Virtual Machine Scheduling in Dedicated Computing Clusters

Total Page:16

File Type:pdf, Size:1020Kb

Virtual Machine Scheduling in Dedicated Computing Clusters Virtual Machine Scheduling in Dedicated Computing Clusters Dissertation for attaining the PhD degree of Natural Sciences submitted to the Faculty of Computer Science and Mathematics of the Johann Wolfgang Goethe University in Frankfurt am Main, Germany CERN-THESIS-2012-391 14/11/2013 by Stefan Boettger born in Torgau, Germany Frankfurt 2012 (D30) accepted by the Faculty of Computer Science and Mathematics of the Johann Wolfgang Goethe University as a dissertation. Dean: Prof. Dr. Thorsten Theobald Expert assessor: Prof. Dr. Udo Kebschull Prof. Dott. Ing. Roberto V. Zicari Date of disputation: Time-critical applications process a continuous stream of input data and have to meet specific tim- ing constraints. A common approach to ensure that such an application satisfies its constraints is over-provisioning: The application is deployed in a dedicated cluster environment with enough pro- cessing power to achieve the target performance for every specified data input rate. This approach comes with a drawback: At times of decreased data input rates, the cluster resources are not fully utilized. A typical use case is the HLT-Chain application that processes physics data at runtime of the ALICE experiment at CERN. From a perspective of cost and efficiency it is desirable to exploit temporarily unused cluster resources. Existing approaches aim for that goal by running additional applications. These approaches, however, a) lack in flexibility to dynamically grant the time-critical application the resources it needs, b) are insufficient for isolating the time-critical application from harmful side-effects introduced by additional applications or c) are not general because application- specific interfaces are used. In this thesis, a software framework is presented that allows to exploit unused resources in a dedicated cluster without harming a time-critical application. Additional ap- plications are hosted in Virtual Machines (VMs) and unused cluster resources are allocated to these VMs at runtime. In order to avoid resource bottlenecks, the resource usage of VMs is dynamically modified according to the needs of the time-critical application. For this purpose, a number of pre- viously not combined methods is used. On a global level, appropriate VM manipulations like hot migration, suspend/resume and start/stop are determined by an informed search heuristic and applied at runtime. Locally on cluster nodes, a feedback-controlled adaption of VM resource usage is carried out in a decentralized manner. The employment of this framework allows to increase a cluster’s us- age by running additional applications, while at the same time preventing negative impact towards a time-critical application. This capability of the framework is shown for the HLT-Chain application: In an empirical evaluation the cluster CPU usage is increased from 49% to 79%, additional results are computed and no negative effect towards the HLT-Chain application are observed. Acknowledgements For inspiration and guidance on the road to this thesis I thank my professor Mr. Kebschull. Both valuable feedback and daily life companionship from my colleagues Timo Breitner and Jochen Ulrich also helped me in mastering this task. Special thanks goes to my colleague Camilo Lara whom I owe much for professional advice and fruitful discussions. My parents I thank for all their unconditional trust and support. Heinke, thank you for your understanding and sincerity. Contents 1. Introduction 11 2. Thesis Goal 15 3. Context and Related Work 17 3.1. Research Overview . 18 3.1.1. Goals in Current Research . 19 3.1.2. Resource Allocation Primitives . 22 3.1.3. Data Used for Decision Making . 