Accelerating Computational Science and Engineering with Leadership Computing

Total Page:16

File Type:pdf, Size:1020Kb

Accelerating Computational Science and Engineering with Leadership Computing Accelerating computational science and engineering with leadership computing Jack C. Wells Director of Science Oak Ridge Leadership Computing Facility NVIDIA Theatre @ SC13 Office of Science Big Problems Require Big Solutions Climate Change Energy Healthcare Competitiveness 2 What is the Leadership Computing Facility (LCF)? • Collaborative DOE Office of Science • Highly competitive user allocation program at ORNL and ANL programs (INCITE, ALCC). • Mission: Provide the computational • Projects receive 10x to 100x more and data resources required to solve resource than at other generally the most challenging problems. available centers. • 2-centers/2-architectures to address • LCF centers partner with users to diverse and growing computational enable science & engineering needs of the scientific community breakthroughs (Liaisons, Catalysts). 3 #2 Titan System (Cray XK7) 27.1 PF 24.5 PF 2.6 PF Peak Performance 18,688 compute nodes GPU CPU LINPACK Performance 17.59 PF Power 8.2 MW System Memory 710 TB total memory Gemini High Speed Interconnect 3D Torus Interconnect Storage Luster Filesystem 32 PB High-Performance Archive 29 PB Storage System (HPSS) I/O Nodes 512 Service and I/O nodes 4 High-impact science at OLCF: Four of Six SC13 Gordon Bell Finalists Used Titan Peter Staar Massimo Bernaschi Michael Bussmann Salman Habib ETH Zurich ICNR-IAC Rome HZDR - Dresden Argonne High-Temperature Biofluidic Superconduc4vity Systems Plasma Physics Cosmology Taking a Quantum 20 Petaflops Radiave Signatures HACC: Extreme Leap in Time to Simulaon of of the Relavisc Scaling and Soluon for Protein Kelvin-Helmholtz Performance Simulaons of High-TC Suspensions in Instability Across Diverse Superconductors Crowding Architectures Condions Titan Titan Titan Sequoia (15.4 PF) (20 PF) (7.2 PF) (13.9 PF), Titan 5 Science challenges for LCF in next decade Combustion Science Climate Change Science Increase efficiency by Understand the dynamic 25%-50% and lower ecological and chemical emissions from internal evolution of the climate combustion engines using system with uncertainty advanced fuels and low- quantification of impacts. temperature combustion. Fusion Energy Biomass to Biofuels Develop predictive Enhance the understanding understanding of plasma and production of biofuels for properties, dynamics, and transportation and other bio- interactions with products from biomass. surrounding materials. Optimized Accelerator Designs Solar Energy Optimize designs as the next Improve photovoltaic generations of accelerators . efficiency and lower Detailed models are needed to cost for organic and provide efficient designs of new inorganic materials. light sources. 6 Solar energy Key science challenges: Improve photovoltaic efficiency and lower cost for organic and inorganic materials. A photovoltaic material poses difficult challenges in the prediction of morphology, excited state phenomena, transport, and materials aging. Corse-grained MD simulation of phase-separation of a 1:1 weight ratio P3HT/PCBM mixture into donor (white) and acceptor (blue) domains. Science enabled by LCF Capabilities 2013-2016 2016-2020 • Understand growth, interface structure, and • Enable computational screening of stability of heterogeneous polymer blends materials for desired excited-state and necessary for efficient solar conversion. charge transport properties. • Simulations of structure, carrier transport, • Systems-level, multiphysics simulations and defect states in nanomaterials. of practical photovoltaic devices are • Describe excited state phenomena in enabled. homogeneous systems. • Uncertainty quantification enabled for critical integrated materials properties. 7 8 LAMMPS Early Science Project Towards Rational Design of Efficient Organic Jan-Michael Carrillo, ORNL Mike Brown, ORNL Photovoltaic Materials Science Objectives and Impact P3HT PCBM (electron donor) (electron acceptor) • Organic photovoltaic (OPV) solar cells are promising renewable energy sources: – Low costs, high-flexibility, and light weight • Bulk-heterojunction (BHJ) active layer morphology and domain size is critical Corse-grained MD simulation of phase-separation for improving performance of a 1:1 weight ratio P3HT/PCBM mixture into donor (white) and acceptor (blue) domains. Titan Simulation: LAMMPS Preliminary Science Results • Portability: Builds with CUDA or OpenCL • Titan