcome the limitations of currently available protectives and consolidants for carbonate stones (such as marble and limestone), in 2011 the use of calcium phosphate was proposed. The idea is forming calcium phosphates (ideally hydroxyapatite) as the reaction product between the substrate and an aqueous solution of a phosphate salt that the stone is treated with. In this paper, the studies aimed at identifying the best treatment conditions (in terms of nature and concentration of the phosphate precursor, solution pH, reaction time, ionic and organic additions) are first briefly summarized. Then, the efficacy of the phosphate treatment in protecting marble from dissolution in rain and restoring cohesion of weathered marble and limestone is discussed. Some recent studies on the use of the phosphate treatment on alternative substrates and some future steps for research on the topic are finally outlined. Keywords: Cultural heritage; Marble; Hydroxyapatite; Protection; Consolidation 1 Introduction improve mechanical properties, by providing a binding action between the stone grains. Organic products are A great part of cultural heritage objects (e.g. monuments, effective in improving mechanical properties, but again architectural decorations and statues) is made of carbonate they lack compatibility and durability.
    [Show full text]
  • ICOHTEC, TICCIH & Worklab Joint Conference in Tampere, Finland
    ABSTRACTS ICOHTEC, TICCIH & Worklab joint conference in Tampere, Finland 10th–15th of August 2010 WEDNESDAY TRANSFORMATION OF INDUSTRIAL ENVIRONMENTS: Session W1A PROCESSES, TOOLS, RE-THINKING I Room A1 8:30–10:00 Chair: Helmuth ALBRECHT, Institute for the History of Science and Technology, Technical University Freiberg, Germany Industrial Cultural Landscape Montane Region Ore Mountain on the Way to UNESCO – Public Participation and Community Involvement Heidi PINKEPANK INIK GmbH, Germany Based on the hypothesis that heritage protection (in particluar World Heritage) creating economical and development barriers is due to restricted communica- tion with and participation of the local communities, this paper discusses the im- portance of Public Acceptance, Participation and Community Involvement using the example of the Industrial Cultural Landscape Montane Region Ore Mountain (Erzgebirge/ Krusnohori). The Montane Region is of particular interest since it is a Cultural Landscape, a serial and transnational property and therefore features a variety of aspects of participation and community involvement including lan- guage and mentality barriers. The central challenge of dealing with such a living cultural landscape, however, lies in responding to development dynamics to allow socio-economic changes and growth on one hand, while simultaneously respect- ing the traditional cultural landscape and its surroundings. In order to achieve this, goals have to be defined and strategies for implementation developed. In the context of this Paper, important insights regarding the variety of stake- holders were gained through face-to-face interviews of representatives of cer- tain stakeholder groups (e.g. local tourism, local businesses, local people, church representatives, museums, culture representatives) in the Ore Mountain (Ger- many and Czech Republic).
    [Show full text]
  • NON-HAZARDOUS CHEMICALS May Be Disposed of Via Sanitary Sewer Or Solid Waste
    NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste (+)-A-TOCOPHEROL ACID SUCCINATE (+,-)-VERAPAMIL, HYDROCHLORIDE 1-AMINOANTHRAQUINONE 1-AMINO-1-CYCLOHEXANECARBOXYLIC ACID 1-BROMOOCTADECANE 1-CARBOXYNAPHTHALENE 1-DECENE 1-HYDROXYANTHRAQUINONE 1-METHYL-4-PHENYL-1,2,5,6-TETRAHYDROPYRIDINE HYDROCHLORIDE 1-NONENE 1-TETRADECENE 1-THIO-B-D-GLUCOSE 1-TRIDECENE 1-UNDECENE 2-ACETAMIDO-1-AZIDO-1,2-DIDEOXY-B-D-GLYCOPYRANOSE 2-ACETAMIDOACRYLIC ACID 2-AMINO-4-CHLOROBENZOTHIAZOLE 2-AMINO-2-(HYDROXY METHYL)-1,3-PROPONEDIOL 2-AMINOBENZOTHIAZOLE 2-AMINOIMIDAZOLE 2-AMINO-5-METHYLBENZENESULFONIC ACID 2-AMINOPURINE 2-ANILINOETHANOL 2-BUTENE-1,4-DIOL 2-CHLOROBENZYLALCOHOL 2-DEOXYCYTIDINE 5-MONOPHOSPHATE 2-DEOXY-D-GLUCOSE 2-DEOXY-D-RIBOSE 2'-DEOXYURIDINE 2'-DEOXYURIDINE 5'-MONOPHOSPHATE 2-HYDROETHYL ACETATE 2-HYDROXY-4-(METHYLTHIO)BUTYRIC ACID 2-METHYLFLUORENE 2-METHYL-2-THIOPSEUDOUREA SULFATE 2-MORPHOLINOETHANESULFONIC ACID 2-NAPHTHOIC ACID 2-OXYGLUTARIC ACID 2-PHENYLPROPIONIC ACID 2-PYRIDINEALDOXIME METHIODIDE 2-STEP CHEMISTRY STEP 1 PART D 2-STEP CHEMISTRY STEP 2 PART A 2-THIOLHISTIDINE 2-THIOPHENECARBOXYLIC ACID 2-THIOPHENECARBOXYLIC HYDRAZIDE 3-ACETYLINDOLE 3-AMINO-1,2,4-TRIAZINE 3-AMINO-L-TYROSINE DIHYDROCHLORIDE MONOHYDRATE 3-CARBETHOXY-2-PIPERIDONE 3-CHLOROCYCLOBUTANONE SOLUTION 3-CHLORO-2-NITROBENZOIC ACID 3-(DIETHYLAMINO)-7-[[P-(DIMETHYLAMINO)PHENYL]AZO]-5-PHENAZINIUM CHLORIDE 3-HYDROXYTROSINE 1 9/26/2005 NON-HAZARDOUS CHEMICALS May Be Disposed Of Via Sanitary Sewer or Solid Waste 3-HYDROXYTYRAMINE HYDROCHLORIDE 3-METHYL-1-PHENYL-2-PYRAZOLIN-5-ONE
    [Show full text]
  • Pp-03-25-New Dots.Qxd 10/23/02 2:38 PM Page 379
    pp-03-25-new dots.qxd 10/23/02 2:38 PM Page 379 HYDROGEN SULFIDE 379 HYDROGEN SULFIDE [7783-06-4] Formula: H2S; MW 34.08 Synonyms: sulfur hydride; sulfureted hydrogen Occurrence and Uses Hydrogen sulfide occurs in natural gas. It also is found in many sewer gases. It is a by-product of many industrial processes. Trace amounts of dis- solved H2S are found in wastewaters in equilibrium with dissolved sulfides and hydrosulfides. It also is found in volcanic eruptions, hot springs and in troposphere. The average concentration of H2S in the air is about 0.05 ppb. The most important applications of hydrogen sulfide involve the production of sodium sulfide and other inorganic sulfides. Hydrogen sulfide obtained as a by-product often is converted into sulfuric acid. It also is used in organic syn- thesis to make thiols or mercaptans. Other applications are in metallurgy for extracting nickel, copper, and cobalt as sulfides from their minerals; and in classical qualitative analytical methods for precipitation of many metals (see Reactions). It also is used in producing heavy water for nuclear reactors. Physical Properties Colorless gas; characteristic odor of rotten eggs; odor threshold 1ppm; sweetish taste; fumes in air; flammable gas, burns with a pale blue flame; refractive index at 589.3nm, 1.000644 at 0°C and 1 atm; density 1.539 g/L at 0°C; critical temperature 100.4°C; critical pressure 88.9 atm; liquefies at –60.7°C; solidifies at –85.5°C; velocity of sound 289 m/sec in H2S gas; slightly soluble in water (0.4% at 20°C); pH of a saturated aqueous solution 4.5; slight- ly acidic; diffusivity in water at 16°C, 1.77x105 cm2/sec; soluble in carbon disulfide, methanol, acetone; very soluble in N-methylpyrrolidinone and alka- nolamines (salt formation occurs: salt dissociates on heating); liquid H2S dis- solves sulfur and SO2.
    [Show full text]
  • Durham E-Theses
    Durham E-Theses Battleships and Dividends: The Rise of Private Armaments Firms in Great Britain and Italy, c. 1860-1914 MARCHISIO, GIULIO How to cite: MARCHISIO, GIULIO (2012) Battleships and Dividends: The Rise of Private Armaments Firms in Great Britain and Italy, c. 1860-1914, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/7323/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Battleships and Dividends: The Rise of Private Armaments Firms in Great Britain and Italy, c. 1860-1914 Giulio Marchisio This thesis analyses the rise of private armaments firms in Great Britain and in Italy from mid-19th century to the outbreak of the First World War, with a focus on naval armaments and military shipbuilding. During this period, the armaments industry underwent a radical transformation, moving from being based on public-owned arsenals and yards to being based on private firms – the system of military procurement prevalent today.
