The X-Ray Crystal Structure of the Euryarchaeal RNA Polymerase in an Open-Clamp Configuration

Total Page:16

File Type:pdf, Size:1020Kb

The X-Ray Crystal Structure of the Euryarchaeal RNA Polymerase in an Open-Clamp Configuration ARTICLE Received 6 Jun 2014 | Accepted 2 Sep 2014 | Published 14 Oct 2014 DOI: 10.1038/ncomms6132 The X-ray crystal structure of the euryarchaeal RNA polymerase in an open-clamp configuration Sung-Hoon Jun1, Akira Hirata1,2, Tamotsu Kanai3, Thomas J. Santangelo4, Tadayuki Imanaka5 & Katsuhiko S. Murakami1 The archaeal transcription apparatus is closely related to the eukaryotic RNA polymerase II (Pol II) system. Archaeal RNA polymerase (RNAP) and Pol II evolved from a common ancestral structure and the euryarchaeal RNAP is the simplest member of the extant archaeal–eukaryotic RNAP family. Here we report the first crystal structure of euryarchaeal RNAP from Thermococcus kodakarensis (Tko). This structure reveals that the clamp domain is able to swing away from the main body of RNAP in the presence of the Rpo4/Rpo7 stalk by coordinated movements of these domains. More detailed structure–function analysis of yeast Pol II and Tko RNAP identifies structural additions to Pol II that correspond to the binding sites of Pol II-specific general transcription factors including TFIIF, TFIIH and Mediator. Such comparisons provide a framework for dissecting interactions between RNAP and these factors during formation of the pre-initiation complex. 1 Department of Biochemistry and Molecular Biology, The Center for RNA Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA. 2 Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Matsuyama, Ehime 790- 8577, Japan. 3 Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510 Japan. 4 Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA. 5 Department of Biotechnology, Ritsumeikan University, Noji-Higashi, Kusatsu 525-8577, Japan. Correspondence and requests for materials should be addressed to K.S.M. (email: [email protected]) or to A.H. (email: [email protected]). NATURE COMMUNICATIONS | 5:5132 | DOI: 10.1038/ncomms6132 | www.nature.com/naturecommunications 1 & 2014 Macmillan Publishers Limited. All rights reserved. ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6132 rchaeal proteins associated with genome maintenance and Rpo4/Rpo7 stalk. Structure-guided sequence alignment between gene expression have extensive functional and structural Tko RNAP and yeast Pol II postulates how retained insertions Asimilarities with their eukaryotic counterparts1,2. This and modifications to Pol II during RNAP evolution have been congruence is especially true for the archaeal transcription utilized to establish interactions with Pol II-specific GTFs and machinery, and there is a striking structural similarity between Mediator. Our structure–function analysis provides insight archaeal and eukaryotic RNA polymerases (RNAPs)3–5. regarding the evolution of multisubunit RNAPs with their Comparing the pre-initiation complex (PIC) formation of the binding factors and also serves as a guide for studying the archaeal and three eukaryotic transcription systems (Pol I, II and physical interactions between Pol II and transcription regulators. III) revealed that all RNAPs use a core subset of structurally and functionally related transcription factors to initiate promoter- Results dependent transcription6. All factors are auxiliary for the archaeal Tko RNAP purification and crystallization. The phylogenetic and Pol II transcription systems; however, some factors are bona analysis of the largest subunit of cellular RNAPs indicates fide RNAP subunits for the Pol I and Pol III transcription that among Euryarchaeota, Thermococcales including Tko is the systems. Archaeal RNAP is most closely related to Pol II in closest forms of RNAP to the common ancestor of the archaeal– subunit composition, and their requirements for general eukaryotic RNAP family (Fig. 1). Therefore, Tko RNAP can be transcription factors (GTFs) exactly match a subset of GTFs used as an ideal reference to analyse the structure and evolution required for the activities of Pol II. Archaeal RNAP requires only of archaeal–eukaryotic RNAP family15. Tko RNAP purified two monomeric GTFs—TBP and TFB—for PIC formation and directly from cells contains substoichiometric amounts of transcription in vitro, although a third monomeric GTF—TFE— TFE16, and this heterogeneity likely precluded