Developments in Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Developments in Mathematics Developments in Mathematics VOLUME 24 Series Editors: Krishnaswami Alladi, University of Florida Hershel M. Farkas, Hebrew University of Jerusalem Robert Guralnick, University of Southern California For further volumes: www.springer.com/series/5834 Jerzy Kakol ˛ Wiesław Kubis´ Manuel López-Pellicer Descriptive Topology in Selected Topics of Functional Analysis Jerzy Kakol ˛ Wiesław Kubis´ Faculty of Mathematics and Informatics Institute of Mathematics A. Mickiewicz University Jan Kochanowski University 61-614 Poznan 25-406 Kielce Poland Poland [email protected] and Institute of Mathematics Manuel López-Pellicer Academy of Sciences of the Czech Republic IUMPA 115 67 Praha 1 Universitat Poltècnica de València Czech Republic 46022 Valencia [email protected] Spain and Royal Academy of Sciences 28004 Madrid Spain [email protected] ISSN 1389-2177 ISBN 978-1-4614-0528-3 e-ISBN 978-1-4614-0529-0 DOI 10.1007/978-1-4614-0529-0 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2011936698 Mathematics Subject Classification (2010): 46-02, 54-02 © Springer Science+Business Media, LLC 2011 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com) To our Friend and Teacher Prof. Dr. Manuel Valdivia Preface We invoke (descriptive) topology recently applied to (functional) analysis of infinite-dimensional topological vector spaces, including Fréchet spaces, (LF)- spaces and their duals, Banach spaces C(X) over compact spaces X, and spaces Cp(X), Cc(X) of continuous real-valued functions on a completely regular Haus- dorff space X endowed with pointwise and compact–open topologies, respectively. The (LF)-spaces and duals particularly appear in many fields of functional analysis and its applications: distribution theory, differential equations and complex analysis, to name a few. Our material, much of it in book form for the first time, carries forward the rich legacy of Köthe’s Topologische lineare Räume (1960), Jarchow’s Locally Convex Spaces (1981), Valdivia’s Topics in Locally Convex Spaces (1982), and Pérez Car- reras and Bonet’s Barrelled Locally Convex Spaces (1987). We assume their (stan- dard English) terminology. A topological vector space (tvs) must be Hausdorff and have a real or complex scalar field. A locally convex space (lcs) is a tvs that is lo- cally convex. Engelking’s General Topology (1989) serves as a default reference for general topology. The authors wish to thank Professor B. Cascales, Professor M. Fabian, Professor V. Montesinos, and Professor S. Saxon for their valuable comments and suggestions, which made this material much more readable. The research of J. Kakol ˛ was partially supported by the Ministry of Science and Higher Education, Poland, under grant no. NN201 2740 33. W. Kubis´ was supported in part by grant IAA 100 190 901, by the Institutional Research Plan of the Academy of Sciences of the Czech Republic under grant no. AVOZ 101 905 03, and by an internal research grant from Jan Kochanowski Uni- versity in Kielce, Poland. The research of J. Kakol ˛ and M. López-Pellicer was partially supported by the Spanish Ministry of Science and Innovation, under project no. MTM 2008-01502. Poznan, Poland Jerzy Kakol ˛ Kielce, Poland Wiesław Kubis´ Valencia, Spain Manuel López-Pellicer vii Contents 1 Overview ................................. 1 1.1 General comments and historical facts ............... 7 2 Elementary Facts about Baire and Baire-Type Spaces ........ 13 2.1 Baire spaces and Polish spaces ................... 13 2.2 A characterization of Baire topological vector spaces ........ 18 2.3 Arias de Reyna–Valdivia–Saxon theorem .............. 20 2.4 Locally convex spaces with some Baire-type conditions ...... 24 2.5 Strongly realcompact spaces X and spaces Cc(X) ......... 36 2.6 Pseudocompact spaces, Warner boundedness and spaces Cc(X) .. 46 2.7 Sequential conditions for locally convex Baire-type spaces ..... 56 3 K-analytic and Quasi-Suslin Spaces ................... 63 3.1Elementaryfacts........................... 