The Modern* Geometry of Trianglethe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
What's Your Altitude?
TImath.com Geometry Hey, Ortho! What’s Your Altitude? Time Required ID: 11484 45 minutes Activity Overview In this activity, students will explore the altitudes of a triangle. They will discover that the altitude can be inside, outside, or a side of the triangle. Then, students will discover that the altitudes are concurrent. The point of concurrency is the orthocenter. They should also discover the relationship between the type of triangle and the location of the point of concurrency. Finally, students will discover properties of the orthocenter in equilateral triangles. Topic: Triangle & Their Centers • Altitudes of a Triangle • Orthocenter Teacher Preparation and Notes • This activity was written to be explored with the TI-Nspire. • The answers to all problems except Exercise 8 can be answered in the TI-Nspire document. • This is an introductory activity in which students will need to know how to change between pages, construct triangles, grab and move points, measure lengths, and construct the perpendicular bisector. • The multiple choice items are self-check, and students can check them by pressing / + S. • To download the student and solution TI-Nspire documents (.tns files) and student worksheet, go to education.ti.com/exchange and enter “11484” in the quick search box. Associated Materials • HeyOrthoWhatsYourAltitude_Student.doc • HeyOrthoWhatsYourAltitude.tns • HeyOrthoWhatsYourAltitude_Soln.tns Suggested Related Activities To download any activity listed, go to education.ti.com/exchange and enter the number in the quick search box. • Centroid and Orthocenter (TI-84 Plus family) — 4618 • Exploring the Orthocenter of a Triangle (TI-84 Plus family) — 6863 • The Orthocenter of a Triangle (TI-89 Titanium) — 4597 ©2010 Texas Instruments Incorporated Teacher Page Hey, Ortho! What’s Your Altitude TImath.com Geometry Problem 1 – Exploring the Altitude of a Triangle On page 1.2, students should define the altitude of a triangle using their textbook or other source. -
Special Isocubics in the Triangle Plane
Special Isocubics in the Triangle Plane Jean-Pierre Ehrmann and Bernard Gibert June 19, 2015 Special Isocubics in the Triangle Plane This paper is organized into five main parts : a reminder of poles and polars with respect to a cubic. • a study on central, oblique, axial isocubics i.e. invariant under a central, oblique, • axial (orthogonal) symmetry followed by a generalization with harmonic homolo- gies. a study on circular isocubics i.e. cubics passing through the circular points at • infinity. a study on equilateral isocubics i.e. cubics denoted 60 with three real distinct • K asymptotes making 60◦ angles with one another. a study on conico-pivotal isocubics i.e. such that the line through two isoconjugate • points envelopes a conic. A number of practical constructions is provided and many examples of “unusual” cubics appear. Most of these cubics (and many other) can be seen on the web-site : http://bernard.gibert.pagesperso-orange.fr where they are detailed and referenced under a catalogue number of the form Knnn. We sincerely thank Edward Brisse, Fred Lang, Wilson Stothers and Paul Yiu for their friendly support and help. Chapter 1 Preliminaries and definitions 1.1 Notations We will denote by the cubic curve with barycentric equation • K F (x,y,z) = 0 where F is a third degree homogeneous polynomial in x,y,z. Its partial derivatives ∂F ∂2F will be noted F ′ for and F ′′ for when no confusion is possible. x ∂x xy ∂x∂y Any cubic with three real distinct asymptotes making 60◦ angles with one another • will be called an equilateral cubic or a 60. -
Control Point Based Representation of Inellipses of Triangles∗