    [Show full text]
  • Gasket Chemical Services Guide
    Gasket Chemical Services Guide Revision: GSG-100 6490 Rev.(AA) • The information contained herein is general in nature and recommendations are valid only for Victaulic compounds. • Gasket compatibility is dependent upon a number of factors. Suitability for a particular application must be determined by a competent individual familiar with system-specific conditions. • Victaulic offers no warranties, expressed or implied, of a product in any application. Contact your Victaulic sales representative to ensure the best gasket is selected for a particular service. Failure to follow these instructions could cause system failure, resulting in serious personal injury and property damage. Rating Code Key 1 Most Applications 2 Limited Applications 3 Restricted Applications (Nitrile) (EPDM) Grade E (Silicone) GRADE L GRADE T GRADE A GRADE V GRADE O GRADE M (Neoprene) GRADE M2 --- Insufficient Data (White Nitrile) GRADE CHP-2 (Epichlorohydrin) (Fluoroelastomer) (Fluoroelastomer) (Halogenated Butyl) (Hydrogenated Nitrile) Chemical GRADE ST / H Abietic Acid --- --- --- --- --- --- --- --- --- --- Acetaldehyde 2 3 3 3 3 --- --- 2 --- 3 Acetamide 1 1 1 1 2 --- --- 2 --- 3 Acetanilide 1 3 3 3 1 --- --- 2 --- 3 Acetic Acid, 30% 1 2 2 2 1 --- 2 1 2 3 Acetic Acid, 5% 1 2 2 2 1 --- 2 1 1 3 Acetic Acid, Glacial 1 3 3 3 3 --- 3 2 3 3 Acetic Acid, Hot, High Pressure 3 3 3 3 3 --- 3 3 3 3 Acetic Anhydride 2 3 3 3 2 --- 3 3 --- 3 Acetoacetic Acid 1 3 3 3 1 --- --- 2 --- 3 Acetone 1 3 3 3 3 --- 3 3 3 3 Acetone Cyanohydrin 1 3 3 3 1 --- --- 2 --- 3 Acetonitrile 1 3 3 3 1 --- --- --- --- 3 Acetophenetidine 3 2 2 2 3 --- --- --- --- 1 Acetophenone 1 3 3 3 3 --- 3 3 --- 3 Acetotoluidide 3 2 2 2 3 --- --- --- --- 1 Acetyl Acetone 1 3 3 3 3 --- 3 3 --- 3 The data and recommendations presented are based upon the best information available resulting from a combination of Victaulic's field experience, laboratory testing and recommendations supplied by prime producers of basic copolymer materials.
    [Show full text]
  • University of Huddersfield Repository
    University of Huddersfield Repository Wood, Christopher Were the developments in 19th century small arms due to new concepts by the inventors and innovators in the fields, or were they in fact existing concepts made possible by the advances of the industrial revolution? Original Citation Wood, Christopher (2013) Were the developments in 19th century small arms due to new concepts by the inventors and innovators in the fields, or were they in fact existing concepts made possible by the advances of the industrial revolution? Masters thesis, University of Huddersfield. This version is available at http://eprints.hud.ac.uk/id/eprint/19501/ The University Repository is a digital collection of the research output of the University, available on Open Access. Copyright and Moral Rights for the items on this site are retained by the individual author and/or other copyright owners. Users may access full items free of charge; copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational or not-for-profit purposes without prior permission or charge, provided: • The authors, title and full bibliographic details is credited in any copy; • A hyperlink and/or URL is included for the original metadata page; and • The content is not changed in any way. For more information, including our policy and submission procedure, please contact the Repository Team at: [email protected]. http://eprints.hud.ac.uk/ Were the developments in 19th century small
    [Show full text]
  • Chemistry Inventory; Fall
