Department of Defense

Total Page:16

File Type:pdf, Size:1020Kb

Department of Defense Vol. 76 Thursday No. 13 January 20, 2011 Part III Department of Defense Science and Technology Reinvention Laboratory Personnel Management Demonstration Project, Department of the Army, Army Research, Development and Engineering Command, Armament Research, Development and Engineering Center (ARDEC); Notice VerDate Mar 15 2010 20:22 Jan 19, 2011 Jkt 223001 PO 00000 Frm 00001 Fmt 7217 Sfmt 7217 E:\FR\FM\PARTS3.XXX PARTS3 srobinson on DSKHWCL6B1PROD with MISCELLANEOUS NARA.EPS FR.EPS 3744 Federal Register / Vol. 76, No. 13 / Thursday, January 20, 2011 / Notices DEPARTMENT OF DEFENSE Law 103–337, as amended, a number of covered employees, it must convert, at DoD STRL personnel demonstration a minimum, its NSPS covered Office of the Secretary projects were approved. These projects employees to a personnel management are ‘‘generally similar in nature’’ to the demonstration project (Lab Demo) Science and Technology Reinvention Department of Navy’s ‘‘China Lake’’ before the end of April 2011. Laboratory Personnel Management Personnel Demonstration Project. The The proposed STRL Demonstration Demonstration Project, Department of terminology, ‘‘generally similar in Project Plan for ARDEC was published the Army, Army Research, nature,’’ does not imply an emulation of on September 9, 2010 in 75 Federal Development and Engineering various features, but rather implies a Register (FR) 55200 that was Command, Armament Research, similar opportunity and authority to subsequently corrected by 75 FR 60091 Development and Engineering Center develop personnel flexibilities that published on September 29, 2010. (ARDEC) significantly increase the decision During the public comment period AGENCY: Office of the Deputy Under authority of laboratory commanders ending October 9, 2010, DoD received Secretary of Defense (Civilian Personnel and/or directors. 40 comments. All comments were Policy), DoD. This demonstration project involves: carefully considered. Some comments addressed topics that were outside the ACTION: Notice. (1) Two appointment authorities (permanent and modified term); project’s scope or the demonstration SUMMARY: Section 342(b) of the National (2) Modified probationary period for authority of 5 U.S.C. 4703. These Defense Authorization Act (NDAA) for newly hired employees; comments are not included in the Fiscal Year (FY) 1995, Public Law 103– (3) Modified supervisory and summary below. 337 (10 U.S.C. 2358 note), as amended managerial probationary period; The following summary addresses the by section 1109 of NDAA for FY 2000, (4) Pay banding; pertinent comments received, provides Public Law 106–65, and section 1114 of (5) Streamlined delegated examining; responses, and notes resultant changes NDAA for FY 2001, Public Law 106– (6) Modified reduction-in-force (RIF) to the original project plan in the first 398, authorizes the Secretary of Defense procedures; Federal Register notice. (7) Simplified job classification; to conduct personnel demonstration A. General projects at DoD laboratories designated (8) A contribution-based appraisal Seven general comments were as Science and Technology Reinvention system; (9) Academic degree and certificate received; responses are provided below. Laboratories (STRLs) to determine (1) Comment: Employees should be whether a specified change in personnel training; (10) Sabbaticals; returned to the GS system because it is management policies or procedures (11) A Volunteer Emeritus Corps; viewed that the NSPS performance would result in improved Federal (12) Direct hire authority for system lost the classification restrictions personnel management. Section 1105 of candidates with advanced degrees for and allowed for growth in salaries the NDAA for FY 2010, Public Law 111– scientific and engineering positions; and beyond the GS classification guides. 84, 123 Stat. 2486, October 28, 2009, (13) Distinguished Scholastic Also, the merit compensation system designates additional DoD laboratories Achievement Appointment Authority. allowed for compensation growth not as STRLs for the purpose of designing based on merit. It would be most 2. Overview and implementing personnel beneficial to only have one performance management demonstration projects for The NDAA for FY 2010 not only system, that being the GS system. conversion of employees from the designated new STRLs but also repealed Response: Public Law 111–84, section personnel system which applied on the National Security Personnel System 1105, prevents ARDEC from returning to October 28, 2009. The ARDEC is listed (NSPS) mandating conversion of NSPS the GS system and requires ARDEC to in subsection 1105(a) of NDAA for FY covered employees to their former develop a Lab Demo. The ARDEC Lab 2010 as one of the newly designated personnel system or one that would Demo has been designed to capture the STRLs. have applied absent the NSPS. A positive features of various personnel DATES: Implementation of this number of ARDEC employees are management systems/projects in use demonstration project will begin no covered by the NSPS and must be today. Specifically, in reference to this earlier than March 9, 2011. converted to another personnel system. comment, the ARDEC Lab Demo design FOR FURTHER INFORMATION CONTACT: Section 1105 of NDAA for FY 2010 is founded on the principle that ARDEC: Ms. Christina Duncan, U.S. stipulates the STRLs designated in standard classification criteria are the Army ARDEC, Human Capital subsection (a) of section 1105 may not basis for both performance assessment Management Office, Building 1, 3rd implement any personnel system, other and pay setting. In reference to the Floor, RDAR–EIH, Picatinny Arsenal NJ than a personnel system under an comment that it would be beneficial to 07806–5000. appropriate demonstration project as have only one performance system, the DoD: Ms. Betty Duffield, CPMS–PSSC, defined in section 342(b) of Public Law ARDEC Lab Demo performance Suite B–200, 1400 Key Boulevard, 103–337, as amended, without prior management system is designed to be Arlington, VA 22209–5144. congressional authorization. In addition, the performance management system for SUPPLEMENTARY INFORMATION: any conversion under the provisions of the ARDEC workforce. No change to the section 1105 shall not adversely affect Lab Demo plan is required. 