25 3.1.4. Decision Techniques . 27 3.2. Evaluation of Relevant Approaches . 30 3.3. Summary . 34 4. Conceptual Work 35 4.1. Scope Discussion . 35 4.2. Basic Terminology . 36 4.3. Conceptual Cornerstones . 39 4.3.1. Resource Usage as Sensor Metric . 40 4.3.2. Virtualization as Enabling Technology . 43 4.3.3. Virtual Machine Life-Cycle . 45 4.3.4. Secondary Application Abstraction . 47 4.3.5. Constraints on Resource Usage: Policies . 49 4.3.6. Decision Making Architecture . 52 4.3.7. Summary . 55 4.4. Resource Allocation Functionality . 56 4.4.1. Feasibility Estimator . 56 4.4.2. Global Provisioner . 60 4.4.3. Global Reconfigurator . 61 4.4.3.1. Recognition Phase and Triggering . 62 4.4.3.2. Search Algorithm . 65 4.4.4. Local Controller . 81 4.4.4.1. Resource Usage Adaptor . 81 4.4.4.2. Local Trigger Unit . 84 4.4.5. Functional Unit Coordination . 85 4.4.5.1. Execution and Concurrency . 85 4.4.5.2. Enforcement of Policy Semantics . 87 4.4.6. Further Considerations . 88 4.4.6.1. Computational Complexity . 88 4.4.6.2. Scalability . 91 4.4.6.3. Self-Sustaining Behavior . 92 5 Contents 4.4.7. Summary . 93 5. Realization 95 5.1. Environment, Products and Tools . 95 5.2. Framework Design . 96 5.3. Actors and Use Cases . 98 5.4. Platform-Specific Implementation . 101 6. Experimental Results 105 6.1. Test Environment . 105 6.2. Experiment Overview . 105 6.3. Policy Modification Experiment . 107 6.3.1. Experiment Layout . 108 6.3.2. Results . 110 6.3.3. Summary . 115 6.4. Efficiency Experiment . 116 6.4.1. Metrics Discussion . 116 6.4.2. Experiment Layout . 117 6.4.3. Results . 119 6.4.4. Summary . 130 6.5. Interference Experiment . 130 6.5.1. Experiment Layout . 131 6.5.2. Results . 132 6.5.3. Summary . 136 6.6. HLT-Chain Experiment . 136 6.6.1. HLT-Chain Application . 137 6.6.2. Experiment Layout . 138 6.6.3. Results . 139 6.6.4. Summary . 143 6.7. Summary of Empirical Results . 144 7. Summary and Conclusion 145 7.1. Summary . 145 7.2. Conclusion . 147 8. Future Work 149 A. Appendix 151 A.1. HLT-Chain Application Setup . 151 A.2. Derivation of Complexity Formulas . 151 A.3. Cloud Computing and EaaS Stack . 153 A.4. Virtualization Technologies and Products . 155 A.5. Feasibility Estimator Customization . 158 B. Abbreviations 167 6 List of Figures 4.1. Virtual Machine Life-Cycle . 45 4.2. Lease Life-Cycle . 47 4.3. Basic Framework Architecture . 54 4.4. Example Search Tree . 68 4.5. Search Example: Initial Cluster State . 70 4.6. Search Example: Intermediate Search Tree I . 70 4.7. Search Example: Intermediate Cluster State I . 71 4.8. Search Example: Intermediate Search Tree II . 71 4.9. Search Example: Intermediate Cluster State II . 72 4.10. Search Example: Final Search Tree . 73 4.11. Search Example: Final Cluster State . 73 4.12. Control Loop of RUA . 83 4.13. Concurrency of Reconfiguration Cycles . 86 5.1. Package Diagram of the VM-Scheduling Framework . 97 5.2. Use Cases for the VM-Scheduling Framework . 99 6.1. Test Environment KIP Cluster In Heidelberg, Germany . 106 6.2. Modification of CPU Core Availability for VMs in a Cluster . 109 6.3. Manipulations Chosen for Removing VMs from 6 Nodes . 110 6.4. Manipulations Chosen for Removing VMs from 12 Nodes . 111 6.5. Manipulations Chosen for Removing VMs from 24 Nodes . 111 6.6. Manipulations Chosen for Modifying Policies Every 60 Seconds . 112 6.7. Manipulations Chosen for Modifying Policies Every 40 Seconds . 113 6.8. Manipulations Chosen for Modifying Policies Every 20 Seconds . 113 6.9. SecApp Results for Different Policy Modification Intervals and Timelimits . 115 6.10. Patterns for Generating CPU Usage on a Physical Node . 118 6.11. Probability Densities for Generating a Mean CPU Usage . 119 6.12. Generated CPU Usage and Resulting VM CPU Usage for Different Thresholds . 120 6.13. VM CPU Usage and SecApp Results for Different Thresholds . 121 6.14..
