Package 'Bio3d'

Total Page:16

File Type:pdf, Size:1020Kb

Package 'Bio3d' Package ‘bio3d’ May 11, 2021 Title Biological Structure Analysis Version 2.4-2 Author Barry Grant [aut, cre], Xin-Qiu Yao [aut], Lars Skjaerven [aut], Julien Ide [aut] VignetteBuilder knitr LinkingTo Rcpp Imports Rcpp, parallel, grid, graphics, grDevices, stats, utils Suggests XML, RCurl, lattice, ncdf4, igraph, bigmemory, knitr, rmarkdown, testthat (>= 0.9.1), httr, msa, Biostrings Depends R (>= 3.1.0) LazyData yes Description Utilities to process, organize and explore protein structure, sequence and dynamics data. Features include the ability to read and write structure, sequence and dynamic trajectory data, perform sequence and structure database searches, data summaries, atom selection, alignment, superposition, rigid core identification, clustering, torsion analysis, distance matrix analysis, structure and sequence conservation analysis, normal mode analysis, principal component analysis of heterogeneous structure data, and correlation network analysis from normal mode and molecular dynamics data. In addition, various utility functions are provided to enable the statistical and graphical power of the R environment to work with biological sequence and structural data. Please refer to the URLs below for more information. Maintainer Barry Grant <[email protected]> License GPL (>= 2) URL http://thegrantlab.org/bio3d/, https://bitbucket.org/Grantlab/bio3d/ RoxygenNote 7.1.1 NeedsCompilation yes Repository CRAN Date/Publication 2021-05-11 07:02:15 UTC 1 2 R topics documented: R topics documented: bio3d-package . .6 aa.index . .7 aa.table . .9 aa123 . 10 aa2index . 11 aa2mass . 12 aanma . 14 aanma.pdbs . 17 aln2html . 19 angle.xyz . 21 as.fasta . 22 as.pdb . 23 as.select . 26 atom.index . 27 atom.select . 28 atom2ele . 31 atom2mass . 33 atom2xyz . 34 basename.pdb . 35 bhattacharyya . 36 binding.site . 38 biounit . 40 blast.pdb . 41 bounds . 44 bounds.sse . 45 bwr.colors . 46 cat.pdb . 47 chain.pdb . 48 check.utility . 50 clean.pdb . 50 cmap............................................. 52 cna.............................................. 54 cnapath . 57 com ............................................. 60 combine.select . 62 community.aln . 64 community.tree . 66 consensus . 68 conserv . 69 convert.pdb . 71 core.cmap . 73 core.find . 74 cov.nma . 78 covsoverlap . 79 dccm............................................. 80 dccm.enma . 81 R topics documented: 3 dccm.gnm . 82 dccm.nma . 84 dccm.pca . 85 dccm.xyz . 87 deformation.nma . 89 diag.ind . 91 difference.vector . 92 dist.xyz . 93 dm.............................................. 94 dssp............................................. 97 elements . 100 entropy . 101 example.data . 104 filter.cmap . 105 filter.dccm . 106 filter.identity . 108 filter.rmsd . 110 fit.xyz . 111 fluct.nma . 114 formula2mass . 115 gap.inspect . 116 geostas . 118 get.pdb . 122 get.seq . 124 gnm............................................. 125 hclustplot . 127 hmmer . 129 identify.cna . 132 inner.prod . 133 inspect.connectivity . 135 is.gap . 136 is.mol2 . 137 is.pdb . 138 is.select . 139 is.xyz . 140 layout.cna . 140 lbio3d . 142 load.enmff . ..