1. Background any employee with respect to pay or any (2) Comment: The unions have Since 1966, many studies of DoD other term or condition of employment; already rejected participation in this Lab laboratories have been conducted on shall be consistent with section 4703(f) Demo, as they have rejected laboratory quality and personnel. of title 5 United States Code (U.S.C.), participation in the previous two Almost all of these studies have and shall be completed within 18 attempts to revise the General Schedule recommended improvements in civilian months after enactment of NDAA for FY system. All implications that this Lab personnel policy, organization, and 2010. Therefore, since ARDEC is both Demo is a full workforce management management. Pursuant to the authority designated an STRL by section 1105 of process need to be stricken from the provided in section 342(b) of Public NDAA for FY 2010 and has NSPS descriptions and pay bands. This VerDate Mar<15>2010 19:07 Jan 19, 2011 Jkt 223001 PO 00000 Frm 00002 Fmt 4701 Sfmt 4703 E:\FR\FM\20JAN2.SGM 20JAN2 srobinson on DSKHWCL6B1PROD with MISCELLANEOUS Federal Register / Vol. 76, No. 13 / Thursday, January 20, 2011 / Notices 3745 proposal is only for the management matures, the full expectation is that B. Participating Employees officials at ARDEC, and should be employees will be satisfied. No change Two similar comments regarding described as such, particularly when to the initial Federal Register notice is participating employees were received addressing the expected benefits on required. and the response is provided below. page 55202. (6) Comment: I believe that this (1) Comment (two similar comments Response: The public law directed system is inherently unfair and not in combined): ARDEC should have the ARDEC to develop a personnel system line with standard US Government right to exclude When Actually that could cover the majority of the personnel practices. This system Employed (WAE), Summer Hires (i.e., workforce, not just management suggests ‘‘pay for contribution.’’ STEPs) and Co-ops (i.e., SCEPs) from officials. The Lab Demo plan was Contribution level is inherently tied to Lab Demo coverage at least until the designed to cover both bargaining and job assignment. A supervisor, upper bargaining unit employees are included. non-bargaining unit eligible employees. management, or fiscal events could ARDEC needs to be able to use The intent is for ARDEC to continue to dictate responsibility reduction, at no discretion on that point. pursue Union acceptance. Upon initial fault of an employee, which would Response: Public Law 111–84, section conversion, there will be both non- eventually result in a lower contribution 1105(b) indicates that the personnel of management and management rating and reduced salary. A salary each STRL designated in section employees within the ARDEC in Lab reduction without merit is not fair and 1105(a), which includes ARDEC, are to Demo positions spanning the full will definitely not result in ‘‘increased convert to an appropriate demonstration spectrum of the pay bands and employee satisfaction.’’ project as referred to in Public Law 103– associated occupational families. No Response: The ARDEC Lab Demo 337, section 342(b). These
Recommended publications
  • Revision of ST61, Nor Was the Stockholm Agreement of 1961 the First Broadcasting Frequency Plan
    SPECTRUM PLANNING Revision of ST61— Lessons learned from history J. Doeven Nozema, the Netherlands Over the next few years, the Stockholm Frequency Plan of 1961 will be revised to produce a new plan for digital broadcasting in the European Broadcasting Area. In this article, the author describes some of the lessons learned from history which must be taken into account when revising the original Stockholm Plan. Introduction In June 2001, the ITU Council decided – on the basis of a proposal from European countries – that the Stock- holm Agreement of 1961 (ST61) shall be revised in order to make a new frequency plan for digital broadcast- ing. The conference to revise ST61 will consist of two sessions. The first session is planned for May 2004; the second session is foreseen in 2005 or 2006. This conference will not be the first revision of ST61, nor was the Stockholm Agreement of 1961 the first broadcasting frequency plan. Since the start of broadcasting there has been a need for a-priori frequency plans; i.e. frequency plans that are made at a conference and are valid for a long period of time, often 15 or more years. Actually, the Stockholm Plan of 1961 has been in use for more than 40 years! In retrospect, the results achieved at some earlier broadcasting conferences 1 can be reviewed and weighted against the principal conditions required for establishing a-priori plans. The conclusions drawn from this exer- cise may then provide a valuable lesson from history as we prepare for the revision of ST61. A-priori plans Around 1920, broadcasting started in a number of countries.