simulations are 27x larger and 10x longer • Speedups on Titan (GPU+CPU vs. CPU: – Converged P3HT:PCBM separation in 400ns 2X to 15x (mixed precision) depending CGMD time upon model and simulation • Prediction: Increasing polymer chain length will – Speedup of 2.5-3x for OPV simulation decrease the size of the electron donor domains used here • Prediction: PCBM (fullerene) loading parameter results in an increasing, then decreasing impact on P3HT domain size 9 Biomass to biofuels Key science challenges: Enhance the understanding and production of biofules from biomass for transportation and other bio-products. The main challenge to overcome is the recalcitrance of biomass (cellulosic materials) to hydrolysis. Lignin interacting with crystalline cellulose. Science enabled by increasing LCF Capabilities 2013-2016 2016-2020 • Atomic-detail dynamical models of biomass • Understand the dynamics of enzymatic systems of several million atoms, permitting reactions on biomass by simulating detailed analysis of interactions interactions between microbial systems and cellulosic biomass • Simulations of pretreatment effects on multi- component biomass systems to understand • Design superior enzymes for the bottlenecks in bioconversion conversion of biomass 10 11 INCITE Program Boosting Bioenergy and Overcoming Jeremy Smith Oak Ridge National Laboratory Recalcitrance 23 M Titan core hours Molecular Dynamics Simulations Science Objectives and Impact • Optimize biomass pretreatment process by understanding lignin-cellulose interactions on a molecular level • Overcome biomass recalcitrance caused by lignin and the tightly ordered structure of cellulose • Improve efficiency of the biofuel production process Interaction between cellulose fibril (blue) and lignin (pink and green) molecules. and make ethanol less costly Vizualization by M. Matheson (ORNL) Science Results Application Performance Published paper in Biomacromolecules in August • 2012: Used GROMACS on Jaguar to monitor 2013 interactions of 3 million atoms that included crystalline and non-crystalline cellulose, lignin, • Discovered amorphous cellulose is easier to and water break down because it associates less with • 2013: Now run accelerated GROMACS that lignin can take advantage of Titan’s GPUs, making the application 10 times bigger and much • Phenomenon is not a result of direct interaction longer. Current simulations monitor 30 million between lignin and cellulose, but is a water- atoms. mediated effect 12 13 ALCC Program Non-Icing Surfaces for Cold Climate Masako Yamada GE Global Research Wind Turbines 40 M Titan core hours Molecular Dynamics Simulations Location of ice Science Objectives and Impact nucleation varies dependent on • Understand microscopic mechanism of water temperature droplets freezing on surfaces and contact angles. • Determine efficacy of non-icing surfaces at different Visualization by M. Matheson operation temperatures (ORNL) Science Results Replicated GE’s experimental results: Hydrophilic Hydrophobic • Hydrophobic surfaces delay the onset of Performance Achievements nucleation • 5X speed-up from GPU acceleration • The delay is less pronounced at lower • Achieved factor 40X speed-up from new temperatures interaction potential for water 14 Center for Accelerated Application Readiness (CAAR) • Focused effort to prepare • Application Teams applications for accelerated – OLCF application lead architectures – Cray engineer – NVIDIA developer • Goals: – Others: local tool & library developers, other – Work with code teams to develop computational scientists and implement strategies for exposing hierarchical parallelism • Single early science problem for our users applications targeted for each app – Maintain code portability across modern architectures • Explore multiple approached for – Learn from and share our results each app – Determine maximum acceleration • Selected six applications from – Determine reproducible path for different science domains and other applications algorithmic motifs 15 Early Science Challenges for Titan WL-LSMS LAMMPS Illuminating the role of A molecular dynamics material disorder, simulation of organic statistics, and fluctuations polymers for applications in nanoscale materials in organic photovoltaic and systems. heterojunctions , de- wetting phenomena and IMPLICIT AMR FOR EQUILIBRIUM RADIATION DIFFUSION 15 biosensor applications CAM-SE Answering questions S3D about specific climate Understanding turbulent change adaptation and combustion through direct mitigation scenarios; numerical simulation with realistically represent complex chemistry. features like precipitation . patterns / statistics and tropical storms. t = 0.50 t = 0.75 Denovo NRDF Discrete ordinates Radiation transport – radiation transport important in astrophysics, calculations that can laser fusion, combustion, be used in a variety atmospheric dynamics, of nuclear energy and medical imaging – and technology computed on AMR grids. applications. t = 1.0 t = 1.25 16 Fig. 6.6. Evolution of solution and grid for Case 2, using a 32 32 base grid plus 4 refinement levels. Boundaries of refinement patches are superimposed on a pseudocolor× plot of the solution using a logarithmic
