Complete Dissertation

Total Page:16

File Type:pdf, Size:1020Kb

Complete Dissertation VU Research Portal Signal transduction of the histamine H3 receptor Bongers, G.M. 2008 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Bongers, G. M. (2008). Signal transduction of the histamine H3 receptor. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 05. Oct. 2021 16 December 2008 om 10.45u Aula van de Vrije Universiteit, De Boelelaan 1105 te Amsterdam Uitnodiging Voor de promotie van Gerold Bongers Na afloop is er een receptie [email protected] receptor 3 of the G.M. Bongers Signal transduction histamine H Signal transduction of the histamine H3 receptor G.M. Bongers 2008 Signal transduction of the histamine H3 receptor Gerold Bongers The research described in this thesis was performed at the Leiden/Amsterdam Center for Drug Research, Faculty of Exact Sciences, Division of Medicinal Chemistry, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands. The research of the author was supported in part by Abbott Laboratories, Illinois, United States. ISBN 978-90-9023745-9 VRIJE UNIVERSITEIT Signal transduction of the histamine H3 receptor ACADEMISCH PROEFSCHRIFT ter verkrijging van de graad Doctor aan de Vrije Universiteit Amsterdam, op geZag van de rector magnificus prof.dr. L.M. Bouter, in het openbaar te verdedigen ten overstaan van de promotiecommissie van de faculteit der Exacte Wetenschappen op dinsdag 16 december 2008 om 10.45 uur in de aula van de universiteit, De Boelelaan 1105 door Gerardus Martinus Bongers geboren te Oss promotor: prof.dr. R. Leurs copromotor: dr. R.A. Bakker Table of Contents Chapter 1 7 Introduction 7 Chapter 2 33 Molecular aspects of the histamine H3 receptor 33 Chapter 3 51 Constitutive activity of histamine H3 receptors stably expressed in SK- N-MC Cells: display of agonism and inverse agonism by H3 antagonists 51 Chapter 4 67 A 80 amino acid deletion in the third intracellular loop of a naturally occurring human histamine H3 isoform confers pharmacological differences and constitutive activity 67 Chapter 5 91 G-protein coupling of human histamine H3 receptor isoforms 91 Chapter 6 109 The Akt/GSK-3! axis as a new signaling pathway of the histamine H3 receptor 109 Chapter 7 129 Histamine H3 receptor-mediated release of intracellular calcium via a Gi/o-phospholipase C dependent mechanism 129 Chapter 8 139 Discussion and conclusions 139 Samenvatting 150 References 153 Curriculum Vitae 170 List of publications 171 List of abbreviations 172 Chapter 1 Introduction 7 Chapter 1 G-protein coupled receptors G-protein coupled receptors (GPCRs) are a large family of membrane-bound proteins that convert diverse stimuli like odors, photons, neurotransmitters, hormones, peptides and proteases, via guanine nucleotide-binding proteins (G- proteins) into intracellular responses. GPCRs are characteriZed by seven alpha helical transmembrane (TM) domains and are found in eukaryotes, including yeast, plants, choanoflagellates, and animals. They are involved in numerous physiological processes like smell, taste, vision, behavior and mood, regulation of the immune system and autonomic nervous system transmission. GPCRs are considered as an attractive drug target by the pharmaceutical industry, because GPCRs are involved in the regulation of almost every major mammalian physiological process and are readily accessible to drugs due to their localization on the cell surface. In fact, 30% of all drugs on the market are targeting GPCRs, among these are several block-buster drugs like clopidogrel (Plavix®), Fexofenadine hydrochloride (Allegra®), quetiapine (Seroquel®) and metoprolol (Lopressor® or Seloken® (Wise et al., 2002; Service, 2004). Structural features of GPCRs Based on phylogenetic analysis according to the GRAFS classification system GPCRs can be divided into five main classes: the glutamate, rhodopsin, adhesion, frizzled/taste2 and secretin (Figure 1) (Fredriksson et al., 2003). 