    [Show full text]
  • Provisioning in Multi-Band Optical Networks
    2598 JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 38, NO. 9, MAY 2020 Provisioning in Multi-Band Optical Networks Nicola Sambo , Alessio Ferrari , Antonio Napoli , Nelson Costa, João Pedro , Bernd Sommerkorn-Krombholz, Piero Castoldi , and Vittorio Curri (Highly-Scored Paper) Abstract—Multi-band (MB) optical transmission promises to transmission bands beyond C – where SMF can propagate light extend the lifetime of existing optical fibre infrastructures, which in single mode.1 First upgrades to L-band have been carried + usually transmit within the C-band only, with C L-band being out for example in [4]. At the moment, advanced research is also used in a few high-capacity links. In this work, we propose a physical-layer-aware provisioning scheme tailored for MB systems. considering S- [5], [6] and U-band [7] for transmission. Recent This solution utilizes the physical layer information to estimate, improvements on optical components have demonstrated, for by means of the generalized Gaussian noise (GGN) model, the example, wideband amplifiers [8], [9] and transceivers [10] with generalized signal-to-noise ratio (GSNR). The GSNR is evaluated improved optical performance. Moreover, MB transmission is assuming transmission up to the entire low-loss spectrum of optical also supported by the large amount of deployed optical fibers fiber, i.e., from 1260 to 1625 nm. We show that MB transmission may lead to a considerable reduction of the blocking probability, with negligible absorption peak at short wavelengths [11]. despite the increased transmission penalties resulting from using Until now, networking studies — e.g., on lightpath provi- additional optical fiber transmission bands. Transponders support- sioning and routing and spectrum assignment — have focused ing several modulation formats (polarization multiplexing – PM – mainly on C-band systems [12]–[16].
    [Show full text]
  • Spectrum/Frequency Requirements for Bands Allocated to Broadcasting on a Primary Basis
    Report ITU-R BT.2387-0 (07/2015) Spectrum/frequency requirements for bands allocated to broadcasting on a primary basis BT Series Broadcasting service (television) ii Rep. ITU-R BT.2387-0 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Annex 1 of Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Recommendations on Issues Related to Digital Radio Broadcasting in India 1St February, 2018 Mahanagar Doorsanchar Bhawan Jawahar
    Recommendations on Issues related to Digital Radio Broadcasting in India 1st February, 2018 Mahanagar Doorsanchar Bhawan Jawahar Lal Nehru Marg New Delhi-110002 Website: www.trai.gov.in i Contents INTRODUCTION ................................................................................................... 1 CHAPTER 2: Digital Radio Broadcasting Technologies and International Scenario .............................................................................................................. 5 CHAPTER 3: Issues Related to Digitization of FM Radio Broadcasting .............. 15 CHAPTER 4: Summary of Recommendations .................................................... 40 ii CHAPTER 1 INTRODUCTION 1.1 Radio remains an integral part of India‟s rich culture, social and economic landscape. Radio broadcasting1 is one of the most popular and affordable means for mass communication, largely owing to its wide coverage, low set up costs, terminal portability and affordability. 1.2 At present, analog terrestrial radio broadcast in India is carried out in Medium Wave (MW) (526–1606 KHz), Short Wave (SW) (6–22 MHz), and VHF-II (88–108 MHz) spectrum bands. VHF-II band is popularly known as FM band due to deployment of Frequency Modulation (FM) technology in this band. AIR - the public service broadcaster - has established 467 radio stations encompassing 662 radio transmitters, which include 140 MW, 48 SW, and 474 FM transmitters for providing radio broadcasting services2. It also provides overseas broadcasts services for its listeners across the world. 1.3 Until 2000, AIR was the sole radio broadcaster in the country. In the year 2000, looking at the changing market dynamics, the government took an initiative to open the FM radio broadcast for private sector participation. In Phase-I of FM Radio, the government auctioned 108 FM radio channels in 40 cities. Out of these, only 21 FM radio channels became operational and subsequently migrated to Phase-II in 2005.