Recommended publications
  • Solaris-Cluster-Businesscontinuity-168285.Pdf
    An Oracle White Paper September 2010 Oracle Solaris and Oracle Solaris Cluster: Extending Oracle Solaris for Business Continuity Oracle White Paper— Oracle Solaris and Oracle Solaris Cluster: Extending Oracle Solaris for Business Continuity Executive Summary.............................................................................1 Introduction..........................................................................................3 Traditional Solution Components ....................................................5 Oracle Solaris Cluster for Business Continuity....................................6 Oracle Solaris Cluster......................................................................6 Introduction—Basic Clustering ........................................................8 Data Availability .............................................................................10 Applications Availability .................................................................11 Network Availability .......................................................................12 Virtualization and Oracle Solaris Cluster .......................................13 Disaster Recovery—Campus and Beyond ....................................16 A Single HA and DR Solution for Multitier Oracle Applications and Databases ..........................................................17 Oracle Solaris ....................................................................................19 Resource Management .................................................................19
    [Show full text]
  • Beginner's Guide to Oracle Grid Engine 6.2 Oracle White Paper—Beginner's Guide to Oracle Grid Engine 6.2
    An Oracle White Paper August 2010 Beginner's Guide to Oracle Grid Engine 6.2 Oracle White Paper—Beginner's Guide to Oracle Grid Engine 6.2 Executive Overview ..................................................................................... 1 Introduction .................................................................................................. 1 Chapter 1: Introduction to Oracle Grid Engine ............................................ 3 Oracle Grid Engine Jobs ......................................................................... 3 Oracle Grid Engine Component Architecture .......................................... 3 Oracle Grid Engine Basics ...................................................................... 5 Chapter 2: Oracle Grid Engine Scheduler ................................................... 10 Job Selection ........................................................................................... 10 Job Scheduling ........................................................................................ 17 Other Scheduling Features ...................................................................... 18 Additional Information on Job Scheduling ............................................... 20 Chapter 3: Planning an Oracle Grid Engine Installation .............................. 21 Installation Layout .................................................................................... 21 QMaster Data Spooling ........................................................................... 22 Execution Daemon Data
    [Show full text]
  • 7.1 Task Computing 7.2 Task-Based Application Models 7
    15CS565 CLOUD COMPUTING MODULE – III High-Throughput Computing – Task Programming (Chapter 7) Task computing is a wide area of distributed system programming encompassing several different models of architecting distributed applications, A task represents a program, which require input files and produce output files as a result of its execution. Applications are then constituted of a collection of tasks. These are submitted for execution and their output data are collected at the end of their execution. This chapter characterizes the abstraction of a task and provides a brief overview of the distrib- uted application models that are based on the task abstraction. The Aneka Task Programming Model is taken as a reference implementation to illustrate the execution of bag-of-tasks (BoT) applications on a distributed infrastructure. 7.1 Task computing 7.1.1 Characterizing a task 7.1.2 Computing categories 1 High-performance computing 2 High-throughput computing 3 Many-task computing 7.1.3 Frameworks for task computing 1. Condor 2. Globus Toolkit 3. Sun Grid Engine (SGE) 4. BOINC 5. Nimrod/G 7.2 Task-based application models 7.2.1 Embarrassingly parallel applications 7.2.2 Parameter sweep applications 7.2.3 MPI applications 7.2.4 Workflow applications with task dependencies 1 What is a workflow? 2 Workflow technologies 1. Kepler, 2. DAGMan, 3. Cloudbus Workflow Management System, and 4. Offspring. 7.3 Aneka task-based programming 7.3.1 Task programming model 7.3.2 Developing applications with the task model 7.3.3 Developing a parameter sweep application 7.3.4 Managing workflows 7.1 Task computing A task identifies one or more operations that produce a distinct output and that can be isolated as a single logical unit.