8 Introduction Figure 1. Phylogenetic relationships between the GPCRs in the human genome, for the rhodopsin family see Figure 2. Adapted from (Fredriksson et al., 2003). The rhodopsin-class of GPCRs is the largest class and can be further divided into four main groups, ", !, # and $ with 13 sub-branches (Figure 2). The rhodopsin class represents receptors like the olfactory receptors ($-group), chemokine receptors (#-group), peptide receptors (!-group) and the biogenic amine receptors ("-group), and is characteriZed by some highly conserved motifs like the (D/E)R(Y/F) motif at the end of TM3 and the NSxxNPxxY motif in TM7. 9 Chapter 1 Figure 2. The phylogenetic relationships between GPCRs in the human rhodopsin family. The rhodopsin family of GPCR can be subdived into four main groups namely: ", !, # and $ with 13 sub-branches. Adapted from (Fredriksson et al., 2003). Structural models of GPCRs are so far mainly based on the crystal structure of bovine rhodopsin (Palczewski et al., 2000). More recently crystal structures became available of the !1-adrenergic receptor and !2-adrenergic receptor (Cherezov et al., 2007; Rasmussen et al., 2007; Rosenbaum et al., 2007; Warne et al., 2008). These crystal structures show that GPCRs consist of a single strand of amino acids with an extracellular N-terminal tail, seven alpha helical domains that traverse the cellular membrane and an intracellular C-terminal tail (Figure 3). Due to its structural features, GPCRs are also know as seven transmembrane receptors, 7TM receptors or heptahelical receptors. 10 Introduction Figure 3. Crystal structure of rhodopsin showing the extracellular loops and the N-terminal tail (bottom), seven alpha helical transmembrane domains (middle), intracellular loops and alpha helical C-terminal tail (top). Adapted from (Palczewski et al., 2000). G-protein dependent signaling The heterotrimeric G-protein consists of a G" subunit and a tight complex formed from a G!-subunit and a G#-subunit. At least 17 G", 5 G! and 14 G#-subunits are know (Wettschureck and Offermanns, 2005), leading to a huge diversity of 1190 theoretical combinations, although not all combinations might be found in vivo. In the basal state the guanine diphosphate (GDP)-bound G"-protein is associated to the !#-complex. Coupling of the heterotrimeric protein to an active receptor promotes the exchange of GDP with guanine triphosphate (GTP) on the G"- subunit and subsequently leading to dissociation of the G"-subunit and !#-complex from the receptor as well as dissociation of the G"-subunit from the !#-complex. The free G"-subunit and !#-complex are now able to modulate a variety of effectors. Termination of the signal is induced by the hydrolysis of GTP by the inherent GTPase activity of the G"-subunit and the subsequent re-association of the GDP-bound G"-subunit with the !#-complex, which can enter a new activation cycle when bound to an activated receptor (Wettschureck and Offermanns, 2005). However, more recently this scheme was shown to be more complex as it has become apparent that dissociation of G-proteins into their subunits is not always essential for their mechanism of action (Klein et al., 2000; Levitzki and Klein, 2002; 11 Chapter 1 Bunemann et al., 2003; Frank et al., 2005). Additionally, various effectors, among which the so-called regulators of G-protein signaling (RGS), accelerate the deactivation of the G-protein mediated signaling by enhancing the GTPase activity on the G"-subunit (Abramow-Newerly et al., 2006b). The G"-subunits can be divided into four main families, the G"s, G"q/11, G"12/13 and G"i/o consisting of various members with different expression patterns (Milligan and Kostenis, 2006). The G"s-proteins are ubiquitously expressed and couples GPCRs to adenylyl cyclase (AC) resulting in an increase in intracellular cAMP levels. The widely expressed G"q-proteins couples receptors to the !-isoforms of phospholipase C (PLC), which catalyses the conversion of phosphatidylinositol 4,5- biphosphate (PIP2) into the second messengers inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG), which in turn increase the intracellular calcium 2+ concentration ([Ca ]i) or activate protein kinase C (PKC), respectively. GPCRs that couple to G"q-proteins often activate the ubiquitously expressed G"12/13-proteins as well. The characteriZation of G"12/13-mediated pathways is hampered by the lack of specific inhibitors and promiscuous nature of the GPCRs that couple to these G"-proteins, however, studies have shown G"12/13-proteins activate various + + signaling effectors including phospholipase A2 (PLA2), Na /H -exchanger (NHE) and Rho-guanine nucleotide exchange factor (RhoGEF)-mediated activation of RhoA (Kurose, 2003; Riobo and Manning, 2005). The pertussis toxin (PTX)