    [Show full text]
  • EN 301 357-2 V1.4.1 (2008-09) Harmonized European Standard (Telecommunications Series)
    Final draft ETSI EN 301 357-2 V1.4.1 (2008-09) Harmonized European Standard (Telecommunications series) Electromagnetic compatibility and Radio spectrum Matters (ERM); Cordless audio devices in the range 25 MHz to 2 000 MHz; Part 2: Harmonized EN covering essential requirements of article 3.2 of the R&TTE Directive 2 Final draft ETSI EN 301 357-2 V1.4.1 (2008-09) Reference REN/ERM-TG17WG3-261-2 Keywords audio, radio, radio MIC, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission.
    [Show full text]
  • 1 357 V2.0.1 (2017-03)
    Draft ETSI EN 301 357 V2.0.1 (2017-03) HARMONISED EUROPEAN STANDARD Cordless audio devices in the range 25 MHz to 2 000 MHz; Harmonised Standard covering the essential requirements of article 3.2 of Directive 2014/53/EU 2 Draft ETSI EN 301 357 V2.0.1 (2017-03) Reference REN/ERM-TG17-19-2 Keywords audio, harmonised standard, radio, radio MIC, testing ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice The present document can be downloaded from: http://www.etsi.org/standards-search The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx If you find errors in the present document, please send your comment to one of the following services: https://portal.etsi.org/People/CommiteeSupportStaff.aspx Copyright Notification No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
    [Show full text]
  • Tektronix Real-Time Spectrum Analysis Solutions Common Worldwide Wireless Technologies
    Worldwide Spectrum Allocations (Courtesy of Tektronix) 135.7 137.8 156.4875 156.5625 698.0 5.091 SELECTED POINTS OF INTEREST: 7 7 International Shortwave Broadcasters 14 14 Emergency Locator Transponders (ELT) 2121 Distance Measurement Equipment (DME) 2828 Satellite Television Broadcast 35 35 Police Radar Speed Measurement ‘Selected Points of Interest’ are based on popular allocation applications, and Aeronautical Mobile Fixed Meteorological Aids Radionavigation may not be exhaustive or applicable for all nations. 1 Underground Cable Locating Equipment 8 Citizen Band Radios (CB) 15 International Maritime Channels 22 Aircraft ATC Radar Transponders 29 Aircraft Radar Altimeters 36 Radar Motion Detectors (Doors & Alarms) This chart represents a single point in time of the International Telecommunications Union (ITU) worldwide spectral allocations summarized in the US FCC Code of Federal Regulations. As such, it does not completely reflect all aspects such Aeronautical Mobile Satellite Meteorological Satellite Radionavigation Satellite 2 eLORAN Fixed Satellite 9 VHF Television (TV) 16 Garage Door Openers 23 Global Positioning System (GPS, L1) 30 Wireless Local Area Networks (WLAN) 802.11a, 37 Direct Broadcast Satellite as footnotes and recent changes. Users should always consult their national 3 ADF Non-Directional Beacons (NDB) 10 FM Radio Broadcast 17 Automobile Remote Keyless Entry (RKE) 24 Broadcast Satellite Radio Services n (Wifi 4), ac (Wifi 5), ax (Wifi 6) 38 Inter-Satellite Frequency & Time Standard Reference regulatory body for current allocations. Aeronautical Radionavigation Inter-Satellite Mobile Space Operation This chart does not differentiate between Co-PRIMARY and Secondary alloca- tions. Allocations are listed from top to bottom in the order they appear in table 4 AM Radio Broadcast 11 VHF Omni-directional Range (VOR) 18 Aircraft Landing Glide Slope (GS) 25 Wireless Local Area Networks 802.11b, 31 Weather Radar – Large Aircraft 39 Automotive Radar 2.106.