Recommended publications
  • Free and Open Source Software for Computational Chemistry Education
    Free and Open Source Software for Computational Chemistry Education Susi Lehtola∗,y and Antti J. Karttunenz yMolecular Sciences Software Institute, Blacksburg, Virginia 24061, United States zDepartment of Chemistry and Materials Science, Aalto University, Espoo, Finland E-mail: [email protected].fi Abstract Long in the making, computational chemistry for the masses [J. Chem. Educ. 1996, 73, 104] is finally here. We point out the existence of a variety of free and open source software (FOSS) packages for computational chemistry that offer a wide range of functionality all the way from approximate semiempirical calculations with tight- binding density functional theory to sophisticated ab initio wave function methods such as coupled-cluster theory, both for molecular and for solid-state systems. By their very definition, FOSS packages allow usage for whatever purpose by anyone, meaning they can also be used in industrial applications without limitation. Also, FOSS software has no limitations to redistribution in source or binary form, allowing their easy distribution and installation by third parties. Many FOSS scientific software packages are available as part of popular Linux distributions, and other package managers such as pip and conda. Combined with the remarkable increase in the power of personal devices—which rival that of the fastest supercomputers in the world of the 1990s—a decentralized model for teaching computational chemistry is now possible, enabling students to perform reasonable modeling on their own computing devices, in the bring your own device 1 (BYOD) scheme. In addition to the programs’ use for various applications, open access to the programs’ source code also enables comprehensive teaching strategies, as actual algorithms’ implementations can be used in teaching.
    [Show full text]
  • Atom: a MATLAB PACKAGE for MANIPULATION of MOLECULAR SYSTEMS
    Clays and Clay Minerals, Vol. 67, No. 5:419–426, 2019 atom: A MATLAB PACKAGE FOR MANIPULATION OF MOLECULAR SYSTEMS MICHAEL HOLMBOE * 1Chemistry Department, Umeå University, SE-901 87 Umeå, Sweden Abstract—This work presents Atomistic Topology Operations in MATLAB (atom), an open source library of modular MATLAB routines which comprise a general and flexible framework for manipulation of atomistic systems. The purpose of the atom library is simply to facilitate common operations performed for construction, manipulation, or structural analysis. Due to the data structure used, atoms and molecules can be operated upon based on different chemical names or attributes, such as atom-ormolecule-ID, name, residue name, charge, positions, etc. Furthermore, the Bond Valence Method and a neighbor-distance analysis can be performed to assign many chemical properties of inorganic molecules. Apart from reading and writing common coordinate files (.pdb, .xyz, .gro, .cif) and trajectories (.dcd, .trr, .xtc; binary formats are parsed via third-party packages), the atom library can also be used to generate topology files with bonding and angle information taking the periodic boundary conditions into account, and supports basic Gromacs, NAMD, LAMMPS, and RASPA2 topology file formats. Focusing on clay-mineral systems, the library supports CLAYFF (Cygan, 2004) but can also generate topology files for the INTERFACE forcefield (Heinz, 2005, 2013) for Gromacs and NAMD. Keywords—CLAYFF. Gromacs . INTERFACE force field . MATLAB . Molecular dynamics simulations . Monte Carlo INTRODUCTION Dombrowsky et al. 2018; Kapla & Lindén 2018; Matsunaga & Sugita 2018). This work presents the Molecular modeling is becoming increasingly important in Atomistic Topology Operations in MATLAB (atom)li- many different areas of fundamental and applied research brary – a large collection of >100 modular MATLAB (Cygan 2001;Luetal.2006; Medina, 2009).