    [Show full text]
  • Hepix Report
    HEPiX Report Helge Meinhard, Pawel Grzywaczewski, Romain Wartel / CERN-IT Post-C5/Computing Seminar 03 December 2010 CERN IT Department CH-1211 Genève 23 Switzerland www.cern.ch/it Outline • Meeting organisation, site reports, (benchmarking,) infrastructure (Helge Meinhard) • Storage, OS and applications, miscellaneous (Pawel Grzywaczewski) • Virtualisation, security and networking, grid and cloud (Romain Wartel) HEPiX report – Helge.Meinhard at cern.ch – 03-Dec-2010 HEPiX • Global organisation of service managers and support staff providing computing facilities for HEP • Covering all platforms of interest (Unix/Linux, Windows, Grid, …) • Aim: Present recent work and future plans, share experience, advise managers • Meetings ~ 2 / y (spring in Europe, autumn typically in North America) HEPiX report – Helge.Meinhard at cern.ch – 03-Dec-2010 HEPiX Autumn 2010 (1) • Held 01 – 05 November at Cornell University, Ithaca NY – CESR: Electron-positron storage ring; CLEO: experiment doing a lot of interesting b physics – New player in the HEPiX field at as site… but a well-known face: Chuck Boeheim, the previous north-American co-chair of HEPiX – Good local organisation – Nice auditorium in conference hotel, basically unlimited coffee supply – First face-to-face meeting in 2010 for most participants HEPiX report – Helge.Meinhard at cern.ch – 03-Dec-2010 HEPiX Autumn 2010 (2) • Format: Pre-defined tracks with conveners and invited speakers per track – Still room for spontaneous talks – either fit into one of the tracks, or classified as ‘miscellaneous’
    [Show full text]
  • Development of Technological Projects with the Active Participation of Women in El Salvador
    Development of technological projects with the active participation of women in El Salvador. (April 2019) Marlene Navarro Gisela Espinoza Facultad de Ciencia y Tecnología Facultad de Ciencia y Tecnología Universidad Gerardo Barrios - UGB Universidad Gerardo Barrios - UGB San Miguel, El Salvador San Miguel, El Salvador [email protected] [email protected] Resumen—El estudio tiene como objetivo general conocer las women and men working in companies participating under the diferentes soluciones tecnológicas desarrolladas con una fuerte research. participación de mujeres; a la vez conocer una breve reseña histórica Thanks to the contribution of the female gender, foundations sobre la contribución de algunas mujeres a las Tecnologías de la of many technologies were made; that nowadays are used with Información y la Comunicación (TIC), ya que no han sido great ease and allow social diversity to develop work, professional reconocidas en su momento, si no con el paso de los años y a través and personal activities. de los resultados de diferentes investigaciones que se difunden a nivel Finally, El Salvador is part of the digital transformation in mundial por la equidad de género en todas sus áreas. different sectors: education, government, business, among others, El estudio también apuntó a visibilizar a las mujeres latinas en where Salvadoran women have active and essential participation. su rol como desarrolladoras de soluciones tecnológicas a nivel académico y empresarial; también conocer casos de éxito de mujeres Index Terms— (El Salvador,
    [Show full text]
  • HP-UX to Oracle Solaris Porting Guide Getting Started on the Move to Oracle Solaris
    An Oracle White Paper October 2011 HP-UX to Oracle Solaris Porting Guide Getting Started on the Move to Oracle Solaris HP-UX to Oracle Solaris Porting Guide Chapter 1 Introduction...................................................................... 1 Oracle Solaris ................................................................................. 1 The Advantages of Porting to Oracle Solaris.................................. 2 Chapter 2 The Porting Process........................................................ 4 Infrastructure and Application Porting Assessment ........................ 4 Build Environment Deployment....................................................... 5 Data Integration .............................................................................. 5 Source Code Porting....................................................................... 6 Application Verification.................................................................... 6 Commercial Applications and Third-Party Products ....................... 6 Chapter 3 Operating System Considerations................................... 7 Processor Endianness .................................................................... 7 Data Alignment ............................................................................... 7 Read/Write Structures..................................................................... 8 Storage Order and Alignment ......................................................... 8 64-Bit Data Models ........................................................................