Recommended publications
  • Open Data, Open Source, and Open Standards in Chemistry: the Blue Obelisk Five Years On" Journal of Cheminformatics Vol
    Oral Roberts University Digital Showcase College of Science and Engineering Faculty College of Science and Engineering Research and Scholarship 10-14-2011 Open Data, Open Source, and Open Standards in Chemistry: The lueB Obelisk five years on Andrew Lang Noel M. O'Boyle Rajarshi Guha National Institutes of Health Egon Willighagen Maastricht University Samuel Adams See next page for additional authors Follow this and additional works at: http://digitalshowcase.oru.edu/cose_pub Part of the Chemistry Commons Recommended Citation Andrew Lang, Noel M O'Boyle, Rajarshi Guha, Egon Willighagen, et al.. "Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on" Journal of Cheminformatics Vol. 3 Iss. 37 (2011) Available at: http://works.bepress.com/andrew-sid-lang/ 19/ This Article is brought to you for free and open access by the College of Science and Engineering at Digital Showcase. It has been accepted for inclusion in College of Science and Engineering Faculty Research and Scholarship by an authorized administrator of Digital Showcase. For more information, please contact [email protected]. Authors Andrew Lang, Noel M. O'Boyle, Rajarshi Guha, Egon Willighagen, Samuel Adams, Jonathan Alvarsson, Jean- Claude Bradley, Igor Filippov, Robert M. Hanson, Marcus D. Hanwell, Geoffrey R. Hutchison, Craig A. James, Nina Jeliazkova, Karol M. Langner, David C. Lonie, Daniel M. Lowe, Jerome Pansanel, Dmitry Pavlov, Ola Spjuth, Christoph Steinbeck, Adam L. Tenderholt, Kevin J. Theisen, and Peter Murray-Rust This article is available at Digital Showcase: http://digitalshowcase.oru.edu/cose_pub/34 Oral Roberts University From the SelectedWorks of Andrew Lang October 14, 2011 Open Data, Open Source, and Open Standards in Chemistry: The Blue Obelisk five years on Andrew Lang Noel M O'Boyle Rajarshi Guha, National Institutes of Health Egon Willighagen, Maastricht University Samuel Adams, et al.
    [Show full text]
  • A Java-Based Platform for Evolutionary De Novo Molecular Design
    Article MoleGear: A Java-Based Platform for Evolutionary De Novo Molecular Design Yunhan Chu and Xuezhong He * Department of Chemical Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway; [email protected] * Correspondence: [email protected]; Tel.: +47-73593942 Received: 25 March 2019; Accepted: 10 April 2019; Published: 11 April 2019 Abstract: A Java-based platform, MoleGear, is developed for de novo molecular design based on the chemistry development kit (CDK) and other Java packages. MoleGear uses evolutionary algorithm (EA) to explore chemical space, and a suite of fragment-based operators of growing, crossover, and mutation for assembling novel molecules that can be scored by prediction of binding free energy or a weighted-sum multi-objective fitness function. The EA can be conducted in parallel over multiple nodes to support large-scale molecular optimizations. Some complementary utilities such as fragment library design, chemical space analysis, and graphical user interface are also integrated into MoleGear. The candidate molecules as inhibitors for the human immunodeficiency virus 1 (HIV-1) protease were designed by MoleGear, which validates the potential capability for de novo molecular design. Keywords: de novo design; evolutionary algorithm; drug molecules; fitness; multi-objective function 1. Introduction Computational chemistry plays an important role in the design of new drug-like molecules [1– 5], catalysts [6–8], and novel solvents of ionic liquids [9–11]. De novo molecular design has been an active research area of drug design/discovery over the last decades, and many approaches such as LUDI [12], LEA3D [13], Flux [14,15], and pharmacophore-linked fragment virtual screening (PFVS) [16] have been developed by using protein and ligand structures.