    [Show full text]
  • ES2015 Compilation of Abstracts of Invited Speakers and Contributed
    ES2015 Compilation of Abstracts of Invited Speakers and Contributed Talk Speakers MONDAY, JUNE 22, 2015 Haggett Hall, Cascade Room, University of Washington New Methods Jim Chelikowsky, U of Texas, Austin “Seeing” the covalent bond: Simulating Atomic Force Microscopy Images Alexandru Georgescu, Yale U A Generalized Slave-Particle Formalism for Extended Hubbard Models Bryan Clark, UIUC From ab-initio to model systems: tales of unusual conductivity in electronic systems at high temperatures Advances in DFT and Applications Priya Gopal, Central Michigan U Novel tools for accelerated materials discovery in the AFLOWLIB.ORG repository Ismaila Dabo, Penn State U Electronic-Structure Calculations from Koopmans-Compliant Functionals Improving the performance of ab initio molecular dynamics simulations and band structure calculations for Eric Bylaska, PNNL actinide and geochemical systems with new algorithms and new machines QMC Hao Shi, College of William & Mary Recent developments in auxiliary-field quantum Monte Carlo: magnetic orders and spin-orbit coupling Fengjie Ma, College of William & Mary Ground and excited state calculations of auxiliary-field Quantum Monte Carlo in solids Paul Kent, ORNL New applications of Diffusion Quantum Monte Carlo Many Body Diana Qiu, UC Berkeley Many-body effects on the electronic and optical properties of quasi-two-dimensional materials Mei-Yin Chou, Academia Sinica Dirac Electrons in Silicene on Ag(111): Do they exist? Emmanuel Gull, U of Michigan Solutions of the Two Dimensional Hubbard Model TUESDAY, JUNE
    [Show full text]
  • Advances in Automated Transition State Theory Calculations: Improvements on the Autotst Framework
    Advances in automated transition state theory calculations: improvements on the AutoTST framework Nathan D. Harmsa, Carl E. Underkofflera, Richard H. Westa aDepartment of Chemical Engineering Northeastern University, Boston, MA 02115, USA Abstract Kinetic modeling of combustion chemistry has made substantial progress in recent years with the development of increasingly detailed models. However, many of the chemical kinetic parameters utilized in detailed models are estimated, often inaccurately. To help replace rate estimates with more accurate calculations, we have developed AutoTST, an automated Transition State Theory rate calculator. This work describes improvements to AutoTST, including: a systematic conformer search to find an ensemble of low energy conformers, vibrational analysis to validate transition state geometries, more accurate symmetry number calculations, and a hindered rotor treatment when deriving kinetics. These improvements resulted in location of transition state geometry for 93% of cases and generation of kinetic parameters for 74% of cases. Newly calculated parameters agree well with benchmark calculations and perform well when used to replace estimated parameters in a detailed kinetic model of methanol combustion. Keywords: Transition state theory, Chemical kinetic models, Model comparison, Uncertainty 1. Introduction Detailed kinetic models allow researchers to understand the chemistry of complex phenomena in systems such as combustion and hetrogeneous catalysis, thus enabling them to make informed experimental design choices, and to design and optimize processes and devices. Microkinetic models often contain hundreds of intermediates and thousands of reactions, for which thermodynamic and kinetic parameters need to be specified [1,2]. These parameters are ideally determined experimen- tally or calculated theoretically with high accuracy, but most are estimated [3].
    [Show full text]
  • Cantherm Refresher/Overview Enoch Dames RMG Study Group Meeting Jan
    CanTherm Refresher/Overview Enoch Dames RMG Study Group Meeting Jan. 12, 2015 Online Resources: http://cheme.scripts.mit.edu/green-group/cantherm/ http://greengroup.github.io/RMG-Py/theory/measure/index.html http://cccbdb.nist.gov/ - tables of force constant scaling factors, lots of explanations and tutorials User Guide: http://greengroup.github.io/RMG-Py/users/cantherm/index.html Outline of this RMG Study Group •What is CanTherm? How is it used? •The world’s most compact overview of the theory behind rate theory packages (with emphasis on kinetics) •Running CanTherm •Complex Pdep Example Calculation, I/O components Objective of this RMG Study Group Provide basic information and conduct a brief overview of topics necessary for computing pressure dependent rates using CanTherm What is CanTherm? CanTherm is an open source python package of utilities for the computation of the following: 1. Thermodynamic properties of stable molecules (H298, S , Cp(T) ) (see Shamel’s study group presentation #5 for more) 2. High pressure limit rate coefficients, k¥ 3. Pressure dependent rate coefficients, k(T,P), for arbitrarily large multiple-well reaction networks using either Modified Strong Collision, Reservoir State or Chemically Significant Eigenvalue (CSE) approximations Notes: • CanTherm does not have a GUI • There are numerous other similar codes out there, but CanTherm has the nice feature that many molecular properties can be automatically read in from outputs of quantum chemistry jobs • If you forked over a copy of RMG-Py from Github, you have CanTherm How CanTherm Is Used Prepare jobs via GaussView, WebMO, Avagadro Molecule (open source), etc. See: Editor http://en.wikipedia.org/wiki/Molecule_editor Quantum Chemistry Application: Gaussian, QChem Run jobs to obtain energies, frequencies Molpro, Mopac CanTherm Compute k(T,P), thermo parameters Rate Coefficients, Thermodynamic Properties Use k(T,P), thermo parameters for science Electronic Structure and Rates: varying levels of theory 1 Tt1 = Nelec Zador et al 2010 Prog.