    [Show full text]
  • Prosabladet Udgivelse: 2011/6
    bladet ProsaDe it-professionelles fagblad · 6 · Juni · 2011 Tema: Sådan tackler vi fremtidens pressede arbejdsmarked s. 18-25 Fri fugl: Lav et fællesskab for faktura-arbejdere s. 22 1. maj i konfliktens s. 8 tegn Kom med i Fail Club s. 14 Open source-genbrug kan spare millioner s. 26 Synspunkt Prosabladet · 6 · 2011 41. årgang CSC – er etikken Adresse: Vester Farimagsgade 37A, 1606 Kbh. V. Tlf. 33 36 41 41, fax 33 91 90 44 Prosabladets postgiro: 6 58 08 90, i højsædet? e-mail: [email protected] Hanne Lykke Jespersen, næstformand, [email protected] Redaktion: Ansvarshavende redaktør Kurt Westh Nielsen [email protected] PROSA tog i starten af maj det usædvanlige skridt at melde en af vores arbejdsgivere Nina Ferdinand, journalist [email protected] – nemlig CSC - til politiet. CSC har udråbt dette som et kampskridt over for CSC som et Palle Skramsø, layout led i den verserende konflikt på arbejdspladsen. Udgivelsesdato og deadline: Udkommer en gang hver måned, undtagen august måned. Men det er helt forkert opfattet. Der er helt andre bevæggrunde for, at vi er skredet til Næste gang 30. juni så drastisk en handling. Læserbreve: 3. juni Debatindlæg og klageadgang: Sagen startede med, at en gruppe medarbejdere nedlagde arbejdet som protest mod Prosabladet modtager meget gerne læserbreve, deba- tindlæg, tips, artikelforslag og kommentarer fra med- det psykiske arbejdsmiljø, de blev budt. CSC krævede blandt andet, at vores medlem- lemmerne. Indlæggene sendes til redaktion@prosa. mer skulle oplære de folk, som senere under konflikten skulle agere som skruebræk- dk. Indlæggene vil, såfremt de offentliggøres, blive redigeret efter retningslinjer vedtaget af redaktionen.
    [Show full text]
  • Study of Scheduling Optimization Through the Batch Job Logs Analysis 윤 준 원1 · 송 의 성2* 1한국과학기술정보연구원 슈퍼컴퓨팅본부 2부산교육대학교 컴퓨터교육과
    디지털콘텐츠학회논문지 Journal of Digital Contents Society JDCS Vol. 18, No. 7, pp. 1411-1418, Nov. 2017 배치 작업 로그 분석을 통한 스케줄링 최적화 연구 Study of Scheduling Optimization through the Batch Job Logs Analysis 1 2* 윤 준 원 · 송 의 성 1한국과학기술정보연구원 슈퍼컴퓨팅본부 2부산교육대학교 컴퓨터교육과 JunWeon Yoon1 · Ui-Sung Song2* 1Department of Supercomputing Center, KISTI, Daejeon 34141, Korea 2*Department of Computer Education, Busan National University of Education, Busan 47503, Korea [요 약] 배치 작업 스케줄러는 클러스터 환경에서 구성된 계산 자원을 인지하고 순서에 맞게 효율적으로 작업을 배치하는 역할을 수행 한다. 클러스터내의 한정된 가용자원을 효율적으로 사용하기 위해서는 사용자 작업의 특성을 분석하여 반영하여야 하는데 이를 위해서는 다양한 스케줄링 알고리즘을 파악하고 해당 시스템 환경에 맞게 적용하는 것이 중요하다. 대부분의 스케줄러 소프트웨 어는 전체 관리 대상의 자원 명세와 시스템의 상태뿐만 아니라 작업 제출부터 종료까지 다양한 사용자의 작업 수행 환경을 반영하 게 된다. 또한 작업 수행과 관련한 다양한 정보 가령, 작업 스크립트, 환경변수, 라이브러리, 작업의 대기, 시작, 종료 시간 등을 저 장하게 된다. 본 연구에서는 배치 스케줄러를 통한 작업 수행과 관련된 정보를 통해 사용자의 작업 성공률, 수행시간, 자원 규모 등의 스케줄러의 수행 로그를 분석하여 문제점을 파악하였다. 향후 이 연구를 바탕으로 자원의 활용률을 높임으로써 시스템을 최 적화할 수 있다. [Abstract] The batch job scheduler recognizes the computational resources configured in the cluster environment and plays a role of efficiently arranging the jobs in order. In order to efficiently use the limited available resources in the cluster, it is important to analyze and characterize the characteristics of user tasks. To do this, it is important to identify various scheduling algorithms and apply them to the system environment.