Annales Mathematicae et Informaticae 40 (2012) pp. 37–46 http://ami.ektf.hu Control point based representation of inellipses of triangles∗ Imre Juhász Department of Descriptive Geometry, University of Miskolc, Hungary [email protected] Submitted April 12, 2012 — Accepted May 20, 2012 Abstract We provide a control point based parametric description of inellipses of triangles, where the control points are the vertices of the triangle themselves. We also show, how to convert remarkable inellipses defined by their Brianchon point to control point based description. Keywords: inellipse, cyclic basis, rational trigonometric curve, Brianchon point MSC: 65D17, 68U07 1. Introduction It is well known from elementary projective geometry that there is a two-parameter family of ellipses that are within a given non-degenerate triangle and touch its three sides. Such ellipses can easily be constructed in the traditional way (by means of ruler and compasses), or their implicit equation can be determined. We provide a method using which one can determine the parametric form of these ellipses in a fairly simple way. Nowadays, in Computer Aided Geometric Design (CAGD) curves are repre- sented mainly in the form n g (u) = j=0 Fj (u) dj δ Fj :[a, b] R, u [a, b] R, dj R , δ 2 P→ ∈ ⊂ ∈ ≥ ∗This research was carried out as a part of the TAMOP-4.2.1.B-10/2/KONV-2010-0001 project with support by the European Union, co-financed by the European Social Fund. 37 38 I. Juhász where dj are called control points and Fj (u) are blending functions. (The most well-known blending functions are Bernstein polynomials and normalized B-spline basis functions, cf. -
Circles in Areals
Circles in areals 23 December 2015 This paper has been accepted for publication in the Mathematical Gazette, and copyright is assigned to the Mathematical Association (UK). This preprint may be read or downloaded, and used for any non-profit making educational or research purpose. Introduction August M¨obiusintroduced the system of barycentric or areal co-ordinates in 1827[1, 2]. The idea is that one may attach weights to points, and that a system of weights determines a centre of mass. Given a triangle ABC, one obtains a co-ordinate system for the plane by placing weights x; y and z at the vertices (with x + y + z = 1) to describe the point which is the centre of mass. The vertices have co-ordinates A = (1; 0; 0), B = (0; 1; 0) and C = (0; 0; 1). By scaling so that triangle ABC has area [ABC] = 1, we can take the co-ordinates of P to be ([P BC]; [PCA]; [P AB]), provided that we take area to be signed. Our convention is that anticlockwise triangles have positive area. Points inside the triangle have strictly positive co-ordinates, and points outside the triangle must have at least one negative co-ordinate (we are allowed negative masses). The equation of a line looks like the equation of a plane in Cartesian co-ordinates, but note that the equation lx + ly + lz = 0 (with l 6= 0) is not satisfied by any point (x; y; z) of the Euclidean plane. We use such equations to describe the line at infinity when doing projective geometry. -
Application of Nine Point Circle Theorem
Application of Nine Point Circle Theorem Submitted by S3 PLMGS(S) Students Bianca Diva Katrina Arifin Kezia Aprilia Sanjaya Paya Lebar Methodist Girls’ School (Secondary) A project presented to the Singapore Mathematical Project Festival 2019 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Abstract In mathematics geometry, a nine-point circle is a circle that can be constructed from any given triangle, which passes through nine significant concyclic points defined from the triangle. These nine points come from the midpoint of each side of the triangle, the foot of each altitude, and the midpoint of the line segment from each vertex of the triangle to the orthocentre, the point where the three altitudes intersect. In this project we carried out last year, we tried to construct nine-point circles from triangulated areas of an n-sided polygon (which we call the “Original Polygon) and create another polygon by connecting the centres of the nine-point circle (which we call the “Image Polygon”). From this, we were able to find the area ratio between the areas of the original polygon and the image polygon. Two equations were found after we collected area ratios from various n-sided regular and irregular polygons. Paya Lebar Methodist Girls’ School (Secondary) 1 Singapore Mathematic Project Festival 2019 Application of the Nine-Point Circle Acknowledgement The students involved in this project would like to thank the school for the opportunity to participate in this competition. They would like to express their gratitude to the project supervisor, Ms Kok Lai Fong for her guidance in the course of preparing this project. -
