Plate Tectonic Framework and Gps- Derived Strain-Rate Field Within the Boundary Zones of the Eurasian and African Plates
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Glacial Rebound and Plate Spreading: Results from the First Countrywide GPS Observations in Iceland
Geophys. J. Int. (2009) 177, 691–716 doi: 10.1111/j.1365-246X.2008.04059.x Glacial rebound and plate spreading: results from the first countrywide GPS observations in Iceland ∗ T. Arnad´ ottir,´ 1 B. Lund,2 W. Jiang,1 H. Geirsson,3 H. Bjornsson,¨ 4 P. Einarsson4 and T. Sigurdsson5 1Nordic Volcanological Center, Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland. E-mail: [email protected] 2Department of Earth Sciences, Uppsala University, Villavagen¨ 16, 752 36 Uppsala, Sweden 3Physics Department, Icelandic Meteorological Office, Reykjav´ık, Iceland 4Institute of Earth Sciences, University of Iceland, IS-101 Reykjav´ık, Iceland 5National Land Survey of Iceland, Akranes, Iceland Downloaded from https://academic.oup.com/gji/article/177/2/691/2023257 by guest on 30 September 2021 Accepted 2008 December 10. Received 2008 December 5; in original form 2008 June 12 SUMMARY Iceland is one of the few places on Earth where a divergent plate boundary can be observed on land. Direct observations of crustal deformation for the whole country are available for the first time from nationwide Global Positioning System (GPS) campaigns in 1993 and 2004. The plate spreading across the island is imaged by the horizontal velocity field and high uplift rates (≥10 mm yr−1) are observed over a large part of central and southeastern Iceland. Several earthquakes, volcanic intrusions and eruptions occurred during the time spanned by the measurements, causing local disturbances of the deformation field. After correcting for the largest earthquakes during the observation period, we calculate the strain rate field and find that the main feature of the field is the extension across the rift zones, subparallel to the direction of plate motion. -
Iceland Is Cool: an Origin for the Iceland Volcanic Province in the Remelting of Subducted Iapetus Slabs at Normal Mantle Temperatures
Iceland is cool: An origin for the Iceland volcanic province in the remelting of subducted Iapetus slabs at normal mantle temperatures G. R. Foulger§1 & Don L. Anderson¶ §Department of Geological Sciences, University of Durham, Science Laboratories, South Rd., Durham, DH1 3LE, U.K. ¶California Institute of Technology, Seismological Laboratory, MC 252-21, Pasadena, CA 91125, U. S. A. Abstract The time-progressive volcanic track, high temperatures, and lower-mantle seismic anomaly predicted by the plume hypothesis are not observed in the Iceland region. A model that fits the observations better attributes the enhanced magmatism there to the extraction of melt from a region of upper mantle that is at relatively normal temperature but more fertile than average. The source of this fertility is subducted Iapetus oceanic crust trapped in the Caledonian suture where it is crossed by the mid-Atlantic ridge. The extraction of enhanced volumes of melt at this locality on the spreading ridge has built a zone of unusually thick crust that traverses the whole north Atlantic. Trace amounts of partial melt throughout the upper mantle are a consequence of the more fusible petrology and can explain the seismic anomaly beneath Iceland and the north Atlantic without the need to appeal to very high temperatures. The Iceland region has persistently been characterised by complex jigsaw tectonics involving migrating spreading ridges, microplates, oblique spreading and local variations in the spreading direction. This may result from residual structural complexities in the region, inherited from the Caledonian suture, coupled with the influence of the very thick crust that must rift in order to accommodate spreading-ridge extension. -
Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions. -
Shape of the Subducted Rivera and Cocos Plates in Southern Mexico
JOURNALOF GEOPHYSICAL RESEARCH, VOL. 100, NO. B7, PAGES 12,357-12,373, JULY 10, 1995 Shapeof the subductedRivera and Cocosplates in southern Mexico: Seismic and tectonicimplications Mario Pardo and Germdo Sufirez Insfitutode Geoffsica,Universidad Nacional Aut6noma de M6xico Abstract.The geometry of thesubducted Rivera and Cocos plates beneath the North American platein southernMexico was determined based on the accurately located hypocenters oflocal and te!eseismicearthquakes. The hypocenters ofthe teleseisms were relocated, and the focal depths of 21 eventswere constrainedusing a bodywave inversion scheme. The suductionin southern Mexicomay be approximated asa subhorizontalslabbounded atthe edges by the steep subduction geometryof theCocos plate beneath the Caribbean plate to the east and of theRivera plate beneath