    [Show full text]
  • Quantum Chemistry (QC) on Gpus Feb
    Quantum Chemistry (QC) on GPUs Feb. 2, 2017 Overview of Life & Material Accelerated Apps MD: All key codes are GPU-accelerated QC: All key codes are ported or optimizing Great multi-GPU performance Focus on using GPU-accelerated math libraries, OpenACC directives Focus on dense (up to 16) GPU nodes &/or large # of GPU nodes GPU-accelerated and available today: ACEMD*, AMBER (PMEMD)*, BAND, CHARMM, DESMOND, ESPResso, ABINIT, ACES III, ADF, BigDFT, CP2K, GAMESS, GAMESS- Folding@Home, GPUgrid.net, GROMACS, HALMD, HOOMD-Blue*, UK, GPAW, LATTE, LSDalton, LSMS, MOLCAS, MOPAC2012, LAMMPS, Lattice Microbes*, mdcore, MELD, miniMD, NAMD, NWChem, OCTOPUS*, PEtot, QUICK, Q-Chem, QMCPack, OpenMM, PolyFTS, SOP-GPU* & more Quantum Espresso/PWscf, QUICK, TeraChem* Active GPU acceleration projects: CASTEP, GAMESS, Gaussian, ONETEP, Quantum Supercharger Library*, VASP & more green* = application where >90% of the workload is on GPU 2 MD vs. QC on GPUs “Classical” Molecular Dynamics Quantum Chemistry (MO, PW, DFT, Semi-Emp) Simulates positions of atoms over time; Calculates electronic properties; chemical-biological or ground state, excited states, spectral properties, chemical-material behaviors making/breaking bonds, physical properties Forces calculated from simple empirical formulas Forces derived from electron wave function (bond rearrangement generally forbidden) (bond rearrangement OK, e.g., bond energies) Up to millions of atoms Up to a few thousand atoms Solvent included without difficulty Generally in a vacuum but if needed, solvent treated classically
    [Show full text]
  • Lawrence Berkeley National Laboratory Recent Work
    Lawrence Berkeley National Laboratory Recent Work Title From NWChem to NWChemEx: Evolving with the Computational Chemistry Landscape. Permalink https://escholarship.org/uc/item/4sm897jh Journal Chemical reviews, 121(8) ISSN 0009-2665 Authors Kowalski, Karol Bair, Raymond Bauman, Nicholas P et al. Publication Date 2021-04-01 DOI 10.1021/acs.chemrev.0c00998 Peer reviewed eScholarship.org Powered by the California Digital Library University of California From NWChem to NWChemEx: Evolving with the computational chemistry landscape Karol Kowalski,y Raymond Bair,z Nicholas P. Bauman,y Jeffery S. Boschen,{ Eric J. Bylaska,y Jeff Daily,y Wibe A. de Jong,x Thom Dunning, Jr,y Niranjan Govind,y Robert J. Harrison,k Murat Keçeli,z Kristopher Keipert,? Sriram Krishnamoorthy,y Suraj Kumar,y Erdal Mutlu,y Bruce Palmer,y Ajay Panyala,y Bo Peng,y Ryan M. Richard,{ T. P. Straatsma,# Peter Sushko,y Edward F. Valeev,@ Marat Valiev,y Hubertus J. J. van Dam,4 Jonathan M. Waldrop,{ David B. Williams-Young,x Chao Yang,x Marcin Zalewski,y and Theresa L. Windus*,r yPacific Northwest National Laboratory, Richland, WA 99352 zArgonne National Laboratory, Lemont, IL 60439 {Ames Laboratory, Ames, IA 50011 xLawrence Berkeley National Laboratory, Berkeley, 94720 kInstitute for Advanced Computational Science, Stony Brook University, Stony Brook, NY 11794 ?NVIDIA Inc, previously Argonne National Laboratory, Lemont, IL 60439 #National Center for Computational Sciences, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6373 @Department of Chemistry, Virginia Tech, Blacksburg, VA 24061 4Brookhaven National Laboratory, Upton, NY 11973 rDepartment of Chemistry, Iowa State University and Ames Laboratory, Ames, IA 50011 E-mail: [email protected] 1 Abstract Since the advent of the first computers, chemists have been at the forefront of using computers to understand and solve complex chemical problems.