Deko Dekov, Anticevian Corner Triangles PDF, 101
Journal of Computer-Generated Euclidean Geometry Anticevian Corner Triangles Deko Dekov Abstract. By using the computer program "Machine for Questions and Answers", we study perspectors of basic triangles and triangles of triangle centers of anticevian corner triangles. Given a triangle ABC and a triangle center of kind 1, labeled by P. Let A1B1C1 be the anticevian triangle of P. Construct triangle centers A2, B2, C2 of kind 2 (possibly different from the kind 1) of triangles A1BC, B1CA, C1AB, respectively. We call triangle A2B2C2 the Triangle of the Triangle Centers of kind 2 of the Anticevian Corner triangles of the Triangle Center of kind 1. See the Figure: P - Triangle Center of kind 1; A1B1C1 - Anticevian Triangle of P; A2, B2, C2 - Triangle Centers of kind 2 of triangles A1BC, B1CA, C1AB, respectively; A2B2C2 - Triangle of the Triangle Centers of kind 2 of the Anticevian Corner Triangles of Journal of Computer-Generated Euclidean Geometry 2007 No 5 Page 1 of 14 the Triangle Center of kind 1. In this Figure: P - Incenter; A1B1C1 - Anticevian Triangle of the Incenter = Excentral Triangle; A2, B2, C2 - Centroids of triangles A1BC, B1CA, C1AB, respectively; A2B2C2 - Triangle of the Centroids of the Anticevian Corner Triangles of the Incenter. Known result (the reader is invited to submit a note/paper with additional references): Triangle ABC and the Triangle of the Incenters of the Anticevian Corner Triangles of the Incenter are perspective with perspector the Second de Villiers Point. See the Figure: A1B1C1 - Anticevian Triangle of the Incenter = Excentral Triangle; A2B2C2 - Triangle of the Incenters of the Anticevian Corner Triangles of the Incenter; V - Second de Villiers Point = perspector of triangles A1B1C1 and A2B2C2. -
Chapter 1. the Medial Triangle 2
Chapter 1. The Medial Triangle 2 The triangle formed by joining the midpoints of the sides of a given triangle is called the me- dial triangle. Let A1B1C1 be the medial trian- gle of the triangle ABC in Figure 1. The sides of A1B1C1 are parallel to the sides of ABC and 1 half the lengths. So A B C is the area of 1 1 1 4 ABC. Figure 1: In fact area(AC1B1) = area(A1B1C1) = area(C1BA1) 1 = area(B A C) = area(ABC): 1 1 4 Figure 2: The quadrilaterals AC1A1B1 and C1BA1B1 are parallelograms. Thus the line segments AA1 and C1B1 bisect one another, and the line segments BB1 and CA1 bisect one another. (Figure 2) Figure 3: Thus the medians of A1B1C1 lie along the medians of ABC, so both tri- angles A1B1C1 and ABC have the same centroid G. 3 Now draw the altitudes of A1B1C1 from vertices A1 and C1. (Figure 3) These altitudes are perpendicular bisectors of the sides BC and AB of the triangle ABC so they intersect at O, the circumcentre of ABC. Thus the orthocentre of A1B1C1 coincides with the circumcentre of ABC. Let H be the orthocentre of the triangle ABC, that is the point of intersection of the altitudes of ABC. Two of these altitudes AA2 and BB2 are shown. (Figure 4) Since O is the orthocen- tre of A1B1C1 and H is the orthocentre of ABC then jAHj = 2jA1Oj Figure 4: . The centroid G of ABC lies on AA1 and jAGj = 2jGA1j . We also have AA2kOA1, since O is the orthocentre of A1B1C1. -
The Vertex-Midpoint-Centroid Triangles