NorthAmerica to thewest. The dip of theinterplate contact geometry is constantto a depthof 30 kin,and lateral changes in thedip of thesubducted plate are only observed once it isdecoupled fromthe overriding plate. On thebasis of theseismicity, the focal mechanisms, and the geometry ofthe downgoing slab, southern Mexico may be segmented into four regions ß(1) theJalisco regionto thewest, where the Rivera plate subducts at a steepangle that resembles the geometry of theCocos plate beneath the Caribbean plate in CentralAmerica; (2) theMichoacan region, where thedip angleof theCocos plate decreases gradually toward the southeast, (3) theGuerrero-Oaxac.a region,bounded approximately by theonshore projection of theOrozco and O'Gorman -
Plate Tectonics Review from Valerie Nulisch Some Questions (C) 2017 by TEKS Resource System
Plate Tectonics Review from Valerie Nulisch Some questions (c) 2017 by TEKS Resource System. Some questions (c) 2017 by Region 10 Educational Service Center. Some questions (c) 2017 by Progress Testing. Page 2 GO ON A student wanted to make a model of the Earth. The student decided to cut a giant Styrofoam ball in half and paint the layers on it to show their thickness. 1 Which model below best represents the layers of the Earth? A B C D Page 3 GO ON 2 A student is building a model of the layers of the Earth. Which material would best represent the crust? F Grouping of magnetic balls G Styrofoam packing pellets H Bag of shredded paper J Thin layer of graham crackers 3 Your teacher has asked you to make a model of the interior of the Earth. In your model, how do the thicknesses of the lithosphere and crust compare? A The lithosphere is thinner than the crust. B The lithosphere is exactly the same thickness as the crust. C The lithosphere is thicker than the crust. D The lithosphere is thicker than the oceanic crust, but thinner than the continental crust. 4 Sequence the layers of the Earth in order from the exterior surface to the interior center. F Lithosphere, mantle, inner core, outer core, crust, asthenosphere G Inner core, outer core, mantle, asthenosphere, lithosphere, crust H Crust, mantle, outer core, inner core, asthenosphere, lithosphere J Crust, lithosphere, asthenosphere, mantle, outer core, inner core Page 4 GO ON 5 The tectonic plate labeled A in the diagram is the A Eurasian Plate B Indo-Australian Plate C Pacific Plate D African Plate Page 5 GO ON 6 The tectonic plate labeled B in the diagram is the — F Eurasian Plate G Indo-Australian Plate H Pacific Plate J North American Plate Page 6 GO ON Directions: The map below shows Earth's tectonic plates; six of them are numbered. -
A New Crustal Model of the Anatolia–Aegean
A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau Hayrullah Karabulut, Anne Paul, Ali Değer Özbakır, Tuğçe Ergün, Selver Şentürk To cite this version: Hayrullah Karabulut, Anne Paul, Ali Değer Özbakır, Tuğçe Ergün, Selver Şentürk. A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau. Geophysical Journal International, Oxford University Press (OUP), 2019, 218 (1), pp.57-73. 10.1093/gji/ggz147. hal-02156625 HAL Id: hal-02156625 https://hal.archives-ouvertes.fr/hal-02156625 Submitted on 14 Jun 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Geophys. J. Int. (2019) 218, 57–73 doi: 10.1093/gji/ggz147 Advance Access publication 2019 March 27 GJI Geodynamics and tectonics A new crustal model of the Anatolia–Aegean domain: evidence for the dominant role of isostasy in the support of the Anatolian plateau Hayrullah Karabulut,1 Anne Paul,2 Ali Deger˘ Ozbakır,¨ 1 Tugc˘ ¸e Ergun¨ 1 and Selver S¸enturk¨ 3 1Bogazic˘ ¸i University, Kandilli Observatory and Earthquake Research Institute, Department of Geophysics, 34685 Istanbul, Turkey. -
Morphology of a Pre-Collisional, Salt-Bearing, Accretionary Complex: the Mediterranean Ridge (Eastern Mediterranean)
Marine Geophysical Researches (2006) 27: 61–75 Ó Springer 2006 DOI 10.1007/s11001-005-5026-5 Morphology of a pre-collisional, salt-bearing, accretionary complex: The Mediterranean Ridge (Eastern Mediterranean) C. Huguen1,2,*, N. Chamot-Rooke3, B. Loubrieu4 & J. Mascle1 1UMR 6526 Ge´osciences-Azur, Observatoire Oce´anologique de Villefranche-sur-Mer, BP 4806235, Villefranche-sur-Mer Cedex, France 2LEGEM, Universite´ de Perpignan, 52 Avenue de Villeneuve, 66860, Perpignan Cedex, France 3Laboratoire de Ge´ologie, CNRS-UMR 8538, Ecole Normale Supe´rieure, 24 rue Lhomond, 75231, Paris Cedex 05, France 4IFREMER, DRO/GM, BP 7029270, Plouzane, France; *Author for correspondence (Tel.: +33-4-68662049; Fax: +33-4-68661747; E-mail: [email protected]) Received 13 December 2004; accepted 10 November 2005 Key words: Eastern Mediterranean, multibeam data, Mediterranean Ridge, subduction Abstract The Eastern Mediterranean Sea is a remnant of a deep Mesozoic oceanic basin, now almost totally