    [Show full text]
  • RMG-Py and Cantherm Documentation ⇌Release 2.0.0
    RMG RMG-Py and CanTherm Documentation ⇌Release 2.0.0 William H. Green, Richard H. West, and the RMG Team Sep 16, 2016 CONTENTS 1 RMG User’s Guide 3 1.1 Introduction...............................................3 1.2 Release Notes..............................................4 1.3 Overview of Features...........................................6 1.4 Installation................................................7 1.5 Creating Input Files........................................... 20 1.6 Example Input Files........................................... 29 1.7 Running a Job.............................................. 36 1.8 Analyzing the Output Files........................................ 37 1.9 Species Representation.......................................... 38 1.10 Group Representation.......................................... 39 1.11 Databases................................................. 39 1.12 Thermochemistry Estimation...................................... 58 1.13 Kinetics Estimation........................................... 63 1.14 Liquid Phase Systems.......................................... 65 1.15 Guidelines for Building a Model..................................... 72 1.16 Standalone Modules........................................... 73 1.17 Frequently Asked Questions....................................... 81 1.18 Credits.................................................. 82 1.19 How to Cite................................................ 82 2 CanTherm User’s Guide 83 2.1 Introduction..............................................
    [Show full text]
  • RMG-Py API Reference ⇌Release 2.0.0
    RMG RMG-Py API Reference ⇌Release 2.0.0 William H. Green, Richard H. West, and the RMG Team Sep 16, 2016 CONTENTS 1 RMG API Reference 3 1.1 CanTherm (rmgpy.cantherm).....................................3 1.2 Chemkin files (rmgpy.chemkin).................................... 10 1.3 Physical constants (rmgpy.constants)................................ 13 1.4 Database (rmgpy.data)......................................... 13 1.5 Kinetics (rmgpy.kinetics)...................................... 64 1.6 Molecular representations (rmgpy.molecule)............................. 84 1.7 Pressure dependence (rmgpy.pdep).................................. 108 1.8 QMTP (rmgpy.qm)........................................... 118 1.9 Physical quantities (rmgpy.quantity)................................. 136 1.10 Reactions (rmgpy.reaction)..................................... 140 1.11 Reaction mechanism generation (rmgpy.rmg)............................. 143 1.12 Reaction system simulation (rmgpy.solver)............................. 157 1.13 Species (rmgpy.species)....................................... 160 1.14 Statistical mechanics (rmgpy.statmech)............................... 163 1.15 Thermodynamics (rmgpy.thermo)................................... 178 Bibliography 189 Python Module Index 191 Index 193 i ii RMG-Py API Reference, Release 2.0.0 RMG is an automatic chemical reaction mechanism generator that constructs kinetic models composed of elementary chemical reaction steps using a general understanding of how molecules react. This is the API Reference guide
    [Show full text]
  • Open Source Molecular Modeling
    Accepted Manuscript Title: Open Source Molecular Modeling Author: Somayeh Pirhadi Jocelyn Sunseri David Ryan Koes PII: S1093-3263(16)30118-8 DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2016.07.008 Reference: JMG 6730 To appear in: Journal of Molecular Graphics and Modelling Received date: 4-5-2016 Accepted date: 25-7-2016 Please cite this article as: Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes, Open Source Molecular Modeling, <![CDATA[Journal of Molecular Graphics and Modelling]]> (2016), http://dx.doi.org/10.1016/j.jmgm.2016.07.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Open Source Molecular Modeling Somayeh Pirhadia, Jocelyn Sunseria, David Ryan Koesa,∗ aDepartment of Computational and Systems Biology, University of Pittsburgh Abstract The success of molecular modeling and computational chemistry efforts are, by definition, de- pendent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. 1. Introduction What is Open Source? Free and open source software (FOSS) is software that is both considered \free software," as defined by the Free Software Foundation (http://fsf.org) and \open source," as defined by the Open Source Initiative (http://opensource.org).
