Photoexcitation at Titania Surfaces
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Photoelectrochemical Process
Photoelectrochemical process Photoelectrochemical processes are processes in photoelectrochemistry; they usually involve transforming light into other forms of energy. These processes apply to photochemistry, optically pumped lasers, sensitized solar cells, luminescence, and photochromism. Electron excitation Electron excitation is the movement of an electron to a higher energy state. This can either be done by photoexcitation (PE), where the original electron absorbs the photon and gains all the photon's energy or by electrical excitation (EE), where the original electron absorbs the energy of another, energetic electron. Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to move electrons to a higher energy band. When an excited electron falls back to a lower energy state again, it is called electron relaxation. This can be done by radiation of a photon or giving the energy to a third spectator particle as well. In physics there is a specific technical definition for energy level which is often associated with an atom being excited to an excited state. The excited state, in general, is in relation to the ground state, where the excited state is at a higher energy level than the ground state. Photoexcitation Photoexcitation is the mechanism of electron excitation by photon absorption, when the energy of the photon is too low to cause photoionization. The absorption of the photon takes place in accordance with Planck's quantum theory. Photoexcitation plays role in photoisomerization. Photoexcitation is exploited in dye-sensitized solar cells, photochemistry, luminescence, optically pumped lasers, and in some photochromic applications. Photoisomerization In chemistry, photoisomerization is molecular behavior in which structural change between isomers is caused by photoexcitation. -
Excited-State Dynamics of Small Organic Molecules Studied by Time-Resolved Photoelectron Spectroscopy
Excited-state dynamics of small organic molecules studied by time-resolved photoelectron spectroscopy T i n g G e n g Excited -state dynamics of small organic molecules studied by time- resolved photoelectron spectroscopy Ting Geng ©Ting Geng, Stockholm University 2017 ISBN print 978-91-7649-758-6 ISBN PDF 978-91-7649-759-3 Printed by Universitetsservice US-AB, Stockholm 2017 Distributor: Department of Physics, Stockholm university Abstract Ultra-violet and visible light induced processes in small organic molecules play very important roles in many fields, e.g., enviromental sciences, biology, material development, chemistry, astrophysics, and many others. Thus it is of great importance to better understand the mechanisms behind these processes. To achieve this, a bottom-up approach is most effective, where the photo-induced dynamics occurring in the simplest organic molecule (ethylene) are used as a starting point. Simple substituents and functional groups are added in a controlled manner to ethylene, and changes in the dynamics are investigated as a function of these modifications. In this manner, the dynamics occurring in more complex systems can be explored from a known base. In this thesis, the excited state dynamics of small organic molecules are studied by a combination of time-resolved photoelectron spectroscopy and various computational methods in order to determine the basic rules necessary to help understand and predict the dynamics of photo-induced processes. The dynamics occurring in ethylene involve a double bond torsion on the ππ * excited state, followed by the decay to the ground state coupled with pyramidalization and hydrogen migration. Several different routes of chemical modification are used as the basis to probe these dynamics as the molecular complexity is increased (i) When ethylene is modified by the addition of an alkoxyl group (-OC nH2n+1 ), a new bond cleavage reaction is observed on the πσ * state. -
Enantioselective Organocatalytic Alkylation of Aldehydes and Enals Driven by the Direct Photoexcitation of Enamines † † † † † ‡ Mattia Silvi, Elena Arceo, Igor D
View metadata, citation and similar papers at core.ac.uk brought to you by CORE This is an open access article published under an ACS AuthorChoice License, which permits copying and redistribution of the article or any adaptations for non-commercial purposes. provided by ZENODO Communication pubs.acs.org/JACS Enantioselective Organocatalytic Alkylation of Aldehydes and Enals Driven by the Direct Photoexcitation of Enamines † † † † † ‡ Mattia Silvi, Elena Arceo, Igor D. Jurberg, Carlo Cassani, and Paolo Melchiorre*, , † ICIQ−Institute of Chemical Research of Catalonia, Av. Països Catalans 16, 43007 Tarragona, Spain ‡ ICREA−Catalan Institution for Research and Advanced Studies, Pg. Lluís Companys 23, 08010 Barcelona, Spain *S Supporting Information ABSTRACT: Disclosed herein is a photo-organocatalytic enantioselective α- and γ-alkylation of aldehydes and enals, respectively, with bromomalonates. The chemistry uses a commercially available aminocatalyst and occurs under illumination by a fluorescent light bulb in the absence of any external photoredox catalyst. Mechanistic investiga- tions reveal the previously hidden ability of transiently generated enamines to directly reach an electronically excited state upon light absorption while successively triggering the formation of reactive radical species from the organic halides. At the same time, the ground state chiral enamines provide effective stereochemical induction for the enantioselective alkylation process. Figure 1. Mechanisms that enamines can use to drive the photochemical generation of radicals: (a) by inducing ground state EDA complex formation; (b) acting as a photosensitizer upon direct photoexcitation. espite their synthetic potential, it is challenging to develop The enamine radical cation, resulting from the SET, is not shown. The D enantioselective catalytic variants of visible light-driven gray circle represents the chiral organocatalyst scaffold.