consumed as a result of long-term plate convergence between Eurasia and Africa. The present-day surface morphology of the Eastern Mediterranean relates both to the early history of formation of the deep basins and the recent geodynamic interactions between interfering microplates. Among the most conspicuous morphologic features of the basin is an arc-shape, elongated and wide, bathymetric swell bisecting the entire basin from the Ionian to Levantine areas, known as the Mediterranean Ridge. During the last decade this tectono-sedimentary accretionary prism, which results from the Hellenic subduction, has been intensively surveyed by swath mapping, multichannel seismic profiling and deep dives. We present here, and briefly discuss, the main morphological characteristics of this feature as derived from swath bathymetric data that considerably help to better assess the lateral and north–south morphostructural variability of the Mediterranean Ridge. -
Azores and Iceland
13th World Conference on Earthquake Engineering Vancouver, B.C., Canada August 1-6, 2004 Paper No. 2369 A COMPARATIVE STUDY ON STRONG GROUND MOTION IN TWO VOLCANIC ENVIRONMENTS: AZORES AND ICELAND Carlos S. OLIVEIRA1, Ragnar SIGBJÖRNSSON2, Simon ÓLAFSSON3 SUMMARY The objective of this paper is to present the main results of a comparative study of strong ground motion on the Azores and Iceland. These islands are a super-structural part of the Mid Atlantic Ridge, which marks the boundary between the North-American Plate and the Eurasian Plate and creates a north-south oriented belt of seismic and volcanic activity. The tectonic environments are described and compared emphasising the similarities in the geological structure, including surface geology and its effects on strong ground motion. Furthermore, the seismicity of the Azores and Iceland is compared based on earthquake catalogues using statistical analysis. The strong-motion networks on the islands are described along with the strong-motion data used in the subsequent analysis. The strong-motion data are compared using statistical analysis. The main emphasis is put on attenuation of strong-motion data, characterised by root mean square acceleration and peak ground acceleration. The attenuation is also compared to some of the common attenuation relationships, used by the engineering community in Europe and America. The main findings are that there are significant similarities between the tectonic environments of the Azores and Iceland. Furthermore, the similarities found in seismicity are statistically significant. The attenuation is characterised by rapid decay with increasing distance and high acceleration in the near source area. It is found that the same ground motion estimation models can be applied on the Azores and in Iceland. -
Plate Tectonics Passport
What is plate tectonics? The Earth is made up of four layers: inner core, outer core, mantle and crust (the outermost layer where we are!). The Earth’s crust is made up of oceanic crust and continental crust. The crust and uppermost part of the mantle are broken up into pieces called plates, which slowly move around on top of the rest of the mantle. The meeting points between the plates are called plate boundaries and there are three main types: Divergent boundaries (constructive) are where plates are moving away from each other. New crust is created between the two plates. Convergent boundaries (destructive) are where plates are moving towards each other. Old crust is either dragged down into the mantle at a subduction zone or pushed upwards to form mountain ranges. Transform boundaries (conservative) are where are plates are moving past each other. Can you find an example of each type of tectonic plate boundary on the map? Divergent boundary: Convergent boundary: Transform boundary: What do you notice about the location of most of the Earth’s volcanoes? P.1 Iceland Iceland lies on the Mid Atlantic Ridge, a divergent plate boundary where the North American Plate and the Eurasian Plate are moving away from each other. As the plates pull apart, molten rock or magma rises up and erupts as lava creating new ocean crust. Volcanic activity formed the island about 16 million years ago and volcanoes continue to form, erupt and shape Iceland’s landscape today. The island is covered with more than 100 volcanoes - some are extinct, but about 30 are currently active. -
Tectonic Setting & Generalized Geologic Maps of Washington And