crystallization can assist PIC formation in vitro and appears essential factor attempts. Tko RNAP purified from a Drpo4 strain yields an in vivo1,3,7,8. PIC formation with Pol II requires a more complex enzyme that lacks Rpo4, Rpo7 and TFE16. Introduction of set of GTFs, with minimally six GTFs (TFIIA, TFIIB, TFIID/TBP, recombinant Rpo4 and Rpo7 into this TFE-free RNAP reformed TFIIE, TFIIF and TFIIH) and the Mediator complex is also the full 11-subunit enzyme (Supplementary Fig. 1) that could be required for promoter-specific transcription7,9,10. crystallized successfully. The structure was determined by Archaea consists of two major phyla, Euryarchaeota and molecular replacement using the Sulfolobus solfataricus RNAP Crenarchaeota, and phylogenetic analyses of the essential structure (PDB ID 3HKZ)1 as a search model. We also solved the components in DNA replication, transcription and translation high-resolution structures of heterodimers formed by Tko RNAP suggested that Euryarchaeota have retained a set of features that subunits including Rpo3/Rpo11 (1.6 Å) and Rpo4/Rpo7 (2.3 Å; more likely represent the ancestral form present in the last Supplementary Table 2), and replacement with these structures common ancestor of eukaryotes and archaea11,12. Euryarchaeal allowed refinement of the final structure of Tko RNAP at 3.5 Å RNAP is composed of 11 subunits and all subunits are conserved resolution with high quality (Supplementary Fig. 2 and in the archaeal–eukaryotic RNAP family (Supplementary Supplementary Table 2). Table 1), whereas crenarchaeal RNAP contains two additional subunits Rpo8 and Rpo13 (refs 13,14). Although structural and functional similarities between archaeal and Pol II transcription The Tko RNAP structure. The overall shape of Tko RNAP machineries have been known for decades, precise comparison of resembles that of the crenarchaeal RNAP and eukaryotic Pol I these RNAPs generate new insights about structural motifs of and Pol II (Fig. 2). All subunits of Tko RNAP are conserved in RNAP that participate in the assembly of the PIC and archaeal–eukaryotic RNAPs supporting that the Tko RNAP transcription regulation. structure represents the closest form to their common ancestor We report the crystal structure of Thermococcus kodakarensis (Fig. 2c). Superposition of the Tko RNAP structure with the Sso (Tko) RNAP at 3.5 Å resolution, which reveals the molecular RNAP and yeast Pol II structures, both captured in the closed- details of the open-clamp state of the RNAP in the presence of the clamp conformation17,18, reveals that the Tko RNAP clamp is in 100 Methanosarcina acetivorans 100 Methanococcoides burtonii Haloarcula vallismortis 81 100 Halococcus morrhuae Euryarchaeota 91 Methanococcus maripaludis Pyrococcus furiosus 90 100 Thermococcus kodakarensis 100 Sulfolobus solfataricus Common ancestor of Sulfolobus acidocaldarius archaeal–eukaryal RNAP 100 99 Aeropyrum pernix Crenarchaeota 68 Pyrobaculum aerophilum 100 Pyrobaculum calidifontis Saccharomyces cerevisiae Eukaryote 100 Homo sapiens Escherichia coli Thermus thermophilus Bacteria 100 Thermus aquaticus 0.5 Figure 1 | Phylogenetic analysis of the largest subunit of RNAP in bacteria, euryarchaeota, crenarchaeota and eukaryotes. Maximum-likelihood phylogenetic tree made with the largest subunit of RNAP (b0 of bacterial RNAP, Rpo10 þ Rpo100 of archaeal RNAP, and Rpb1 of eukaryotic RNAP II) rooted with bacterial sequences. Bootstrap support based on 500 replicates is shown at each node. Scale bar represents the average number of substitutions per residues. The position of common ancestor of archaeal–eukaryal RNAP is indicated in red. An order of Thermococcales including Pfu and Tko is highlighted. 2 NATURE COMMUNICATIONS | 5:5132 | DOI: 10.1038/ncomms6132 | www.nature.com/naturecommunications & 2014 Macmillan Publishers Limited. All rights reserved. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms6132 ARTICLE Jaw/ Lobe/ lobe protrusion Rpo3/11 Rpo3/11 Cleft Cleft 180° Clamp Clamp Rpo4/7 Rpo4/7 (stalk) (stalk) Rpo1′, 1″ (RpoA′, A″) Rpo7 (RpoE) Rpo2 (RpoB) Rpo10 (RpoN) Rpo3 (RpoD) Rpo11 (RpoL) Rpo4 (RpoF) Rpo12 (RpoP) Rpo5 (RpoH) Mg Rpo6 (RpoK) Zn Tip loop Domain 2 Domain 3 C Tip-associated domain HRDC domain OB domain Dimerization domains Euryarchaeal RNAP Crenarchaeal RNAP Eukaryotic Pol II Eukaryotic Pol I (T. kodakarensis) (S. solfataricus) (S. cerevisiae) (S. cerevisiae) A34.5 9 A49 10 10 10 2 2 A135 10 2 3 11 12 3 3 11 12 8 AC19 11 12 12 AC40 ′ ′ 1 1 8 1 6 6 6 A190 6 74 7 4 7 4 A43 A14 180° 180° 180° A49 9 A34.5 AC40 3 3 3 A12.2 ″ 8 ″ 8 1 2 1 2 2 8 5 A135 11 11 5 5 5 13 ′ 1 6 1′ 6 1 6 6 A190 7 4 4 4 7 7 A14 A43 A49 9 A34.5 A12.2 8 8 8 13 Figure 2 | Crystal structures of the Tko RNAP and other members of archaeal–eukaryotic RNAP family. (a) Tko RNAP structure in a ribbon model along with a transparent molecular surface. Each subunit is denoted by a unique colour and was labelled. Two sets of nomenclatures, one for traditional (in parenthesis) and the other based on the eukaryotic terminology, are shown. Some structural features are labelled. (b) Crystal structures of Rpo3/Rpo11 (left)
Recommended publications
  • Dna Recognition by Eukaryotic Transcription Factors
    Dna Recognition By Eukaryotic Transcription Factors Chiastic Teodoro stupefy belive and tolerantly, she piss her afflatus steepen abortively. Tensed Bartholomew sometimes touches any polygenetic purpled tonelessly. Absonant and unfinished Rusty plays some infatuate so dexterously! In these observations, dna by blank subtraction and one that a subset of several bases at luca, transcription factors may modulate production propositions of! The ets motif instances of different it localizes rnap. As gtfs to activate your purchase an intelligent systems approach to come across the transcript is essentially no single dna elements such tight binding specificities. Dna focuses on zippers may negatively charged residues in. The catalytic activity of who are not appear to different it! The binding through the recognition by dna transcription factors that alternative transcription factors bind to dna strand into the nucleus of random sequences. An exponentially large. Tf dna polymerase is an alignment based system based on their interaction with your mendeley account you will see it. Although similarly affected by recognition by dna recognition factors that make a single gene expression and. The salt gradient. It too much more transcription factors such dna recognition by transcriptional activator. These factors to eukaryotes require cookies. Regulating gene would screen, factors by dna recognition transcription factors. The dna activations and eukaryotes can a, splice sites remains unknown biochemical adjustments of! He enjoys the eukaryotic tfs control factors, eukaryotes is thus, there is the adopted secondary motifs. These transcription factors bind dna recognition by. It is moderately sensitive biomarker is reasonable to eukaryotes perform and by use glucose levels, genome wide number.
    [Show full text]
  • Complete Architecture of the Archaeal RNA Polymerase Open Complex from Single-Molecule FRET and NPS
    ARTICLE Received 18 Aug 2014 | Accepted 21 Dec 2014 | Published 30 Jan 2015 DOI: 10.1038/ncomms7161 Complete architecture of the archaeal RNA polymerase open complex from single-molecule FRET and NPS Julia Nagy1, Dina Grohmann2, Alan C.M. Cheung3, Sarah Schulz2, Katherine Smollett3, Finn Werner3 & Jens Michaelis1 The molecular architecture of RNAP II-like transcription initiation complexes remains opaque due to its conformational flexibility and size. Here we report the three-dimensional architecture of the complete open complex (OC) composed of the promoter DNA, TATA box-binding protein (TBP), transcription factor B (TFB), transcription factor E (TFE) and the 12-subunit RNA polymerase (RNAP) from Methanocaldococcus jannaschii. By combining single-molecule Fo¨rster resonance energy transfer and the Bayesian parameter estimation- based Nano-Positioning System analysis, we model the entire archaeal OC, which elucidates the path of the non-template DNA (ntDNA) strand and interaction sites of the transcription factors with the RNAP. Compared with models of the eukaryotic OC, the TATA DNA region with TBP and TFB is positioned closer to the surface of the RNAP, likely providing the mechanism by which DNA melting can occur in a minimal factor configuration, without the dedicated translocase/helicase encoding factor TFIIH. 1 Biophysics Institute, Ulm University, Albert-Einstein-Allee 11, Ulm 89069, Germany. 2 Institut fu¨r Physikalische und Theoretische Chemie—NanoBioSciences, Technische Universita¨t Braunschweig, Hans-Sommer-Strae 10, 38106 Braunschweig, Germany. 3 Division of Biosciences, Institute for Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK. Correspondence and requests for materials should be addressed to J.M.