Recommended publications
  • TABLE 1 Studies of Antagonist Activity in Constitutively Active
    TABLE 1 Studies of antagonist activity in constitutively active receptors systems shown to demonstrate inverse agonism for at least one ligand Targets are natural Gs and constitutively active mutants (CAM) of GPCRs. Of 380 antagonists, 85% of the ligands demonstrate inverse agonism. Receptor Neutral Antagonist Inverse Agonist Reference Human β2-adrenergic Dichloroisoproterenol, pindolol, labetolol, timolol, Chidiac et al., 1996; Azzi et alprenolol, propranolol, ICI 118,551, cyanopindolol al., 2001 Turkey erythrocyte β-adrenergic Propranolol, pindolol Gotze et al., 1994 Human β2-adrenergic (CAM) Propranolol Betaxolol, ICI 118,551, sotalol, timolol Samama et al., 1994; Stevens and Milligan, 1998 Human/guinea pig β1-adrenergic Atenolol, propranolol Mewes et al., 1993 Human β1-adrenergic Carvedilol CGP20712A, metoprolol, bisoprolol Engelhardt et al., 2001 Rat α2D-adrenergic Rauwolscine, yohimbine, WB 4101, idazoxan, Tian et al., 1994 phentolamine, Human α2A-adrenergic Napthazoline, Rauwolscine, idazoxan, altipamezole, levomedetomidine, Jansson et al., 1998; Pauwels MPV-2088 (–)RX811059, RX 831003 et al., 2002 Human α2C-adrenergic RX821002, yohimbine Cayla et al., 1999 Human α2D-adrenergic Prazosin McCune et al., 2000 Rat α2-adrenoceptor MK912 RX821002 Murrin et al., 2000 Porcine α2A adrenoceptor (CAM- Idazoxan Rauwolscine, yohimbine, RX821002, MK912, Wade et al., 2001 T373K) phentolamine Human α2A-adrenoceptor (CAM) Dexefaroxan, (+)RX811059, (–)RX811059, RS15385, yohimbine, Pauwels et al., 2000 atipamezole fluparoxan, WB 4101 Hamster α1B-adrenergic
    [Show full text]
  • Histamine Receptors
    Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity.
    [Show full text]
  • In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs As Inverse H1 Receptor Agonists
    0022-3565/07/3221-172–179$20.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 322, No. 1 Copyright © 2007 by The American Society for Pharmacology and Experimental Therapeutics 118869/3215703 JPET 322:172–179, 2007 Printed in U.S.A. In Vitro Pharmacology of Clinically Used Central Nervous System-Active Drugs as Inverse H1 Receptor Agonists R. A. Bakker,1 M. W. Nicholas,2 T. T. Smith, E. S. Burstein, U. Hacksell, H. Timmerman, R. Leurs, M. R. Brann, and D. M. Weiner Department of Medicinal Chemistry, Leiden/Amsterdam Center for Drug Research, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands (R.A.B., H.T., R.L.); ACADIA Pharmaceuticals Inc., San Diego, California (R.A.B., M.W.N., T.T.S., E.S.B., U.H., M.R.B., D.M.W.); and Departments of Pharmacology (M.R.B.), Neurosciences (D.M.W.), and Psychiatry (D.M.W.), University of California, San Diego, California Received January 2, 2007; accepted March 30, 2007 Downloaded from ABSTRACT The human histamine H1 receptor (H1R) is a prototypical G on this screen, we have reported on the identification of 8R- protein-coupled receptor and an important, well characterized lisuride as a potent stereospecific partial H1R agonist (Mol target for the development of antagonists to treat allergic con- Pharmacol 65:538–549, 2004). In contrast, herein we report on jpet.aspetjournals.org ditions. Many neuropsychiatric drugs are also known to po- a large number of varied clinical and chemical classes of drugs tently antagonize this receptor, underlying aspects of their side that are active in the central nervous system that display potent effect profiles.