63 3.2 Resolutions and K-analyticity . ................... 71 3.3 Quasi-(LB)-spaces .......................... 82 3.4 Suslin schemes ............................ 91 3.5 Applications of Suslin schemes to separable metrizable spaces . 93 3.6 Calbrix–Hurewicz theorem . ...................101 4 Web-Compact Spaces and Angelic Theorems .............109 4.1 Angelic lemma and angelicity . ...................109 4.2 Orihuela’s angelic theorem . ...................111 4.3 Web-compact spaces .........................113 4.4 Subspaces of web-compact spaces ..................116 4.5 Angelic duals of spaces C(X) ....................118 4.6 About compactness via distances to function spaces C(K) .....120 5 Strongly Web-Compact Spaces and a Closed Graph Theorem ....137 5.1 Strongly web-compact spaces . ...................137 5.2 Products of strongly web-compact spaces ..............138 5.3 A closed graph theorem for strongly web-compact spaces .....140 ix x Contents 6 Weakly Analytic Spaces .........................143 6.1 A few facts about analytic spaces ..................143 6.2 Christensen’s theorem ........................149 6.3 Subspaces of analytic spaces . ...................155 6.4 Trans-separable topological spaces .................157 6.5 Weakly analytic spaces need not be analytic . .........164 6.6 More about analytic locally convex spaces .............167 6.7 Weakly compact density condition .................168 6.8 More examples of nonseparable weakly analytic tvs ........174 7 K-analytic Baire Spaces .........................183 7.1 Baire tvs with a bounded resolution .................183 7.2 Continuous maps on spaces with resolutions . .........187 8 A Three-Space Property for Analytic Spaces ..............193 8.1AnexampleofCorson........................193 8.2 A positive result and a counterexample ...............196 9 K-analytic and Analytic Spaces Cp(X) .................201 9.1 A theorem of Talagrand for spaces Cp(X) .............201 9.2 Theorems of Christensen and Calbrix for Cp(X) ..........204 9.3 Bounded resolutions for Cp(X) ...................215 9.4 Some examples of K-analytic spaces Cp(X) and Cp(X, E) ....230 9.5 K-analytic spaces Cp(X) over a locally compact group X .....231 ∧ 9.6 K-analytic group Xp ofhomomorphisms..............234 10 Precompact Sets in (LM)-Spaces and Dual Metric Spaces ......239 10.1 The case of (LM)-spaces: elementary approach . .........239 10.2 The case of dual metric spaces: elementary approach ........241 11 Metrizability of Compact Sets in the Class G .............243 11.1 The class G:examples........................243 11.2 Cascales–Orihuela theorem and applications . .........245 12 Weakly Realcompact Locally Convex Spaces ..............251 12.1 Tightness and quasi-Suslin weak duals ...............251 12.2 A Kaplansky-type theorem about tightness .............254 12.3 K-analytic spaces in the class G ...................258 12.4 Every WCG Fréchet space is weakly K-analytic . .........260 12.5 Amir–Lindenstrauss theorem . ...................266 12.6AnexampleofPol..........................271 12.7 More about Banach spaces C(X) over compact scattered X ....276 13 Corson’s Property (C) and Tightness ..................279 13.1 Property (C) and weakly Lindelöf Banach spaces .........279 13.2 The property (C) for Banach spaces C(X) .............284 Contents xi 14 Fréchet–Urysohn Spaces and Groups ..................289 14.1 Fréchet–Urysohn topological spaces ................289 14.2 A few facts about Fréchet–Urysohn topological groups ......291 14.3 Sequentially complete Fréchet–Urysohn spaces are Baire .....296 14.4 Three-space property for Fréchet–Urysohn spaces ........299 14.5 Topological vector spaces with bounded tightness .........302 15 Sequential Properties in the Class G ..................305 15.1 Fréchet–Urysohn spaces are metrizable in the class G ......305 15.2 Sequential (LM)-spaces and the dual metric spaces ........311 − 15.3 (LF )-spaces with the property C3 ................320 16 Tightness and Distinguished Fréchet Spaces ..............327 