    [Show full text]
  • Linux Control Groups Univa Grid Engine
    Linux Control Groups Support for Univa Grid Engine Daniel Gruber [email protected] © Copyright Univa 2009-2014 Proprietary and Confidential … a Little Bit of History Sun Grid Engine © Copyright Univa 2009-2014 Proprietary and Confidential … a Little Bit of History Sun Grid Engine Oracle acquired Sun © Copyright Univa 2009-2014 Proprietary and Confidential … a Little Bit of History Sun Grid Engine Oracle acquired Sun Oracle Grid Engine © Copyright Univa 2009-2014 Proprietary and Confidential … a Little Bit of History Sun Grid Engine Oracle acquired Sun Oracle Grid Engine Developers moved to Univa © Copyright Univa 2009-2014 Proprietary and Confidential … a Little Bit of History Sun Grid Engine Oracle acquired Sun Oracle Grid Engine > 3 years ACTIVE Developers moved to Univa Development Univa Grid Engine © Copyright Univa 2009-2014 Proprietary and Confidential … a Little Bit of History Sun Grid Engine Oracle acquired Sun Oracle Grid Engine > 3 years ACTIVE Developers moved to Univa Development Univa Grid Engine 2013: Univa got all source code / IP / customer support for SGE / OGE from Oracle © Copyright Univa 2009-2014 Proprietary and Confidential Many Features added ... ShareTree on Job Array Tasks Cloud Bursting Job Classes Configure PE Sorting Order PostgreSQL Spooling License Orchestrator Support Better Job Runtime Limit Control JSV Enhancements Web GUI For Accounting: UniSight included NUMA Aware Scheduling Better MPI Support RSMAP Easier Debugging Faster JSV Job Submission Time Active Roadmap! World Wide Support Improved Scalability Cray XC-30 Support ...and many more HP CMU Support GPU Support Completely New User Guide MacOS X Support Cache Size Reporting Per Socket Memory Management Memory Affinity Settings Intel Xeon Phi Support Hundreds of Bug Fixes Completely New Admin Guide Completely New Installation Guide © Copyright Univa 2009-2014 Proprietary and Confidential Many Features added ..
    [Show full text]
  • Workload Schedulers - Genesis, Algorithms and Comparisons
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE International Journal of Computer Science and Software Engineering (IJCSSE), Volume 4, Issue 6, June 2015 provided by WestminsterResearch ISSN (Online): 2409-4285 www.IJCSSE.org Page: 141-155 Workload Schedulers - Genesis, Algorithms and Comparisons Leszek Sliwko1 and Vladimir Getov2 1, 2 Faculty of Science and Technology, University of Westminster, 115 New Cavendish Street, United Kingdom [email protected], [email protected] ABSTRACT especially for online request scheduling [60]. However, In this article we provide brief descriptions of three classes of not taking into account additional factors such as current schedulers: Operating Systems Process Schedulers, Cluster server load, network infrastructure or storage availability Systems Jobs Schedulers and Big Data Schedulers. We describe may result in an inefficient utilization of available their evolution from early adoptions to modern implementations, machines and overall higher operational system costs. considering both the use and features of algorithms. In summary, More complex algorithms rely on the availability of static we discuss differences between all presented classes of schedulers and discuss their chronological development. In infrastructure data such as CPU speed, installed memory conclusion we highlight similarities in the focus of scheduling etc. As an example we find largest remaining processing strategies design, applicable to both local and distributed systems. time on fastest machine rule (LRPT-FM), where the job with the most remaining processing time is assigned to Keywords: Schedulers, Workload, Cluster, Cloud, Process, Big fastest machine [45]. LRPT_FM approach offers clear Data. advantages in heterogeneous environments, where the system is composed from machines with different configurations.