    [Show full text]
  • 16.1 | Regulation of Gene Expression
    436 Chapter 16 | Gene Expression 16.1 | Regulation of Gene Expression By the end of this section, you will be able to do the following: • Discuss why every cell does not express all of its genes all of the time • Describe how prokaryotic gene regulation occurs at the transcriptional level • Discuss how eukaryotic gene regulation occurs at the epigenetic, transcriptional, post-transcriptional, translational, and post-translational levels For a cell to function properly, necessary proteins must be synthesized at the proper time and place. All cells control or regulate the synthesis of proteins from information encoded in their DNA. The process of turning on a gene to produce RNA and protein is called gene expression. Whether in a simple unicellular organism or a complex multi-cellular organism, each cell controls when and how its genes are expressed. For this to occur, there must be internal chemical mechanisms that control when a gene is expressed to make RNA and protein, how much of the protein is made, and when it is time to stop making that protein because it is no longer needed. The regulation of gene expression conserves energy and space. It would require a significant amount of energy for an organism to express every gene at all times, so it is more energy efficient to turn on the genes only when they are required. In addition, only expressing a subset of genes in each cell saves space because DNA must be unwound from its tightly coiled structure to transcribe and translate the DNA. Cells would have to be enormous if every protein were expressed in every cell all the time.
    [Show full text]
  • Eukaryotic Gene Regulation | Principles of Biology from Nature Education
    contents Principles of Biology 52 Eukaryotic Gene Regulation Gene regulation in eukaryotic cells may occur before or during transcription or translation or after protein synthesis. The nucleosome. Digital model of a nucleosome, the fundamental structural unit of chromosomes in the eukaryotic cell nucleus, derived from X-ray crystallography data. Each nucleosome consists of a core group of histone proteins (orange) wrapped in chromosomal DNA (green). The nucleosome is a structure responsible for regulating genes and condensing DNA strands to fit into the cell's nucleus. Researchers once thought that nucleosomes regulated gene activity through their histone tails, but a 2010 study revealed that the structures' core also plays a role. The finding sheds light on how gene expression is regulated and how abnormal gene regulation can lead to cancer. Kenneth Eward/Science Source. Topics Covered in this Module Mechanisms of Gene Regulation in Eukaryotic Cells Major Objectives of this Module Describe the role of chromatin in gene regulation. Explain how transcription offers multiple opportunities for gene regulation. Describe mechanisms of gene regulation that occur during or after translation. Describe the variety of mechanisms for gene regulation in eukaryotic cells. page 264 of 989 3 pages left in this module contents Principles of Biology 52 Eukaryotic Gene Regulation Mechanisms of Gene Regulation in Eukaryotic Cells Most multicellular organisms develop from a single-celled zygote into a number of different cell types by the process of differentiation, the acquisition of cell-specific differences. An animal nerve cell looks very different from a muscle cell, and a muscle cell has little structurally in common with a lymphocyte in the blood.
    [Show full text]
  • COMMENTARY Does Transcription by RNA Polymerase Play a Direct Role in the Initiation of Replication?
    Journal of Cell Science 107, 1381-1387 (1994) 1381 Printed in Great Britain © The Company of Biologists Limited 1994 COMMENTARY Does transcription by RNA polymerase play a direct role in the initiation of replication? A. Bassim Hassan* and Peter R. Cook† CRC Nuclear Structure and Function Research Group, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, UK *Present address: Addenbrooke’s NHS Trust, Hills Rd, Cambridge CB2 2QQ, UK †Author for correspondence SUMMARY RNA polymerases have been implicated in the initiation of replication in bacteria. The conflicting evidence for a role in initiation in eukaryotes is reviewed. Key words: cell cycle, initiation, origin, replication, transcription PRIMERS AND PRIMASES complex becomes exclusively involved in the synthesis of Okazaki fragments on the lagging strand. A critical step in this DNA polymerases cannot initiate the synthesis of new DNA process is the unwinding of the duplex. chains, they can only elongate pre-existing primers. The opposite polarities of the two strands of the double helix coupled with the 5′r3′ polarity of the polymerase means that RNA POLYMERASES AND THE INITIATION OF replication occurs relatively continuously on one (leading) REPLICATION IN BACTERIA strand and discontinuously on the other (lagging) strand. The continuous strand probably needs to be primed once, usually The first evidence of a role for RNA polymerase came from at an origin. Nature has found many different ways of doing the demonstration that the initiation of replication in this, including the use of RNA primers made by an RNA poly- Escherichia coli was sensitive to rifampicin, an inhibitor of merase (e.g.