16.1 A characterization of distinguished spaces .............327 16.2 G-basesandtightness.......................334 16.3 G-bases, bounding, dominating cardinals, and tightness .....338 16.4 More about the Wulbert–Morris space Cc(ω1) ..........349 17 Banach Spaces with Many Projections .................355 17.1 Preliminaries, model-theoretic tools ................355 17.2 Projections from elementary submodels ..............361 17.3 Lindelöf property of weak topologies ...............364 17.4 Separable complementation property ...............365 17.5 Projectional skeletons .......................369 17.6 Norming subspaces induced by a projectional skeleton ......375 17.7 Sigma-products ...........................380 17.8 Markushevich
Recommended publications
  • Distinguished Property in Tensor Products and Weak* Dual Spaces
    axioms Article Distinguished Property in Tensor Products and Weak* Dual Spaces Salvador López-Alfonso 1 , Manuel López-Pellicer 2,* and Santiago Moll-López 3 1 Department of Architectural Constructions, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] 2 Emeritus and IUMPA, Universitat Politècnica de València, 46022 Valencia, Spain 3 Department of Applied Mathematics, Universitat Politècnica de València, 46022 Valencia, Spain; [email protected] * Correspondence: [email protected] 0 Abstract: A local convex space E is said to be distinguished if its strong dual Eb has the topology 0 0 0 0 b(E , (Eb) ), i.e., if Eb is barrelled. The distinguished property of the local convex space Cp(X) of real- valued functions on a Tychonoff space X, equipped with the pointwise topology on X, has recently aroused great interest among analysts and Cp-theorists, obtaining very interesting properties and nice characterizations. For instance, it has recently been obtained that a space Cp(X) is distinguished if and only if any function f 2 RX belongs to the pointwise closure of a pointwise bounded set in C(X). The extensively studied distinguished properties in the injective tensor products Cp(X) ⊗# E and in Cp(X, E) contrasts with the few distinguished properties of injective tensor products related to the dual space Lp(X) of Cp(X) endowed with the weak* topology, as well as to the weak* dual of Cp(X, E). To partially fill this gap, some distinguished properties in the injective tensor product space Lp(X) ⊗# E are presented and a characterization of the distinguished property of the weak* dual of Cp(X, E) for wide classes of spaces X and E is provided.
    [Show full text]
  • PROBLEM SHEET-I IST, Functional Analysis, Bhaskaracharya Pratishthana, Pune (Oct.23-Nov.4, 2017)
    PROBLEM SHEET-I IST, Functional Analysis, Bhaskaracharya Pratishthana, Pune (Oct.23-Nov.4, 2017) 1. Given a finite family of Banach spaces , show that the product {푋푖; 1 ≤ 푖 ≤ } 푛 푋 = ∏ 푋푖 = {푥 = 푥푖푖=1; 푥푖 ∈ 푋푖,1 ≤ 푖 ≤ } is a Banach space when푖 =equipped 1 with the norm: 푛 푛 ‖푥‖ = ∑‖푥푖‖ , 푥 = 푥푖푖=1 ∈ 푋. 2. Show that a normed space X is complete푖=1 if and only if absolutely convergent series in X are convergent. 3. Compute in C[0, 1] where ‖ + ‖ 4. Show that it is possible that two푥 = metrics 푠푖휋푥, on 푥a set= 푐푠휋푥.are equivalent whereas one of them is complete and that the other is incomplete. 5. Show that the closure of a subspace/convex subset of a normed space is a subspace/convex subset. How about the convex hull of a closed set? 6. Prove that a linear functional on a normed space is continuous if and only Kerf is a closed subspace of X. 7. For show that 1 ≤ < < ∞, ℓ ⊊ ℓ . PROBLEM SHEET-II IST, Functional Analysis, Bhaskaracharya Pratishthana, Pune (Oct.23-Nov.4, 2017) 1. Give an example of a discontinuous linear map between Banach spaces. 2. Prove that two equivalent norms are complete or incomplete together. 3. Show that a normed space is finite dimensional if all norms on it are equivalent. 4. Given that a normed space X admits a finite total subset of X*, can you say that it is finite dimensional? 5. What can you say about a normed space if it is topologically homeomorphic to a a finite dimensional normed space.