    [Show full text]
  • Molecular Structure Input on the Web Peter Ertl
    Ertl Journal of Cheminformatics 2010, 2:1 http://www.jcheminf.com/content/2/1/1 REVIEW Open Access Molecular structure input on the web Peter Ertl Abstract A molecule editor, that is program for input and editing of molecules, is an indispensable part of every cheminfor- matics or molecular processing system. This review focuses on a special type of molecule editors, namely those that are used for molecule structure input on the web. Scientific computing is now moving more and more in the direction of web services and cloud computing, with servers scattered all around the Internet. Thus a web browser has become the universal scientific user interface, and a tool to edit molecules directly within the web browser is essential. The review covers a history of web-based structure input, starting with simple text entry boxes and early molecule editors based on clickable maps, before moving to the current situation dominated by Java applets. One typical example - the popular JME Molecule Editor - will be described in more detail. Modern Ajax server-side molecule editors are also presented. And finally, the possible future direction of web-based molecule editing, based on tech- nologies like JavaScript and Flash, is discussed. Introduction this trend and input of molecular structures directly A program for the input and editing of molecules is an within a web browser is therefore of utmost importance. indispensable part of every cheminformatics or molecu- In this overview a history of entering molecules into lar processing system. Such a program is known as a web applications will be covered, starting from simple molecule editor, molecular editor or structure sketcher.
    [Show full text]
  • Synchronized Load Quantification from Multiple Data Records for Analysing High-Rise Buildings
    ACEE0195 The 7th Asia Conference on Earthquake Engineering, 22-25 November 2018, Bangkok, Thailand Synchronized Load Quantification from Multiple Data Records for Analysing High-rise Buildings 1st Marco Behrendt 2nd Wonsiri Punurai 3rd Michael Beer Institute for Risk and Reliability Department of Civil and Environmental Institute for Risk and Reliability Leibniz Universtät Hannover Engineering Leibniz Universtät Hannover Hannover, Germany Mahidol University Hannover, Germany [email protected] Bangkok, Thailand [email protected] [email protected] Abstract—To analyse the reliability and durability of large noise compensation for speaker recognition [8], network complex structures such as high-rise buildings, most intrusion detection [9] and calibration of laser sensors in realistically, it is advisable to utilize site-specific load mobile robotics [10]. characteristics. Such load characteristics can be made available as data records, e.g. representing measured wind or In this work, the various influences that make the earthquake loads. Due to various circumstances such as measured signals uncertain are examined in more detail. The measurement errors, equipment failures, or sensor limitations, influence of noise, missing data and rotated sensors are the data records underlie uncertainties. Since these considered. First, the strength of the influence of these uncertainties affect the results of the simulation of complex factors is determined and then a sensitivity analysis is structures, they must be mitigated as much as possible. In this performed. It determines which influences affect the results work, the Procrustes analysis, finding similarity most and whether they distort the results too much. transformations between two sets of points in n-dimensional space is used and is extended to uncertainties so that data This work is organised as follows.
    [Show full text]
  • Designing Universal Chemical Markup (UCM) Through the Reusable Methodology Based on Analyzing Existing Related Formats
    Designing Universal Chemical Markup (UCM) through the reusable methodology based on analyzing existing related formats Background: In order to design concepts for a new general-purpose chemical format we analyzed the strengths and weaknesses of current formats for common chemical data. While the new format is discussed more in the next article, here we describe our software s t tools and two stage analysis procedure that supplied the necessary information for the n i r development. The chemical formats analyzed in both stages were: CDX, CDXML, CML, P CTfile and XDfile. In addition the following formats were included in the first stage only: e r P CIF, InChI, NCBI ASN.1, NCBI XML, PDB, PDBx/mmCIF, PDBML, SMILES, SLN and Mol2. Results: A two stage analysis process devised for both XML (Extensible Markup Language) and non-XML formats enabled us to verify if and how potential advantages of XML are utilized in the widely used general-purpose chemical formats. In the first stage we accumulated information about analyzed formats and selected the formats with the most general-purpose chemical functionality for the second stage. During the second stage our set of software quality requirements was used to assess the benefits and issues of selected formats. Additionally, the detailed analysis of XML formats structure in the second stage helped us to identify concepts in those formats. Using these concepts we came up with the concise structure for a new chemical format, which is designed to provide precise built-in validation capabilities and aims to avoid the potential issues of analyzed formats.