    [Show full text]
  • RF & Microwave Products for Aerospace & Defense
    RF & Microwave Products for Aerospace & Defense richardsonrfpd.com New Products for Aerospace and Defense September 2021 Aerospace and Defense Electronic Warfare Semiconductors - ICs Attenuators - Active Attenuator - Variable Voltage Mfg Part Number Supplier Technology Minimum MHz Maximum MHz Attenuation dB Insertion Loss dB P1dB dBm Frequency Frequency Control Range (dB Learn More pdf CHT4660-FAB-FULL- United Monolithic GaAs 500 16000 35 2 27 0358 Semiconductors Linear ICs Data Converters Converter - ADC Mfg Part Number Supplier Resolution Bits Sample Rate kSPS Sample Rate MSPS Data Bus Number of Minimum VDC Interface Channels Supply Voltage Learn More pdf AD9988BBPZ-4D4AC Analog Devices, Inc. (ADI) 16 4 1.9 Page 1 of 41 richardsonrfpd.com New Products for Aerospace and Defense September 2021 Aerospace and Defense Electronic Warfare Semiconductors - ICs RF Amplifiers Amplifiers - mmW mmW LNA Mfg Part Number Supplier Technology Minimum MHz Maximum MHz Gain dB Gain Flatness dB Noise Figure dB Frequency Frequency Learn More pdf ADL7003CHIPS Analog Devices, Inc. (ADI) GaAs 50000 95000 15 5.5 Page 2 of 41 richardsonrfpd.com New Products for Aerospace and Defense September 2021 Aerospace and Defense Electronic Warfare Semiconductors - ICs RF Amplifiers Amplifiers - RF & Microwave RF & MW LNA Mfg Part Number Supplier Technology Minimum MHz Maximum MHz Gain dB Gain Flatness dB Noise Figure dB Frequency Frequency Learn More pdf ADL8150ACPZN Analog Devices, Inc. (ADI) GaAs 6000 14000 12 0.5 3.6 Learn More pdf ADL9005ACPZN-R7 Analog Devices, Inc. (ADI) GaAs 10 26500 18.5 3 Learn More pdf ADL9006ACGZN Analog Devices, Inc. (ADI) GaAs 2000 28000 15.5 2.5 Learn More pdf ADL9006CHIPS Analog Devices, Inc.
    [Show full text]
  • Report ITU-R BS.2214-3 (04/2019)
    Report ITU-R BS.2214-3 (04/2019) Planning parameters for terrestrial digital sound broadcasting systems in VHF bands BS Series Broadcasting service (sound) ii Rep. ITU-R BS.2214-3 Foreword The role of the Radiocommunication Sector is to ensure the rational, equitable, efficient and economical use of the radio- frequency spectrum by all radiocommunication services, including satellite services, and carry out studies without limit of frequency range on the basis of which Recommendations are adopted. The regulatory and policy functions of the Radiocommunication Sector are performed by World and Regional Radiocommunication Conferences and Radiocommunication Assemblies supported by Study Groups. Policy on Intellectual Property Right (IPR) ITU-R policy on IPR is described in the Common Patent Policy for ITU-T/ITU-R/ISO/IEC referenced in Resolution ITU-R 1. Forms to be used for the submission of patent statements and licensing declarations by patent holders are available from http://www.itu.int/ITU-R/go/patents/en where the Guidelines for Implementation of the Common Patent Policy for ITU-T/ITU-R/ISO/IEC and the ITU-R patent information database can also be found. Series of ITU-R Reports (Also available online at http://www.itu.int/publ/R-REP/en) Series Title BO Satellite delivery BR Recording for production, archival and play-out; film for television BS Broadcasting service (sound) BT Broadcasting service (television) F Fixed service M Mobile, radiodetermination, amateur and related satellite services P Radiowave propagation RA Radio astronomy RS Remote sensing systems S Fixed-satellite service SA Space applications and meteorology SF Frequency sharing and coordination between fixed-satellite and fixed service systems SM Spectrum management Note: This ITU-R Report was approved in English by the Study Group under the procedure detailed in Resolution ITU-R 1.