    [Show full text]
  • Complete Dissertation
    VU Research Portal Histamine H3-receptors in the central nervous systems of rats and mice Jansen, F.P. 1997 document version Publisher's PDF, also known as Version of record Link to publication in VU Research Portal citation for published version (APA) Jansen, F. P. (1997). Histamine H3-receptors in the central nervous systems of rats and mice. General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim. E-mail address: [email protected] Download date: 24. Sep. 2021 Histamine H3-receptors· in the central nervous system of rats and mice Characteristics, distribution and function studied with [l25I]iodophenpropit Ph.D.-thesis Most of the research described in this thesis was performed at the Division of Molecular Pharmacology of the Leiden/Amsterdarn Center for Drug Research (LACDR), Department ofPharmacochernistry, Vrije Universiteit, De Boelelaan 1083, 1081HV, Amsterdam, The Netherlands. Some of the investigations were carried out in close collaboration with other institutes.
    [Show full text]
  • International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
    1521-0081/67/3/601–655$25.00 http://dx.doi.org/10.1124/pr.114.010249 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:601–655, July 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors Pertti Panula, Paul L. Chazot, Marlon Cowart, Ralf Gutzmer, Rob Leurs, Wai L. S. Liu, Holger Stark, Robin L. Thurmond, and Helmut L. Haas Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry (H.S.) and Institute of Neurophysiology, Medical Faculty (H.L.H.), Heinrich-Heine-University Duesseldorf, Germany; and Janssen Research & Development, LLC, San Diego, California (R.L.T.) Abstract ....................................................................................602 Downloaded from I. Introduction and Historical Perspective .....................................................602 II. Histamine H1 Receptor . ..................................................................604 A. Receptor Structure
    [Show full text]
  • The Time-Dependent Role of Brain Histaminergic System and Associated AMPK Signaling in Olanzapine-Induced Obesity
    University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2014 The time-dependent role of brain histaminergic system and associated AMPK signaling in olanzapine-induced obesity Meng He University of Wollongong Follow this and additional works at: https://ro.uow.edu.au/theses University of Wollongong Copyright Warning You may print or download ONE copy of this document for the purpose of your own research or study. The University does not authorise you to copy, communicate or otherwise make available electronically to any other person any copyright material contained on this site. You are reminded of the following: This work is copyright. Apart from any use permitted under the Copyright Act 1968, no part of this work may be reproduced by any process, nor may any other exclusive right be exercised, without the permission of the author. Copyright owners are entitled to take legal action against persons who infringe their copyright. A reproduction of material that is protected by copyright may be a copyright infringement. A court may impose penalties and award damages in relation to offences and infringements relating to copyright material. Higher penalties may apply, and higher damages may be awarded, for offences and infringements involving the conversion of material into digital or electronic form. Unless otherwise indicated, the views expressed in this thesis are those of the author and do not necessarily represent the views of the University of Wollongong. Recommended Citation He, Meng, The time-dependent role of brain histaminergic system and associated AMPK signaling in olanzapine-induced obesity, Doctor of Philosophy thesis, School of Medicine, University of Wollongong, 2014.