    [Show full text]
  • Open Data, Open Source and Open Standards in Chemistry: the Blue Obelisk five Years On
    Open Data, Open Source and Open Standards in chemistry: The Blue Obelisk ¯ve years on Noel M O'Boyle¤1 , Rajarshi Guha2 , Egon L Willighagen3 , Samuel E Adams4 , Jonathan Alvarsson5 , Richard L Apodaca6 , Jean-Claude Bradley7 , Igor V Filippov8 , Robert M Hanson9 , Marcus D Hanwell10 , Geo®rey R Hutchison11 , Craig A James12 , Nina Jeliazkova13 , Andrew SID Lang14 , Karol M Langner15 , David C Lonie16 , Daniel M Lowe4 , J¶er^omePansanel17 , Dmitry Pavlov18 , Ola Spjuth5 , Christoph Steinbeck19 , Adam L Tenderholt20 , Kevin J Theisen21 , Peter Murray-Rust4 1Analytical and Biological Chemistry Research Facility, Cavanagh Pharmacy Building, University College Cork, College Road, Cork, Co. Cork, Ireland 2NIH Center for Translational Therapeutics, 9800 Medical Center Drive, Rockville, MD 20878, USA 3Division of Molecular Toxicology, Institute of Environmental Medicine, Nobels vaeg 13, Karolinska Institutet, 171 77 Stockholm, Sweden 4Unilever Centre for Molecular Sciences Informatics, Department of Chemistry, University of Cambridge, Lens¯eld Road, CB2 1EW, UK 5Department of Pharmaceutical Biosciences, Uppsala University, Box 591, 751 24 Uppsala, Sweden 6Metamolecular, LLC, 8070 La Jolla Shores Drive #464, La Jolla, CA 92037, USA 7Department of Chemistry, Drexel University, 32nd and Chestnut streets, Philadelphia, PA 19104, USA 8Chemical Biology Laboratory, Basic Research Program, SAIC-Frederick, Inc., NCI-Frederick, Frederick, MD 21702, USA 9St. Olaf College, 1520 St. Olaf Ave., North¯eld, MN 55057, USA 10Kitware, Inc., 28 Corporate Drive, Clifton Park, NY 12065, USA 11Department of Chemistry, University of Pittsburgh, 219 Parkman Avenue, Pittsburgh, PA 15260, USA 12eMolecules Inc., 380 Stevens Ave., Solana Beach, California 92075, USA 13Ideaconsult Ltd., 4.A.Kanchev str., So¯a 1000, Bulgaria 14Department of Engineering, Computer Science, Physics, and Mathematics, Oral Roberts University, 7777 S.
    [Show full text]
  • Biomolecular Simulation Data Management In
    BIOMOLECULAR SIMULATION DATA MANAGEMENT IN HETEROGENEOUS ENVIRONMENTS Julien Charles Victor Thibault A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Biomedical Informatics The University of Utah December 2014 Copyright © Julien Charles Victor Thibault 2014 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Julien Charles Victor Thibault has been approved by the following supervisory committee members: Julio Cesar Facelli , Chair 4/2/2014___ Date Approved Thomas E. Cheatham , Member 3/31/2014___ Date Approved Karen Eilbeck , Member 4/3/2014___ Date Approved Lewis J. Frey _ , Member 4/2/2014___ Date Approved Scott P. Narus , Member 4/4/2014___ Date Approved And by Wendy W. Chapman , Chair of the Department of Biomedical Informatics and by David B. Kieda, Dean of The Graduate School. ABSTRACT Over 40 years ago, the first computer simulation of a protein was reported: the atomic motions of a 58 amino acid protein were simulated for few picoseconds. With today’s supercomputers, simulations of large biomolecular systems with hundreds of thousands of atoms can reach biologically significant timescales. Through dynamics information biomolecular simulations can provide new insights into molecular structure and function to support the development of new drugs or therapies. While the recent advances in high-performance computing hardware and computational methods have enabled scientists to run longer simulations, they also created new challenges for data management. Investigators need to use local and national resources to run these simulations and store their output, which can reach terabytes of data on disk.