    [Show full text]
  • Fundamental Studies on the Interactions Between Moisture and Textiles V
    Polymer Journal, Vol. 19, No. 7, pp 785-804 (1987) Fundamental Studies on the Interactions between Moisture and Textiles V. FT-IR Study on the Moisture Sorption Isotherm of Nylon 6t Mitsuhiro FUKUDA, Mariko MIYAGAWA,tt Hiromichi KAWAI,ttt Noriko YAGI,* Osamu KIMURA,* and Toshihiko OHTA* Department of Practical Life Studies, Faculty of Teacher Education, Hyogo University of Teacher Education, Hyogo 673-14, Japan *Research Center, Toyo-bo Co., Ltd., Ohtsu, Shiga 520-02, Japan (Received October 3, 1986) ABSTRACT: The interaction of moisture with nylon 6 was investigated using an FT-IR spectroscopy over a near-infrared range of wavenumbers from 4500 to 8000 em - 1 to cover the first overtones of (2vCH) and (2vNH) as well as the water sensitive 5100 and 6900 em - 1 bands, a combination of (<10 H)+(v.,0 H) and a combination of (v,0 H)+(v"'0 H), respectively. Two types of differential procedures were performed to separate the contribution of the water sensitive bands from the entire spectrum: i.e., subtracting the spectrum of the test specimen conditioned at dryness of 0% relative humidity from that conditioned at a given relative humidity of x% (procedure A) or the spectrum for x% from that for (x + tl.x)% (procedure B), both as functions of the given relative humidity of x%. From the areas of the water sensitive bands thus separated, the moisture sorption isotherm could be composed in fairly good agreement with that obtained by a gravimetric method. The 6900 em - 1 band of bulk water as well as those in the differential spectra, were decomposed into three components of a Lorentzian function, sub-band I, 1-11, and II in the order of descending wavenumber.
    [Show full text]
  • A Simple Guide to Radio Spectrum
    SPECTRUM MANAGEMENT A Radiosimple guide to spectrum Nigel Laflin and Bela Dajka BBC The radio spectrum is a scarce resource. The advent of digital services which use spectrum more efficiently than analogue services will make spectrum available for new, innovative services. But spectrum scarcity will not disappear as these new services are developed. Furthermore, radio waves do not respect international borders, buildings or each other. International harmonisation is needed for each spectrum band. Recent years have seen a distinct move by the Government towards the use of market forces, for example through the auctioning of spectrum. Those responsible for spectrum planning face difficult decisions. How, in particular, should they decide what is the right balance between making spectrum available for companies providing commercial services, and ensuring universal availability of public services? Introduction New developments in broadcast and mobile communication technologies have increased the demand for radio-frequency spectrum, a finite natural resource. Pressure is growing on the regula- tors and current users to accommodate more and more services. Mobile television, wireless broad- band and enhanced mobile phone services, additional television channels and high-definition television (HDTV) are all lining up to be launched. Experts generally agree that if all existing analogue services were provided in a digital format, their spectrum needs would be one quarter of their current take-up. In other words, three quarters of the currently-occupied spectrum could become available to be used for other services. But it is a bit more complicated than that. Different technologies work better in particular parts of the spectrum. Certain frequency bands will remain occupied by current users while others will be cleared for new uses.
    [Show full text]
  • The Future of Radio Broadcasting in Europe Replies to Questionnaires
    Rapportnummer Datum RSPG10-349 bis 2010-09-23 The future of radio broadcasting in Europe Replies to questionnaires Working Group RSPG10-316 Future of Radio Broadcasting Post- och telestyrelsen Box 5398 102 49 Stockholm 08-678 55 00 [email protected] www.pts.se Kommunikationsmyndigheten PTS Post- och telestyrelsen 2 Introduction At its meeting on the 11th February 2010 the Radio Spectrum Policy Group (RSPG) decided that there was a need to study in more detail the future of radio broadcasting in Europe with a view to understand possible spectrum implications. A working group was formed to undertake the work, chaired by Sweden. Two questionnaires were sent out by the group to both member states and industry – asking for the view on strategic challenges and opportunities of the radio broadcasting sector today. The questionnaire to member states was comprised of four parts – public policy objectives, market issues, European initiatives and usage of spectrum. In the case of the industry the questionnaire was comprised of four questions covering both market and technical aspects. However, not all replies covered all questions. The conclusions by the Working Group based on these replies can be found in a separate report presented to RSPG in November 2010. In this document the replies from member states are presented as is – the replies from industry have been sorted in the order of reasoning that the fore mentioned report has been put together. There is however a great value just in having all the replies being put together as in this document – for everyone to take part of and gain knowledge of the status of Radio Broadcasting in Europe today.
    [Show full text]