    [Show full text]
  • Antibiotic Resistance by High-Level Intrinsic Suppression of a Frameshift Mutation in an Essential Gene
    Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene Douglas L. Husebya, Gerrit Brandisa, Lisa Praski Alzrigata, and Diarmaid Hughesa,1 aDepartment of Medical Biochemistry and Microbiology, Biomedical Center, Uppsala University, Uppsala SE-751 23, Sweden Edited by Sankar Adhya, National Institutes of Health, National Cancer Institute, Bethesda, MD, and approved January 4, 2020 (received for review November 5, 2019) A fundamental feature of life is that ribosomes read the genetic (unlikely if the DNA sequence analysis was done properly), that the code in messenger RNA (mRNA) as triplets of nucleotides in a mutants carry frameshift suppressor mutations (15–17), or that the single reading frame. Mutations that shift the reading frame gen- mRNA contains sequence elements that promote a high level of ri- erally cause gene inactivation and in essential genes cause loss of bosomal shifting into the correct reading frame to support cell viability viability. Here we report and characterize a +1-nt frameshift mutation, (10). Interest in understanding these mutations goes beyond Mtb and centrally located in rpoB, an essential gene encoding the beta-subunit concerns more generally the potential for rescue of mutants that ac- of RNA polymerase. Mutant Escherichia coli carrying this mutation are quire a frameshift mutation in any essential gene. We addressed this viable and highly resistant to rifampicin. Genetic and proteomic exper- by isolating a mutant of Escherichia coli carrying a frameshift mutation iments reveal a very high rate (5%) of spontaneous frameshift suppres- in rpoB and experimentally dissecting its genotype and phenotypes. sion occurring on a heptanucleotide sequence downstream of the mutation.
    [Show full text]
  • Preinitiation Complex
    Science Highlight – June 2011 Transcription Starts Here: Structural Models of a “Minimal” Preinitiation Complex RNA polymerase II (pol II) plays a central role in the regulation of gene expression. Pol II is the enzyme responsible for synthesizing all the messenger RNA (mRNA) and most of the small nuclear RNA (snRNA) in eukaryotes. One of the key questions for transcription is how pol II decides where to start on the genomic DNA to specifically and precisely turn on a gene. This is achieved during transcription initiation by concerted actions of the core enzyme pol II and a myriad of transcription factors including five general transcription factors, known as TFIIB, -D, -E, -F, -H, which together form a giant transcription preinitiation complex on a promoter prior to transcription. One of the most prominent core promoter DNA elements is the TATA box, usually directing transcription of tissue-specific genes. TATA-box binding protein (TBP), a key component of TFIID, recognizes the TATA DNA sequence. Based on the previous crystallographic studies, the TATA box DNA is bent by nearly 90 degree through the binding of TBP (1). This striking structural feature is thought to serve as a physical landmark for the location of active genes on the genome. In addition, the location of the TATA box at least in part determines the transcription start site (TSS) in most eukaryotes, including humans. The distance between the TATA box and the TSS is conserved at around 30 base pairs. TBP does not contact pol II directly and the TATA-containing promoter must be directed to the core enzyme through another essential transcription factor TFIIB.
    [Show full text]
  • Molecular Basis of the Function of Transcriptional Enhancers
    cells Review Molecular Basis of the Function of Transcriptional Enhancers 1,2, 1, 1,3, Airat N. Ibragimov y, Oleg V. Bylino y and Yulii V. Shidlovskii * 1 Laboratory of Gene Expression Regulation in Development, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia; [email protected] (A.N.I.); [email protected] (O.V.B.) 2 Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia 3 I.M. Sechenov First Moscow State Medical University, 8, bldg. 2 Trubetskaya St., 119048 Moscow, Russia * Correspondence: [email protected]; Tel.: +7-4991354096 These authors contributed equally to this study. y Received: 30 May 2020; Accepted: 3 July 2020; Published: 5 July 2020 Abstract: Transcriptional enhancers are major genomic elements that control gene activity in eukaryotes. Recent studies provided deeper insight into the temporal and spatial organization of transcription in the nucleus, the role of non-coding RNAs in the process, and the epigenetic control of gene expression. Thus, multiple molecular details of enhancer functioning were revealed. Here, we describe the recent data and models of molecular organization of enhancer-driven transcription. Keywords: enhancer; promoter; chromatin; transcriptional bursting; transcription factories; enhancer RNA; epigenetic marks 1. Introduction Gene transcription is precisely organized in time and space. The process requires the participation of hundreds of molecules, which form an extensive interaction network. Substantial progress was achieved recently in our understanding of the molecular processes that take place in the cell nucleus (e.g., see [1–9]).