    [Show full text]
  • Procrustes Documentation Release 0.0.1-Alpha
    Procrustes Documentation Release 0.0.1-alpha The QC-Devs Community Apr 23, 2021 USER DOCUMENTATION 1 Description of Procrustes Methods3 2 Indices and tables 41 Bibliography 43 Python Module Index 45 Index 47 i ii Procrustes Documentation, Release 0.0.1-alpha Procrustes is a free, open-source, and cross-platform Python library for (generalized) Procrustes problems with the goal of finding the optimal transformation(s) that makes two matrices as close as possible to each other. Please use the following citation in any publication using Procrustes library: “Procrustes: A Python Library to Find Transformations that Maximize the Similarity Between Matrices”, F. Meng, M. Richer, A. Tehrani, J. La, T. D. Kim, P. W. Ayers, F. Heidar-Zadeh, JOURNAL 2021; ISSUE PAGE NUMBER. The Procrustes source code is hosted on GitHub and is released under the GNU General Public License v3.0. We welcome any contributions to the Procrustes library in accord with our Code of Conduct; please see our Contributing Guidelines. Please report any issues you encounter while using Procrustes library on GitHub Issues. For further information and inquiries please contact us at [email protected]. USER DOCUMENTATION 1 Procrustes Documentation, Release 0.0.1-alpha 2 USER DOCUMENTATION CHAPTER ONE DESCRIPTION OF PROCRUSTES METHODS Procrustes problems arise when one wishes to find one or two transformations, T 2 Rn×n and S 2 Rm×m, that make matrix A 2 Rm×n (input matrix) resemble matrix B 2 Rm×n (target or reference matrix) as closely as possible: min kSAT − Bk2 |{z} F S;T where, the k · kF denotes the Frobenius norm defined as, v u m n q uX X 2 y kAkF = t jaijj = Tr(A A) i=1 j=1 Here aij and Tr(A) denote the ij-th element and trace of matrix A, respectively.
    [Show full text]
  • Open Source Visualization of Scientific Data 8 August 2011 Dr
    Open Source Visualization of Scientific Data 8 August 2011 Dr. Marcus D. Hanwell [email protected] 1 Outline • Background • Why is open science important? • Opening up chemistry over the last four years • The Visualization Toolkit (VTK) • ParaView – a client-server Qt based VTK GUI • New frontiers – web, mobile and tablets • Future directions 2 My Background • Ph.D. (Physics) – University of Sheffield • Google Summer of Code – Avogadro • Postdoc (Chemistry) – University of Pittsburgh • R&D engineer – Kitware, Inc • Passionate about physics, chemistry, and the growing need to improve computational tools • See the need for powerful open source, cross platform frameworks and applications • Develop(ed): Gentoo, KDE, Kalzium, Avogadro, Open Babel, VTK, ParaView, Titan, CMake 3 Kitware • Founded in 1998: 5 former GE Research employees • 95 employees: 42% PhD • Privately held, profitable from creation, no debt • Rapidly Growing: >30% in 2010, 7M web-visitors/quarter • Offices • 2011 Small Business – Albany, NY Administration’s Tibbetts Award – Carrboro, NC • HPCWire Readers – Lyon, France and Editor’s Choice – Bangalore, India • Inc’s 5000 List: 2008 to 2010 Kitware: Core Technologies CMake CDash 5 What Is “Open Science”? “Open science is the idea that scientific knowledge of all kinds should be openly shared as early as is practical in the discovery process.” openscience.org 6 What Is The Problem? “…when the journal system was developed in the 17th and 18th centuries it was an excellent example of open science. The journals are perhaps
    [Show full text]
  • The Chemistry Development Kit (CDK). 3
    Willighagen et al. RESEARCH The Chemistry Development Kit (CDK). 3. Atom typing, Rendering, Molecular Formula, and Substructure Searching Egon L Willighagen1*, John W May2, Jonathan Alvarsson3, Arvid Berg3, Nina Jeliazkova4, Tom´aˇsPluskal7, Miguel Rojas-Cherto??, Ola Spjuth3, Gilleain Torrance??, Rajarshi Guha5 and Christoph Steinbeck6 *Correspondence: [email protected] Abstract 1 Dept of Bioinformatics - BiGCaT, NUTRIM, Maastricht Background: Cheminformatics is a well-established field with many applications University, NL-6200 MD, in chemistry, biology, drug discovery, and others. The Chemistry Development Kit Maastricht, The Netherlands Full list of author information is (CDK) has become a widely used Open Source cheminformatics toolkit, available at the end of the article providing various models to represent chemical structures, of which the chemical graph is essential. However, in the first five years of the project increased so much in size that interdependencies between components grew unmanageable large, resulting in unpredictable instabilities. Results: We here report improvements to the CDK since the 1.2 release series made to accommodate both the increased complexity of the library, as well as significant improvements of and additions to the functionality of the library. Second, we outline how the CDK evolved with respect to quality control and the approach we have adopted to ensure stability, including a peer review mechanism. Additionally, a selection of the new APIs that have been introduced will be discussed: atom type perception, substructure searching, molecular fingerprints, rendering of molecules, and handling of molecular formulas. Conclusions: With this paper we have shown the continued effort to provide a free, Open Source cheminformatics library, and show that such collaborative projects can exist over a long period.