on the Lea rs din e g ch E a . d e . g T e Tectonic Setting & Generalized Geologic Maps of Washington and Oregon The TO TLE Pict Earthquakes ure Frank D. Granshaw and Jenda Johnson, 2009 Volcanoes Tsunamis Geology1 Physical Geography Legend for Geography Relief map of Washington and Oregon showing Map colors correspond to vegetation Generalized geologic map of the Pacific Northwest. major cities, volcanoes, lakes and waterways. and surface types: (Circled numbers are the same as on Physical Geography legend) Greens—dense vegetation 1 Browns—grasslands and desert 1 A A Light gray to white—unvegetated alpine regions in the Cascade Range 2 2 Cities A Bellingham, WA N La Grande, OR B Seattle, WA O Baker, OR B I C Tacoma, WA P Ontario, OR B I D Olympia, WA B Bend, OR E Aberdeen, WA R Klamath Falls, OR C H C F Ellensberg, WA S Medford, OR E D 3 F G Yakima, WA T Coos Bay, OR D 3 H Wenatchee, WA U Newport, OR I Spokane, WA V Astoria ,OR G J Walla Walla, WA W Portland, OR G K Pasco, WA X Salem, OR K 4 4 5 L The Dalles, OR Y Eugene, OR 5 V V M Pendleton, OR J J Cascade Volcanoes M M L L W W 1 Mount Baker 6 Mount Hood 6 6 2 Glacier Peak 7 Mount Jeerson N N 3 Mount Rainier 8 Three Sisters 4 Mount St. Helens 9 Newberry Volcano X X 5 Mount Adams 10 Crater Lake O 7 7 Legend for Geology U U Igneous Rock 8 8 Q Q Y Y P Volcanic (Less than 1.6 million years) Volcanic (More than 1.6 million years) 9 9 Volcanic (Mostly 16.5- to 6-million- year-old flood basalts) T T Intrusive rock 10 Sedimentary and Metamorphic Rock 10 Unconsolidated sediment Sedimentary rock S Sedimentary & metamorphic rock R S R Metamorphic rock Physiographic Provinces2 Tectonics3 Map of major physiographic provinces in the Pacic Northwest. -
Earthquake Risk Transfer for Greece
Earthquake Risk Transfer for Greece Overview Figure 59. Hash circles represent current Earling undercover regions. Greece is located at the complex boundary zone in the eastern Mediterranean between the African Plate and the Eurasian Plate. The northern part of Greece lies on the Eurasian Plate while the southern part lies on the Aegean Sea Plate. The Aegean Sea Plate is moving southwestward with respect to the Eurasian Plate at about 30 mm/yr while the African Plate is subducting northwards beneath the Aegean Sea Plate at a rate of about 40 mm/yr. The northern plate boundary is a relatively 64 Earling Natural Risk Transfer Platform More; https://acircularworld.com diffuse divergent boundary while the southern convergent boundary forms the Hellenic arc. These two plate boundaries give rise to two contrasting tectonic styles, extension on east-west trending fault zones with strike-slip tectonics on SW-NE trending fault zones throughout west and central Greece, Peloponnese and the northern Aegean and contractional in the southern Aegean, continuing around to the Ionian islands. The south Aegean is the location of the volcanic arc and is characterized by extension. To the east of Crete along the Hellenic Arc, strike-slip tectonics with some extension become important. Earling can issue accurate earthquake preparedness alert especially for North of Greece. EPA Effect on Greece Insurance Loss Longterm Loss Millions $3,500 $1,300 $130 $600 Total Loss Insured Loss EPA Effect Figure 60. EPA effect on Sep 7, 1999, Greece earthquake (Higgins, 2016). 65 Earling Natural Risk Transfer Platform More; https://acircularworld.com EPA Effect on Greece Insurance Penetration Rate 38% 36% 33% 30% 28% 25% 23% 21% 17% 18% 15% 13% 2020 2021 2022 2023 2024 Figure 61. -
Earthquake Risk in Bangladesh
STUDENT VERSION Earthquake Risk in Bangladesh PASSAGE ONE Background A major earthquake can destroy any town. Imagine the damage it could do to a huge city, where millions of people live in poorly made buildings. Now imagine this city is also threatened by natural hazards like flooding and rising sea levels. These are the dangers that face Dhaka, the capital of Bangladesh. Scientists predict a major earthquake in the region. It’s been more than 100 years since the last one so Dhaka is not prepared. Today, a team of scientists is investigating the active geology behind earthquakes in Bangladesh. The project is led by Michael Steckler and Leonardo Seeber from Columbia University’s Lamont-Doherty Earth Observatory, and includes international and local scientists. These scientists represent a range of specialties, such as seismology (earthquakes), structural geology (rocks and tectonic forces), and the center sedimentology (sediments and past environments). Together, they of the action Bangladesh is a country in South Asia are studying the country’s past and present geological events — bordered by India, Bhutan, and Myanmar. It sits on the Bay of Bengal and its capital from shifting faults to changing river patterns — to help people in city, Dhaka, is located in the Bengal Delta. ©AMNH / Google Earth Bangladesh prepare for the next major earthquake. nepal bhutan bangladesh china dhaka myanmar india thailand laos cambodia amnh.org/education/bangladesh © 2013 American Museum of Natural History. All Rights Reserved. Page 1 Earthquake Risk STUDENT VERSION in Bangladesh CONTINUED Background Bangladesh: A Land of Extremes Bangladesh is a small country in south Asia.