Forum Geometricorum b Volume 4 (2004) 97–109. bbb FORUM GEOM ISSN 1534-1178 The Vertex-Midpoint-Centroid Triangles Zvonko Cerinˇ Abstract. This paper explores six triangles that have a vertex, a midpoint of a side, and the centroid of the base triangle ABC as vertices. They have many in- teresting properties and here we study how they monitor the shape of ABC. Our results show that certain geometric properties of these six triangles are equivalent to ABC being either equilateral or isosceles. Let A, B, C be midpoints of the sides BC, CA, AB of the triangle ABC and − let G be its centroid (i.e., the intersection of medians AA, BB , CC ). Let Ga , + − + − + Ga , Gb , Gb , Gc , Gc be triangles BGA , CGA , CGB , AGB , AGC , BGC (see Figure 1). C − + Gb Ga B A G + − Gb Ga − + Gc Gc ABC Figure 1. Six vertex–midpoint–centroid triangles of ABC. This set of six triangles associated to the triangle ABC is a special case of the cevasix configuration (see [5] and [7]) when the chosen point is the centroid G.It has the following peculiar property (see [1]). Theorem 1. The triangle ABC is equilateral if and only if any three of the trian- = { − + − + − +} gles from the set σG Ga ,Ga ,Gb ,Gb ,Gc ,Gc have the same either perime- ter or inradius. In this paper we wish to show several similar results. The idea is to replace perimeter and inradius with other geometric notions (like k-perimeter and Brocard angle) and to use various central points (like the circumcenter and the orthocenter – see [4]) of these six triangles. -
Arxiv:2101.02592V1 [Math.HO] 6 Jan 2021 in His Seminal Paper [10]
International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 5, 2020, pp. 13{41 Received 6 August 2020. Published on-line 30 September 2020 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access1. Arrangement of Central Points on the Faces of a Tetrahedron Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. We systematically investigate properties of various triangle centers (such as orthocenter or incenter) located on the four faces of a tetrahedron. For each of six types of tetrahedra, we examine over 100 centers located on the four faces of the tetrahedron. Using a computer, we determine when any of 16 con- ditions occur (such as the four centers being coplanar). A typical result is: The lines from each vertex of a circumscriptible tetrahedron to the Gergonne points of the opposite face are concurrent. Keywords. triangle centers, tetrahedra, computer-discovered mathematics, Eu- clidean geometry. Mathematics Subject Classification (2020). 51M04, 51-08. 1. Introduction Over the centuries, many notable points have been found that are associated with an arbitrary triangle. Familiar examples include: the centroid, the circumcenter, the incenter, and the orthocenter. Of particular interest are those points that Clark Kimberling classifies as \triangle centers". He notes over 100 such points arXiv:2101.02592v1 [math.HO] 6 Jan 2021 in his seminal paper [10]. Given an arbitrary tetrahedron and a choice of triangle center (for example, the circumcenter), we may locate this triangle center in each face of the tetrahedron. -
The Uses of Homogeneous Barycentric Coordinates in Plane Euclidean Geometry by PAUL
The uses of homogeneous barycentric coordinates in plane euclidean geometry by PAUL YIU Department of Mathematical Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA The notion of homogeneous barycentric coordinates provides a pow- erful tool of analysing problems in plane geometry. In this paper, we explain the advantages over the traditional use of trilinear coordinates, and illustrate its powerfulness in leading to discoveries of new and in- teresting collinearity relations of points associated with a triangle. 