    [Show full text]
  • HISTORICAL NOTES Chapter 1:. the Idea of Topologizing the Set of Continuous Functions from One Topological Space Into Another To
    HISTORICAL NOTES Chapter 1:. The idea of topologizing the set of continuous functions from one topological space into another topological space arose from the notions of pointwise and uniform convergence of sequences of functions. Apparently the work of Ascoli [1883], [1889] and Hadamard [1898] marked the beginning of function space theory. The topology of pointwise convergence and the topology of uniform convergence are among the first function space topologies considered in the early years of general topology. The I supremum metric topology was studied in Frechet [19061. The paper of Tychonoff [1935] showed that the (Tychonoff) product on the set RX is nothing but the topology of pointwise convergence. In 1945, Fox [19451 defined the compact-open topology. Shortly thereafter, Arens [1946] studied this topology, which he called k-topology. Among other things which Arens proved was the compact-open topology version of Theorem 1.2.3. Set-open topologies in a more general setting were studied by Arens and Dugundji [1951] in connection with the concepts of admissible and proper topologies. Theorem 1.2.5 is due to Jackson [1952], and Example 1.2.7 can be found in Dugundji [1968]. Chapter 1:. Admissible [i.e., conjoining) topologies were introduced by Arens [1946] and splitting (i.e., proper) topologies were studied by Arens and Dugundji [1951], where they proved Theorem 2.5.3. Proofs of Theorem 2.5.2 and Corollary 2.5.4.a can be found in Fox [1945]. Corollary 2.5.7 is apparently due to Jackson [1952]; and Morita [1956] proved Corollary 2.5.8.
    [Show full text]
  • Weak Convergence of Measures
    Mathematical Surveys and Monographs Volume 234 Weak Convergence of Measures Vladimir I. Bogachev Weak Convergence of Measures Mathematical Surveys and Monographs Volume 234 Weak Convergence of Measures Vladimir I. Bogachev EDITORIAL COMMITTEE Walter Craig Natasa Sesum Robert Guralnick, Chair Benjamin Sudakov Constantin Teleman 2010 Mathematics Subject Classification. Primary 60B10, 28C15, 46G12, 60B05, 60B11, 60B12, 60B15, 60E05, 60F05, 54A20. For additional information and updates on this book, visit www.ams.org/bookpages/surv-234 Library of Congress Cataloging-in-Publication Data Names: Bogachev, V. I. (Vladimir Igorevich), 1961- author. Title: Weak convergence of measures / Vladimir I. Bogachev. Description: Providence, Rhode Island : American Mathematical Society, [2018] | Series: Mathe- matical surveys and monographs ; volume 234 | Includes bibliographical references and index. Identifiers: LCCN 2018024621 | ISBN 9781470447380 (alk. paper) Subjects: LCSH: Probabilities. | Measure theory. | Convergence. Classification: LCC QA273.43 .B64 2018 | DDC 519.2/3–dc23 LC record available at https://lccn.loc.gov/2018024621 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy select pages for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for permission to reuse portions of AMS publication content are handled by the Copyright Clearance Center. For more information, please visit www.ams.org/publications/pubpermissions. Send requests for translation rights and licensed reprints to [email protected].
    [Show full text]
  • Introduction to Functional Analysis Part III, Autumn 2004
    Introduction to Functional Analysis Part III, Autumn 2004 T. W. KÄorner October 21, 2004 Small print This is just a ¯rst draft for the course. The content of the course will be what I say, not what these notes say. Experience shows that skeleton notes (at least when I write them) are very error prone so use these notes with care. I should very much appreciate being told of any corrections or possible improvements and might even part with a small reward to the ¯rst ¯nder of particular errors. Contents 1 Some notes on prerequisites 2 2 Baire category 4 3 Non-existence of functions of several variables 5 4 The principle of uniform boundedness 7 5 Zorn's lemma and Tychonov's theorem 11 6 The Hahn-Banach theorem 15 7 Banach algebras 17 8 Maximal ideals 21 9 Analytic functions 21 10 Maximal ideals 23 11 The Gelfand representation 24 1 12 Finding the Gelfand representation 26 13 Three more uses of Hahn-Banach 29 14 The Rivlin-Shapiro formula 31 1 Some notes on prerequisites Many years ago it was more or less clear what could and what could not be assumed in an introductory functional analysis course. Since then, however, many of the concepts have drifted into courses at lower levels. I shall therefore assume that you know what is a normed space, and what is a a linear map and that you can do the following exercise. Exercise 1. Let (X; k kX ) and (Y; k kY ) be normed spaces. (i) If T : X ! Y is linear, then T is continuous if and only if there exists a constant K such that kT xkY · KkxkX for all x 2 X.