    [Show full text]
  • With [3H]Mepyramine (Trieyclic Antidepressants/Antihistamine/Neurotransmitter/Amitriptyline) VINH TAN TRAN, RAYMOND S
    Proc. Nati. Acad. Sci. USA Vol. 75, No. 12, pp. 6290-6294,, December 1978 Neurobiology Histamine H1 receptors identified in mammalian brain membranes with [3H]mepyramine (trieyclic antidepressants/antihistamine/neurotransmitter/amitriptyline) VINH TAN TRAN, RAYMOND S. L. CHANG, AND SOLOMON H. SNYDER* Departments of Pharmacology and Experimental Therapeutics, and Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 Communicated by Julius Axelrod, August 30,1978 ABSTRACT The antihistamine [3H mepyramine binds to Male Sprague-Dawley rats (150-200 g) were killed by cer- HI histamine receptors in mammalian brain membranes. vical dislocation, their brains were rapidly removed and ho- Potencies of H1 antihistamines at the binding sites correlate mogenized with a Polytron for 30 min (setting 5) in 30 vol of with their pharmacological antihistamine effects in the guinea pig ileum. Specific [3Himepyramine binding is saturable with ice-cold Na/K phosphate buffer (50 mM, pH 7.5), and the a dissociation constant of about 4 nM in both equilibrium and suspension was centrifuged (50,000 X g for 10 min). The pellet kinetic experiments and a density of 10pmolper gram ofwhole was resuspended in the same volume of fresh buffer and cen- brain. Some tricyclic antidepressants are potent inhibitors of trifuged, and the final pellet was resuspended in the original secific [3Hmepamine binding. Regional variations of volume of ice-cold buffer by Polytron homogenization. Calf [3Hjmepyramine ing do not correlate with variations in brains were obtained from a local abattoir within 2 hr after the endogeneous histamine and histidine decarboxylase activity. death of the animals and transferred to the laboratory in ice- Histamine is a neurotransmitter candidate in mammalian brain cold saline.
    [Show full text]
  • Platelets by Burimamide G
    Br. J. Pharmac. (1980), 71, 157-164 INHIBITION OF THROMBOXANE A2 BIOSYNTHESIS IN HUMAN PLATELETS BY BURIMAMIDE G. ALLAN, K.E. EAKINS*, P.S. KULKARNI* & R. LEVI Department of Pharmacology, Cornell University Medical College, New York, N.Y. and *Departments of Opthalmology and Pharmacology, Columbia University College of Physicians & Surgeons, New York, N.Y., U.S.A. 1 Burimamide selectively inhibited the formation of thromboxane A2 from prostaglandin endoper- oxides by human platelet microsomes in a dose-dependent manner (IC50 = 2.5 x 10-5 M). Burima- mide was found to be equipotent to imidazole as a thromboxane synthetase inhibitor. 2 Metiamide, cimetidine and a series of compounds either bearing a structural or pharmacological relationship to histamine caused little or no inhibition of thromboxane A2 biosynthesis by human platelet microsomes. 3 Burimamide (5 x 10-4 to 2.3 x 10- M) did not inhibit either the cyclo-oxygenase or the prosta- cyclin synthetase of sheep seminal vesicles or the prostacyclin synthetase of dog aortic microsomes. 4 Burimamide (2.5 x 10'- to 1.2 x 10-4 M) inhibited sodium arachidonate-induced human platelet aggregation; the degree of inhibition was dependent upon the concentration of arachidonic acid used to aggregate the platelets. Introduction The prostaglandin endoperoxides (prostaglandin G2, (Gryglewski, Zmuda, Korbut, Krecioch & Bieron, H2), the first cyclo-oxygenated products of arachido- 1977). nic acid metabolism can be converted enzymatically Various imidazole derivatives were studied by into either primary prostaglandins such as prosta- Moncada et al. (1977) and of these, only one-methyl glandin E2, F2, or D2, the non-prostanoate throm- imidazole was found to be a potent inhibitor of boxane A2 or prostacyclin (Moncada, Gryglewski, thromboxane A2 biosynthesis.