    CHEMISTRY FALL 2005 MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Aluminum 9 1.5 kg Aluminum chloride, anhydrous, 98.5% 9 0.2 kg Aluminum chloride · 6H2O 9 0.5 kg Aluminum hydroxide 9 0.5 kg Aluminum nitrate 9 0.5 kg Aluminum sulfate 9 0.5 kg Ammonia, concentrated 9 4.0 L Ammonium acetate 9 0.2 kg Ammonium chloride 9 Ammonium dihydrogen phosphate (monobasic) 9 0.4 kg J.T. Baker Ammonium hydrogen phosphate (dibasic) No 0.5 kg Ammonium nitrate 9 2.5 kg Ammonium oxalate 9 0.7 kg Ammonium peroxydisulfate 9 0.5 kg Ammonium sulfate 9 0.2 kg Antimony 9 0.4 kg Barium chloride, anhydrous 9 2.5 kg Barium chloride · 2H2O 9 2.5 kg Barium nitrate 9 0.8 kg Bismuth 9 2.0 kg Boric Acid 9 0.4 kg Brass 9 Bromine 9 2.5 kg Cadmium 9 0.1 kg Cadmium nitrate 9 0.3 kg Calcium acetate · xH2O 9 0.5 kg Calcium carbide 9 1.0 kg Calcium carbonate 9 2.2 kg Calcium chloride 9 1.0 kg Calcium hydroxide 9 0.3 kg Calcium nitrate · 4H2O 9 1.0 kg Calcium oxide 9 0.3 kg Calcium sulfate · 2H2O 9 1.0 kg Carbon 9 0.1 kg Ceric ammonium nitrate 9 0.5 kg Cesium chloride 9 0.01 kg Chromium 9 0.01 kg Chromium chloride 9 0.5 kg Chromium nitrate 9 0.5 kg Cobalt 9 0.025 kg Cobalt chloride 9 0.7 kg Cobalt nitrate 9 0.6 kg Copper (assorted) 9 4.0 kg Copper acetate 9 0.05 kg Copper chloride 9 0.1 kg Copper nitrate 9 3.5 kg Copper oxide 9 0.4 kg Cupric sulfate, anhydrous 9 0.5 kg Cupric sulfate · 5H2O 9 2.75 kg EDTA 9 0.6 kg Iodine 9 2.0 kg Iron (assorted) 9 5.0 kg MSDS Mfg.'s Name Chemical Name Quantity Stored Storage Conditions (on file = 9) Ferric ammonium
    [Show full text]
  • FLUID COMPATIBILITY CHART for Metal Threaded Fittings Sealed with Loctite¨ Sealants LIQUIDS, SOLUTIONS & SUSPENSIONS
    FLUID COMPATIBILITY CHART for metal threaded fittings sealed with Loctite® Sealants LIQUIDS, SOLUTIONS & SUSPENSIONS LEGEND: Bagasse Fibers.......................... Chlorobenzene Dry ................... Ferrous Chloride ...................... Ion Exclusion Glycol ................. Nickel Chloride.......................... All Loctite® Anaerobic Sealants are Barium Acetate ........................ Chloroform Dry......................... Ferrous Oxalate......................... Irish Moss Slurry...................... Nickel Cyanide ......................... Compatible Including #242®, 243, Barium Carbonate..................... Chloroformate Methyl............... Ferrous Sulfate10%.................. Iron Ore Taconite ..................... Nickel Fluoborate ..................... 542, 545, 565, 567, 569, 571, 572, Barium Chloride........................ Chlorosulfonic Acid .................. Ferrous Sulfate (Sat)................. Iron Oxide ................................ Nickel Ore Fines ....................... 577, 580, 592 Barium Hydroxide..................... Chrome Acid Cleaning .............. Fertilizer Sol ............................. Isobutyl Alcohol ....................... Nickel Plating Bright ................. † Use Loctite® #270, 271™, 277, 554 Barium Sulfate.......................... Chrome Liquor.......................... Flotation Concentrates.............. Isobutyraldehyde ..................... Nickel Sulfate ........................... Not Recommended Battery Acid .............................. Chrome Plating
    [Show full text]
  • Ammonium Phosphate on Gypsum
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by AMS Acta - Alm@DL - Università di Bologna HMC 2016 4 th Historic Mortars Conference Preliminary study on the use of ammonium phosphate for the conservation of marble-imitating gypsum-stuccoes Enrico Sassoni 1, Gabriela Graziani 2, George W. Scherer 3 and Elisa -ranzoni 4 0Tmh dqrhsxneAnknfm+)skx+ [email protected] 1Tmh dqrhsxneAnknfm+)skx+ faqhdk-fqyhmh1.tmhan-hs 2 OqhmbdsnmTmh dqrhsx+MI+TR@+ rbgdqdq.oqhmbdsnm-dct 0 Tmh dqrhsxneAnknfm+)skx+ dkhr-eqmynmh.tmhan-hs Abstract6 In this study, a novel method for consolidation and im rovement of resistance to water of gy sum-stuccoes was reliminarily investigated. The idea is treating gy sum with an aqueous solution of diammonium hydrogen hos hate (DAP, (.H 4)2HPO 4) to form hydroxya atite (HAP, Ca 10 (PO 4)6(OH) 2), which has much lower solubility than gy sum. Tests carried out on gy sum aste sam les, manufactured to resemble historic stuccoes, showed that, after treatment with the DAP solution, a significant im rovement in mechanical ro erties was achieved and brushite (CaHPO 4ì2H 2O) was formed (alongside some other by- roducts, that can be removed by an additional oultice treatment). Even if brushite is more soluble than HAP, still its formation is ex ected to be beneficial for stuccoes conservation, as brushite is significantly less soluble than gy sum. Introduction Since antiquity, gy sum-based stuccoes have been frequently used to imitate recious white or colored marbles, when the use of real marbles was not ossible, because trans ort from faraway quarries was too costly a1,2b.