    [Show full text]
  • Countable Product of Function Spaces Having P-Frechet-Urysohn Like Properties
    Countable product of function spaces having p-Frechet-Urysohn like properties 著者 Tamariz-Mascarua Angel journal or Tsukuba journal of mathematics publication title volume 20 number 2 page range 291-319 year 1996-12 URL http://hdl.handle.net/2241/6940 TSUKUBA J.MATH. Vol. 20 No. 2 (1996), 291-319 COUNTABLE PRODUCT OF FUNCTION SPACES HAVING o-FRECHET-URYSOHN LIKE PROPERTIES By Angel Tamariz-Mascarua Abstract. We exhibit in this article some classes of spaces for which properties y and yp are countable additive, and we prove that for some type of spaces and ultrafiltersp e co*,y is equivalent to yp. We obtain: (1) If {Xn}n<(0 is a sequence of metrizable locally compact spaces with yp(pe(O*), then Yln<aCn(Xn) is a FU(p)- space; (2) Cn(X) is a Frechet-Urysohn (resp., FU(p)) space iff CK{F(X)) has the same property, where F(X) is the free topological group generated by X; (3) For a locally compact metrizable and non countable space X, CK(X) is a Frechet-Urysohn (resp., FU{p)) space iff Cn(LK(X)) is Frechet-Urysohn (resp., FU(p)), where LK(X) is the dual space of CK{X); (4) For every Cech-complete space X and every pecv* for which R does not have yp, CX{X) is Frechet-Urysohn iff CK{X) is a FU(p)-space. Also we give some results concerning F-points in (Q* related with /?-Frechet-Urysohn orooertv and toooloeical function soaces. 0. Introduction In [GN], [G], [Me], [Py], the authors studied the properties needed in a space X in order to have the Frechet-Urysohn property in the space Cn{X) of continuous functions from X to the real line R considered with the pointwise convergence topology.
    [Show full text]
  • Cech-Completeness and Related Properties of The
    CECH-COMPLETENESSˇ AND RELATED PROPERTIES OF THE GENERALIZED COMPACT-OPEN TOPOLOGY L'UBICA HOLA´ AND LASZL´ O´ ZSILINSZKY Abstract. The generalized compact-open topology τC on partial continuous functions with closed domains in X and values in Y is studied. If Y is a non- ˇ ˇ countably compact Cech-complete space with a Gδ-diagonal, then τC is Cech- complete, sieve complete and satisfies the p-space property of Arhangel'skiˇı, respectively, if and only if X is Lindel¨ofand locally compact. Lindel¨ofness, paracompactness and normality of τC is also investigated. New results are obtained on Cech-completeness,ˇ sieve completeness and the p-space property for the compact-open topology on the space of continuous functions with a general range Y . 1. Introduction The generalized compact-open topology τC on the space of partial continuous functions with closed domains was introduced by J. Back in [Ba] in connection with investigating utility functions emerging in mathematical economics. It proved to be a useful tool in studying convergence of dynamic programming models [Wh], [La], as well as in applications to the theory of differential equations [BC]. This new interest in τC complements the attention paid to spaces of partial maps in the past [Za], [Ku1], [Ku2], [AA], [AB], [BB], [Se], and more recently in [Fi], [St], [KS], [BCH1], [BCH2], [DN1], [DN2], [HZ1], [HZ2]. Various topological properties of τC have already been established, e.g. separa- tion axioms in [Ho1], complete metrizability in [Ho2] and other completeness type properties in [HZ1] and [NZ], respectively; also, in [DN1], [DN2] the authors study topological properties of spaces of partial maps in a more general setting.