    [Show full text]
  • The Histamine H3 Receptor: Structure, Pharmacology and Function
    Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ from this version. MOL #104752 The histamine H3 receptor: structure, pharmacology and function Gustavo Nieto-Alamilla, Ricardo Márquez-Gómez, Ana-Maricela García-Gálvez, Guadalupe-Elide Morales-Figueroa and José-Antonio Arias-Montaño Downloaded from Departamento de Fisiología, Biofísica y Neurociencias, molpharm.aspetjournals.org Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Av. IPN 2508, Zacatenco, 07360 México, D.F., México at ASPET Journals on September 29, 2021 Running title: The histamine H3 receptor Correspondence to: Dr. José-Antonio Arias-Montaño Departamento de Fisiología, Biofísica y Neurociencias Cinvestav-IPN Av. IPN 2508, Zacatenco 07360 México, D.F., México. Tel. (+5255) 5747 3964 Fax. (+5255) 5747 3754 Email [email protected] 1 Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ from this version. MOL #104752 Text pages 66 Number of tables 3 Figures 7 References 256 Words in abstract 168 Downloaded from Words in introduction 141 Words in main text 9494 molpharm.aspetjournals.org at ASPET Journals on September 29, 2021 2 Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • Les Benzodiazépines Dans L'anxiété Et L'insomnie
    Les benzodiazépines dans l’anxiété et l’insomnie : dangers liés à leur utilisation et alternatives thérapeutiques chez l’adulte Amélie Reysset To cite this version: Amélie Reysset. Les benzodiazépines dans l’anxiété et l’insomnie : dangers liés à leur utilisation et alternatives thérapeutiques chez l’adulte. Sciences pharmaceutiques. 2010. dumas-00593244 HAL Id: dumas-00593244 https://dumas.ccsd.cnrs.fr/dumas-00593244 Submitted on 13 May 2011 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. UNIVERSITE JOSEPH FOURIER FACULTE DE PHARMACIE GRENOBLE Année 2010 N° LES BENZODIAZEPINES DANS L’ANXIETE ET L’INSOMNIE : DANGERS LIES A LEUR UTILISATION ET ALTERNATIVES THERAPEUTIQUES CHEZ L’ADULTE Thèse présentée pour l’obtention du diplôme d’état de Docteur en Pharmacie Par Amélie REYSSET Née le 06 juin 1984 à St Martin d’Hères Thèse soutenue publiquement à la faculté de pharmacie de Grenoble Le 28 janvier 2010 à 18h30 Devant le jury composé de : Madame le Professeur Diane Godin-Ribuot, Président du jury Monsieur le Docteur Patrick Talmon, Pharmacien, Directeur de thèse Madame le Docteur Mélanie Pellet, Médecin généraliste Monsieur le Docteur Pierre Eymard, Pharmacien 0 TABLE DES MATIERES INTRODUCTION……………………………………………………………………………..3 1.
    [Show full text]
  • Proteostasis of Glial Intermediate Filaments: Disease Models, Tools, and Mechanisms
    PROTEOSTASIS OF GLIAL INTERMEDIATE FILAMENTS: DISEASE MODELS, TOOLS, AND MECHANISMS Rachel Anne Battaglia A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Cell Biology and Physiology in the School of Medicine. Chapel Hill 2021 Approved by: Natasha T. Snider Carol Otey Keith Burridge Douglas Cyr Mohanish Deshmukh Damaris Lorenzo i © 2021 Rachel Anne Battaglia ALL RIGHTS RESERVED ii ABSTRACT Rachel Anne Battaglia: Proteostasis of Glial Intermediate Filaments: Disease Models, Tools, and Mechanisms (Under the direction of Natasha T. Snider) Astrocytes are a major glial cell type that is crucial for the health and maintenance of the Central Nervous System (CNS). They fulfill diverse functions, including synapse formation, neurogenesis, ion homeostasis, and blood brain barrier formation. Intermediate filaments (IFs) are components of the astrocyte cytoskeleton that support many of these functions in healthy individuals. However, upon cellular stress or genetic mutations, IF proteins are prone to accumulation and aggregation. These processes are thought to contribute to disease pathogenesis of different tissue-specific disorders, but therapeutic targeting of IFs is hindered by a lack of pharmacological tools to modulate their assembly and disassembly states. Moreover, the mechanisms that govern the formation and dissolution of IF aggregates are poorly defined. In this dissertation, I investigate IF aggregates called Rosenthal fibers (RFs), which form in astrocytes of patients with two pediatric neurodegenerative diseases, Alexander disease (AxD) and Giant Axonal Neuropathy (GAN). My aim was to gain a better understanding of the mechanisms of how astrocyte IF protein aggregates form and interrogate the role of post- translational modifications (PTMs) in this process.
    [Show full text]