    [Show full text]
  • Univa Grid Engine Status at CC-IN2P3 Vanessa HAMAR for the CCIN2P3 Batch Team Overview
    Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules 2014/03/11 Univa Grid Engine status at CC-IN2P3 Vanessa HAMAR for the CCIN2P3 Batch Team Overview } Team members } History } Configuration } Numbers } Grid integration } Monitoring } Multicore } What we want? } Future Plans 2014/03/11 2 Batch team members } Batch team leader: ◦ Suzanne Poulat } System Administrators: 1 FTE ◦ Aurélien Gounon ◦ Mattieu Puel ◦ Vanessa Hamar } User Support and UGE administrators: ◦ Bernard Chambon ◦ Nadia Lajili ◦ Rachid Lemrani 2014/03/11 3 History BQS 1992-2012 OGE 2012-2013 UGE 2013 - ... 2014/03/11 4 History BQS 1992-2012 OGE 2012-2013 UGE 2013 - ... } BQS – Home made batch system ◦ 1992 – 2012 -> 20 years of service! ◦ Stable and robust product: 10.000 simultaneous jobs 100.000 jobs per day 2010 ◦ Jobs and configuration in a MySql DB “HEP world” faced new requirements: • VM • multicores • interactive • increase of the needs 2014/03/11 5 History BQS 1992-2012 OGE 2012-2013 UGE 2013 - ... } OGE ◦ 2010 : Sun Grid Engine (SGE) chosen ◦ Used in a test farm to customize the configuration ◦ March 2011 : Farm opened to users ◦ At the beginning of 2011 : Sun bought by Oracle ◦ since July 2011 : Oracle Grid Engine (OGE) Oracle support was not satisfactory. 2014/03/11 6 History BQS 1992-2012 OGE 2012-2013 UGE 2013 - ... } UGE ◦ Fall 2012 -> Evaluation other Grid Engine options ◦ Early 2013 -> choice of Univa Grid Engine (UGE) ◦ June 2013 -> UGE replaces OGE (2013/06/05) 2014/03/11 7 Configuration - Nodes } Common ◦ Operating
    [Show full text]
  • Oracle Grid Engine: an Overview
    An Oracle White Paper August 2010 Oracle Grid Engine: An Overview Oracle White Paper—Oracle Grid Engine: An Overview Executive Overview Oracle Grid Engine is a powerful workload management tool for maximizing the business value of an organizations computing resources. By using Oracle Grid Engine, businesses can deliver their products faster, more efficiently, and with lower overall costs. This paper Introduces the Oracle Grid Engine product and some common and uncommon use cases. 1 Oracle White Paper—Oracle Grid Engine: An Overview Introduction to Workload Management A computer is a great tool for doing work. For a desktop user that work looks like editing spreadsheets, visiting web sites, and playing Tetris when no one else is looking. The job of the computer is mostly just moving letters and numbers and windows around on the screen. For a server, however, the work looks very different. A server spends its days doing things like hosting web sites, processing email messages, and running calculations. Web sites and email are known as services. They're only useful if they're always (or almost always) there. If they move around or aren't always available, no one will use them. Services are most often run on dedicated machines. Servers tend to be used for one of two purposes: running services or processing workloads. Services tend to be long-running and don't tend to move around much. Workloads, however, such as running calculations, are usually done in a more "on demand" fashion. When a user needs something, he tells the server, and the server does it.
    [Show full text]