    [Show full text]
  • The Quaternion-Based Spatial Coordinate and Orientation Frame Alignment Problems
    The Quaternion-Based Spatial Coordinate and Orientation Frame Alignment Problems Andrew J. Hanson Luddy School of Informatics, Computing, and Engineering Indiana University, Bloomington, Indiana, 47405, USA Abstract We review the general problem of finding a global rotation that transforms a given set of points and/or coordinate frames (the “test” data) into the best possible alignment with a corresponding set (the “reference” data). For 3D point data, this “orthogonal Procrustes problem” is often phrased in terms of minimizing a root-mean-square deviation or RMSD corresponding to a Euclidean distance measure relating the two sets of matched coordinates. We focus on quaternion eigensystem methods that have been exploited to solve this problem for at least five decades in several different bodies of scientific literature where they were discovered independently. While numerical methods for the eigenvalue solutions dominate much of this literature, it has long been realized that the quaternion-based RMSD optimization problem can also be solved using exact algebraic expressions based on the form of the quartic equation solution published by Cardano in 1545; we focus on these exact solutions to expose the structure of the entire eigensystem for the traditional 3D spatial alignment problem. We then explore the structure of the less-studied orientation data context, investigating how quaternion methods can be extended to solve the corresponding 3D quaternion orientation frame alignment (QFA) problem, noting the interesting equivalence of this problem to the rotation-averaging problem, which also has been the subject of independent literature threads. We conclude with a brief discussion of the combined 3D translation-orientation data alignment problem.
    [Show full text]
  • Open Source Molecular Modeling
    Accepted Manuscript Title: Open Source Molecular Modeling Author: Somayeh Pirhadi Jocelyn Sunseri David Ryan Koes PII: S1093-3263(16)30118-8 DOI: http://dx.doi.org/doi:10.1016/j.jmgm.2016.07.008 Reference: JMG 6730 To appear in: Journal of Molecular Graphics and Modelling Received date: 4-5-2016 Accepted date: 25-7-2016 Please cite this article as: Somayeh Pirhadi, Jocelyn Sunseri, David Ryan Koes, Open Source Molecular Modeling, <![CDATA[Journal of Molecular Graphics and Modelling]]> (2016), http://dx.doi.org/10.1016/j.jmgm.2016.07.008 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. Open Source Molecular Modeling Somayeh Pirhadia, Jocelyn Sunseria, David Ryan Koesa,∗ aDepartment of Computational and Systems Biology, University of Pittsburgh Abstract The success of molecular modeling and computational chemistry efforts are, by definition, de- pendent on quality software applications. Open source software development provides many advantages to users of modeling applications, not the least of which is that the software is free and completely extendable. In this review we categorize, enumerate, and describe available open source software packages for molecular modeling and computational chemistry. 1. Introduction What is Open Source? Free and open source software (FOSS) is software that is both considered \free software," as defined by the Free Software Foundation (http://fsf.org) and \open source," as defined by the Open Source Initiative (http://opensource.org).
    [Show full text]