    [Show full text]
  • Greedy Approximation for Biorthogonal Systems in Quasi-Banach Spaces
    GREEDY APPROXIMATION FOR BIORTHOGONAL SYSTEMS IN QUASI-BANACH SPACES FERNANDO ALBIAC, JOSE´ L. ANSORENA, PABLO M. BERNA,´ AND PRZEMYSLAW WOJTASZCZYK Abstract. The general problem addressed in this work is the development of a systematic study of the thresholding greedy al- gorithm for general biorthogonal systems (also known as Marku- shevich bases) in quasi-Banach spaces from a functional-analytic point of view. We revisit the concepts of greedy, quasi-greedy, and almost greedy bases in this comprehensive framework and provide the (nontrivial) extensions of the corresponding characterizations of those types of bases. As a by-product of our work, new proper- ties arise, and the relations amongst them are carefully discussed. Introduction The subject of finding estimates for the rate of approximation of a function by means of essentially nonlinear algorithms with respect to biorthogonal systems and, in particular, the greedy approximation al- gorithm using bases, has attracted much attention for the last twenty years, on the one hand from researchers interested in the applied nature 2010 Mathematics Subject Classification. 46B15, 41A65. Key words and phrases. quasi-greedy basis, almost greedy , greedy basis, uncon- ditional basis, democratic basis, quasi-Banach spaces. F. Albiac acknowledges the support of the Spanish Ministry for Economy and Competitivity Grant MTM2016-76808-P for Operators, lattices, and structure of Banach spaces. J.L. Ansorena acknowledges the support of the Spanish Ministry for Economy and Competitivity Grant MTM2014-53009-P for An´alisisVectorial, Multilineal y Aplicaciones. The research of P. M. Bern´awas partially supported by the grants MTM-2016-76566-P (MINECO, Spain) and 20906/PI/18 from Fun- daci´onS´eneca(Regi´onde Murcia, Spain).
    [Show full text]
  • Extremely Amenable Groups and Banach Representations
    Extremely Amenable Groups and Banach Representations A dissertation presented to the faculty of the College of Arts and Sciences of Ohio University In partial fulfillment of the requirements for the degree Doctor of Philosophy Javier Ronquillo Rivera May 2018 © 2018 Javier Ronquillo Rivera. All Rights Reserved. 2 This dissertation titled Extremely Amenable Groups and Banach Representations by JAVIER RONQUILLO RIVERA has been approved for the Department of Mathematics and the College of Arts and Sciences by Vladimir Uspenskiy Professor of Mathematics Robert Frank Dean, College of Arts and Sciences 3 Abstract RONQUILLO RIVERA, JAVIER, Ph.D., May 2018, Mathematics Extremely Amenable Groups and Banach Representations (125 pp.) Director of Dissertation: Vladimir Uspenskiy A long-standing open problem in the theory of topological groups is as follows: [Glasner-Pestov problem] Let X be compact and Homeo(X) be endowed with the compact-open topology. If G ⊂ Homeo(X) is an abelian group, such that X has no G-fixed points, does G admit a non-trivial continuous character? In this dissertation we discuss some reformulations of this problem and its connections to other mathematical objects such as extremely amenable groups. When G is the closure of the group generated by a single map T ∈ Homeo(X) (with respect to the compact-open topology) and the action of G on X is minimal, the existence of non-trivial continuous characters of G is linked to the existence of equicontinuous factors of (X, T ). In this dissertation we present some connections between weakly mixing dynamical systems, continuous characters on groups, and the space of maximal chains of subcontinua of a given compact space.