    [Show full text]
  • Introduction to Propellants
    Propellants are those explosives that are used to propel projectiles (hence the name) from Guns, Howitzers, Mortars, Pistols, machine guns and anti-submarine weapons, to eject bombs from aircraft, cut cables in emergencies, drive nails into concrete and a thousand other applications. They operate ejector seats on jet aircraft and they also start jet engines in some systems. They are used to drive guided and unguided missiles through the air, and they will be found in two forms: Solid Liquid Solid propellants are by far the most common although much work is being done on the application of liquid propellants to Artillery cartridges and Small Arms Ammunition. If you compare the firing of a .22 cartridge and the launch of a Space Shuttle you will have some idea of the awesome power and diversity of propellants when you realize that the same material is driving both of them, a solid propellant. Liquid propellants are the rarer of the two. Perhaps the most immediate historical example that will spring to mind is the WWII launch of a German V2 liquid fuelled rocket. Who can forget the striking spectacle of the V2 that rises slightly before falling back to the launch pad to explode in a giant ball of fire? This is liquid propellant at work. (Albeit not very well) Propellants are those substances which, because of their regularity of burning and their relatively low pressures are suitable to propel missiles from gun, howitzer and mortar tubes. They are required to possess conflicting characteristics not all of which can be satisfied in the one variety, as is usual compromise is the name of the game.
    [Show full text]
  • Dictionary of Explosives
    DICTIONARY OF EXPLOSIVES BY ARTHUR MARSHALL A .C .G j., F.I.C., F.C.S. CHEMICAL INSPECTOR INDIAN ORDNANCE DEPARTMENT PHILADELPHIA P. BLAKISTON’S SON & CO. 1012 WALNUT STREET 1920 Printed in Great Britain INTRODUCTION It is a generation since a dictionary of explosives has been published, and, in the meantime, many new explosives have been introduced. It is hoped, therefore, that this small volume, giving concise information about these special materials, may prove useful to those who have to deal with them. In Cundill and Thomson’s “ Dictionary of Explosives,” issued in 1895, there arc many entries of the names of inventors and of mixtures which had been proposed but have never been used commercially, nor are likely to be. As modem explosives were then in their infancy, it was no doubt wise to insert all the available information whether it appeared to be important or not; but now it seems to me better to restrict the scope of the dictionary so as to keep its size within moderate limits. Practically only explosives with special or proprietary names are therefore dealt with here. For information concerning chemical substances, such as the nitro-toluenes and other nitro-compounds, reference should be made to the text-books on explosives and chemistry. A few words may, however, be said here about the nitro- celluloses. These are made by treating cellulose with a mix­ ture of nitric and sulphuric acids, and then purifying the product by washing it thoroughly with hot water. The variety of cellulose most used for this purpose is cotton, and the product obtained from it is frequently called nitrocotton, three special varieties of which are collodion cotton, pyro- collodion and guncotton (q.
    [Show full text]