1. Introduction In studying geometric properties of the triangle by algebraic methods, it has been customary to make use of trilinear coordinates. See, for examples, [3, 6, 7, 8, 9]. With respect to a ¯xed triangle ABC (of side lengths a, b, c, and opposite angles ®, ¯, °), the trilinear coordinates of a point is a triple of numbers proportional to the signed distances of the point to the sides of the triangle. The late Jesuit mathematician Maurice Wong has given [9] a synthetic construction of the point with trilinear coordinates cot ® : cot ¯ : cot °, and more generally, in [8] points with trilinear coordinates a2nx : b2ny : c2nz from one with trilinear coordinates x : y : z with respect to a triangle with sides a, b, c. On a much grandiose scale, Kimberling [6, 7] has given extensive lists of centres associated with a triangle, in terms of trilinear coordinates, along with some collinearity relations. The present paper advocates the use of homogeneous barycentric coor- dinates instead. The notion of barycentric coordinates goes back to MÄobius. See, for example, [4]. With respect to a ¯xed triangle ABC, we write, for every point P on the plane containing the triangle, 1 P = (( P BC)A + ( P CA)B + ( P AB)C); ABC 4 4 4 4 and refer to this as the barycentric coordinate of P . -
Applications of Trilinear Coordinates to Some
APPLICATIONS OF TRILINEAR COORDINATES TO SOME PROBLEMS IN PLANE ELASTICITY Ramanath Williams Thesis submitted to the Graduate Faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE in Engineering Mechanics l\l'PROVED: H. F. Brinson, Chairman --------------- tl.-~:.J C. W. Smith R. P. McNit ... D. Frederick, Department Head October, 1972 Blacksburg, Virginia ACKNOWLEDGMENTS The author wishes to express his sincere thanks to Professor H. F. Brinson of the Department of Engineering Science and Mechanics, Virginia Polytechni.c Institute and State University, for his helpful criticisms and encouragement during the course of this investigation. The author is also grateful to the Department of Defense who sponsored this work under Project Themis, Contract Number DAA-F07-69-C-0444 with Watervliet Arsenal, Watervliet, New York. Finally, thanks are due to Mrs. Peggy Epperly for typing this manuscript. TABLE OF CONTENTS Section LIST OF ILLUSTRATIONS v LIST OF SYMBOLS vi INTRODUCTION • . 1 l. DEFINITION OF TRILINEAR COORDINATES • 6 2. RELATIONSHIP BETWEEN CARTESIAN Ai.~D TRILINEAR COORDINATES 9 3, TRIAXIAL STRESS SYSTEM 16 ,~, STRESS-STFAIN RELATIONS IN TERMS OF TRIAXIAL STRESS AND STRAIN COMPONENTS . 22 5. RELATIONSHIP BETWEEN THE STATE OF STRESS AND STRAIN IN THE CARTESIAN AND TRIAXIAL COORDINATES . 27 6. :PRINCIPAL STRESSES AND STRAIN ENE.RGY OF DEFORMATION . 34 7. SOME EQUATIONS OF PLANE ELASTICITY 38 7 .1 Equilibrium equations 38 7.2 Kinematics and compatibility equation 46 7.3 Governing equations of thin plate 54 7 ,lf Boundary conditions for a triangular plate 59 8. INTEGRATION OF A FUNCTION COMPOSED OF TRILINEAR VARIABLES 63 9. -
On a Construction of Hagge
Forum Geometricorum b Volume 7 (2007) 231–247. b b FORUM GEOM ISSN 1534-1178 On a Construction of Hagge Christopher J. Bradley and Geoff C. Smith Abstract. In 1907 Hagge constructed a circle associated with each cevian point P of triangle ABC. If P is on the circumcircle this circle degenerates to a straight line through the orthocenter which is parallel to the Wallace-Simson line of P . We give a new proof of Hagge’s result by a method based on reflections. We introduce an axis associated with the construction, and (via an areal anal- ysis) a conic which generalizes the nine-point circle. The precise locus of the orthocenter in a Brocard porism is identified by using Hagge’s theorem as a tool. Other natural loci associated with Hagge’s construction are discussed. 1. Introduction One hundred years ago, Karl Hagge wrote an article in Zeitschrift fur¨ Mathema- tischen und Naturwissenschaftliche Unterricht entitled (in loose translation) “The Fuhrmann and Brocard circles as special cases of a general circle construction” [5]. In this paper he managed to find an elegant extension of the Wallace-Simson theorem when the generating point is not on the circumcircle. Instead of creating a line, one makes a circle through seven important points. In 2 we give a new proof of the correctness of Hagge’s construction, extend and appl§ y the idea in various ways. As a tribute to Hagge’s beautiful insight, we present this work as a cente- nary celebration. Note that the name Hagge is also associated with other circles [6], but here we refer only to the construction just described.