    [Show full text]
  • Automated Computational Thermochemistry for Butane Oxidation
    Automated Computational Thermochemistry for Butane Oxidation: A Prelude to Predictive Automated Combustion Kinetics Murat Keceli,1 Sarah N. Elliott,2 Yi-Pei Li,3 Matthew S. Johnson,3 Carlo Cavallotti,4 Yuri Georgievskii,1 William H. Green,3 Matteo Pelucchi,4 Justin M. Wozniak,5 Ahren W. Jasper,1 Stephen J. Klippenstein1 1 Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, IL, 60439, USA 2 Center for Computational Quantum Chemistry, University of Georgia, Athens, GA, 30602, USA 3 Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA 4 Department of Chemistry, Materials and Chemical Engineering “G. Natta”, Politecnico di Milano, Milan, Italy 5 Math and Computer Science Division, Argonne National Laboratory, Argonne, IL, 60439, USA Corresponding Author: Stephen J. Klippenstein 9700 S. Cass Ave. Argonne National Laboratory Argonne, IL, 60439 USA e-mail: [email protected] Colloquium: Kinetics Paper Length: 6152 Words (Method 1) Main Text (4668); References (507), Figures (977); Fig. 1 (379); Fig. 2 (412); Fig. 3 (186). Abstract: Large scale implementation of high level computational theoretical chemical kinetics offers the prospect for dramatically improving the fidelity of combustion chemical modeling. As a first step toward this goal, we have developed a procedure for automatically generating the thermochemical data for combustion of an arbitrary fuel. The procedure begins by producing a list of combustion relevant species from a specification of the fuel and combustion conditions of interest. Then, for each element in the list of species, the procedure determines an internal coordinate z-matrix description of its structure, the optimal torsional configuration via Monte Carlo sampling, key rovibrational properties for that optimal geometry (including anharmonic corrections from torsional sampling and/or vibrational perturbation theory), and high level estimates of the electronic and zero-point energies via arbitrarily defined composite methods.
    [Show full text]
  • Kinetic Modeling of API Oxidation: 1. the AIBN/H2O/CH3OH Radical "Soup"
    Kinetic Modeling of API Oxidation: 1. The AIBN/H2O/CH3OH Radical "Soup" Alon Grinberg Danaa,b, Haoyang Wua, Duminda S. Ranasinghea, Frank C. Pickard IVc, Geoffrey P. F. Woodc, Todd Zeleskyc, Gregory W. Sluggettc, Jason Mustakisc, William H. Greena,∗ aDepartment of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States bWolfson Department of Chemical Engineering, Technion – Israel Institute of Technology, Haifa 3200003, Israel cPfizer Global Research & Development, Groton Laboratories, Eastern Point Road, Groton, CT 06340, United States Abstract Stress testing of active pharmaceutical ingredients (API) is an important tool used to gauge chemical stabil- ity and identify potential degradation products. While different flavors of API stress testing systems have been used in experimental investigations for decades, the detailed kinetics of such systems as well as the chemical composition of prominent reactive species, specifically reactive oxygen species, are unknown. As a first step toward understanding and modeling API oxidation in stress testing, we investigated a typical radical "soup" solution an API is subject to during stress testing. Here we applied ab-initio electronic structure calculations to automatically generate and refine a detailed chemical kinetics model, taking a fresh look at API oxidation. We generated a detailed kinetic model for a representative azobisisobutyronitrile (AIBN)/H2O/CH3OH stress-testing system with varied co-solvent ratio (50%/50% – 99.5%/0.5% vol. wa- ter/methanol) and for representative pH values (4–10) at 40 ℃ stirred and open to the atmosphere. At acidic conditions hydroxymethyl alkoxyl is the dominant alkoxyl radical, and at basic conditions, for most studied initial methanol concentrations, cyanoisopropyl alkoxyl becomes the dominant alkoxyl radical, albeit at an overall lower concentration.
    [Show full text]