    [Show full text]
  • Exercises for the Lecture Functional Analysis I Exercise 13 (2+2=4
    SAARLAND UNIVERSITY DEPARTMENT OF MATHEMATICS Prof. Dr. J¨orgEschmeier M. Sc. Sebastian Toth Exercises for the lecture Functional Analysis I Winter term 2020/2021 Sheet 4 To be submitted until: Thursday, 03.12.2020, before the lecture Exercise 13 (2+2=4 Points) Let A; B ⊂ `1 be defined by 1 A = (an)n2N 2 ` ; a2n = 0 for all n 2 N ; 1 −n B = (bn)n2N 2 ` ; b2n = 2 b2n+1 for all n 2 N : Show that: (a) A and B are closed linear subspaces of `1. (b) A + B ⊂ `1 is not closed. 1 (Hint : Consider the sequences (xk)k2N, (yk)k2N in ` defined as xk = e1 + e3 + ::: + e2k+1 and yk = −1 −k e0 + 2 e2 + ::: + 2 e2k + xk for k 2 N, where ei = (δi;n)n2N (i 2 N):) Exercise 14 (1+2+2=5 Points) Let (E; k · k) be a normed space and let E0 ⊂ E be a closed linear subspace. Let E=E0 be the quotient vector space of E modulo E0. Write the elements of E=E0 as [x] = x + E0 2 E=E0. Show that: (a) k[x]k = inffkx − yk; y 2 E0g defines a norm on E=E0. (b) The quotient map q : E ! E=E0; q(x) = [x] is continuous linear and open. (c) If E is complete, then E=E0 is complete. (Hint : Show that each absolutely convergent series in E=E0 converges.) Exercise 15 (4 Points) Let E be an infinite-dimensional vector space over K = R or K = C. Show that there is a discontinuous linear map u: E ! K.
    [Show full text]
  • Lipschitz Mappings
    On Differentiability and Surjectivity of a-Lipschitz Mappings. JACoPo PEJS~C~OWlCZ - ALF0~S0 VIG:~0LI (Genova) (*) (**) Summary. - In the ]irst part o] this paper the well known result that the Erdchet di]]erential and the asymptotic derivative o] a compact mapping is compact, is extended to ~-Lipschitz mappings (see Theorem 1.1, 1.2 and Corollaries). In the second part we introduce the new concept o/ s-quasibounded mappings de]ined on Banach spaces and obtain new s~r]ectivity theorems extending results previously obta- ined by other Authors (see Theorem 2.1, 2.2). In the third section, by restricting our atten- tion to the class o] asymptotically linear mappings, we give some extimates o] the s-quasinorm (see Theorem 3.1). As a byproduct we obtain a result of indipendent interest, regarding con- tinuous semigroups (see Corollary 3.4). 1~inally, Theorem 3.3 gives a measure o] sur]ectivity for the class o/strongly asymptotically linear mappings. Introduction. In the last few years the class of a-Lipsehitz mappings (see definition below) has been intensively studied. The survey paper of B. N. SADovsI¢IJ [14] furnishes a brief historical introduction to the subject matter and a comprehensive (though not complete) bibliography. Our aim here is to give some new results regarding surjectivity and differen- tiabflity of ~-Lipschitz mappings. In the first section of the present note we extend to the context of ~-Lipsehitz mappings some well known results regarding Fr6chet and asymptotic derivatives of completely continuous mappings. (See [1, 8, 11, 14]). In the second section we introduce the class of s-quasibounded mappings rep- resenting a natural extension of the concept of quasibounded ones.
    [Show full text]
  • The Metrizability and Completeness of the Support-Open Topology on C(X)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Topology and its Applications 157 (2010) 1119–1126 Contents lists available at ScienceDirect Topology and its Applications www.elsevier.com/locate/topol The metrizability and completeness of the support-open topology on C(X) S. Kundu Department of Mathematics, Indian Institute of Technology Delhi, New Delhi 110016, India article info abstract Article history: This paper studies the metrizability and various kinds of completeness property of the Received 16 December 2009 space Cs(X) of continuous real-valued functions on a Tychonoff space X,wherethe Accepted 4 January 2010 function space has the support-open topology. The metrizability of Cs(X) is studied in the context of generalized metric spaces and generalizations of the first countability. On the MSC: other hand the completeness properties, studied here, range from complete metrizability primary 54C35 secondary 54E18, 54E35, 54E50, 54E52, to pseudocompleteness. 54E99 © 2010 Elsevier B.V. All rights reserved. Keywords: Function space Support set Metrizable Completely metrizable Cech-completeˇ Sieve-complete Partition-complete Pseudocomplete Barreled 1. Introduction and basic concepts The set C(X) of all real-valued continuous functions on a Tychonoff space X has a number of natural topologies, amongst which the compact-open topology k occupies an eminent place. The compact-open topology is a locally convex topology and the corresponding locally convex space is denoted by Ck(X). This topology, since its introduction in 1945 by Fox [10], has been extensively studied by many people from the view point of topology as well as from the view point of the dual space of Ck(X).
    [Show full text]