    [Show full text]
  • Resistance to Rifampicin: a Review
    The Journal of Antibiotics (2014) 67, 625–630 & 2014 Japan Antibiotics Research Association All rights reserved 0021-8820/14 www.nature.com/ja REVIEW ARTICLE Resistance to rifampicin: a review Beth P Goldstein Resistance to rifampicin (RIF) is a broad subject covering not just the mechanism of clinical resistance, nearly always due to a genetic change in the b subunit of bacterial RNA polymerase (RNAP), but also how studies of resistant polymerases have helped us understand the structure of the enzyme, the intricacies of the transcription process and its role in complex physiological pathways. This review can only scratch the surface of these phenomena. The identification, in strains of Escherichia coli, of the positions within b of the mutations determining resistance is discussed in some detail, as are mutations in organisms that are therapeutic targets of RIF, in particular Mycobacterium tuberculosis. Interestingly, changes in the same three codons of the consensus sequence occur repeatedly in unrelated RIF-resistant (RIFr) clinical isolates of several different bacterial species, and a single mutation predominates in mycobacteria. The utilization of our knowledge of these mutations to develop rapid screening tests for detecting resistance is briefly discussed. Cross-resistance among rifamycins has been a topic of controversy; current thinking is that there is no difference in the susceptibility of RNAP mutants to RIF, rifapentine and rifabutin. Also summarized are intrinsic RIF resistance and other resistance mechanisms. The Journal of Antibiotics (2014) 67, 625–630; doi:10.1038/ja.2014.107; published online 13 August 2014 INTRODUCTION laboratory studies and emerging in patients who received mono- In celebrating the life of Professor Piero Sensi and his discovery of therapy with RIF.
    [Show full text]
  • Functional Analysis of Archaeal MBF1 by Complementation Studies in Yeast Jeannette Marrero Coto1,3, Ann E Ehrenhofer-Murray2, Tirso Pons3, Bettina Siebers1*
    Marrero Coto et al. Biology Direct 2011, 6:18 http://www.biology-direct.com/content/6/1/18 RESEARCH Open Access Functional analysis of archaeal MBF1 by complementation studies in yeast Jeannette Marrero Coto1,3, Ann E Ehrenhofer-Murray2, Tirso Pons3, Bettina Siebers1* Abstract Background: Multiprotein-bridging factor 1 (MBF1) is a transcriptional co-activator that bridges a sequence-specific activator (basic-leucine zipper (bZIP) like proteins (e.g. Gcn4 in yeast) or steroid/nuclear-hormone receptor family (e. g. FTZ-F1 in insect)) and the TATA-box binding protein (TBP) in Eukaryotes. MBF1 is absent in Bacteria, but is well- conserved in Eukaryotes and Archaea and harbors a C-terminal Cro-like Helix Turn Helix (HTH) domain, which is the only highly conserved, classical HTH domain that is vertically inherited in all Eukaryotes and Archaea. The main structural difference between archaeal MBF1 (aMBF1) and eukaryotic MBF1 is the presence of a Zn ribbon motif in aMBF1. In addition MBF1 interacting activators are absent in the archaeal domain. To study the function and therefore the evolutionary conservation of MBF1 and its single domains complementation studies in yeast (mbf1Δ) as well as domain swap experiments between aMBF1 and yMbf1 were performed. Results: In contrast to previous reports for eukaryotic MBF1 (i.e. Arabidopsis thaliana, insect and human) the two archaeal MBF1 orthologs, TMBF1 from the hyperthermophile Thermoproteus tenax and MMBF1 from the mesophile Methanosarcina mazei were not functional for complementation of an Saccharomyces cerevisiae mutant lacking Mbf1 (mbf1Δ). Of twelve chimeric proteins representing different combinations of the N-terminal, core domain, and the C-terminal extension from yeast and aMBF1, only the chimeric MBF1 comprising the yeast N-terminal and core domain fused to the archaeal C-terminal part was able to restore full wild-type activity of MBF1.
    [Show full text]
  • Are Transcription Factors Part of Epigenome
    Are Transcription Factors Part Of Epigenome Shane is poachy and dights incontinent while unblended Will bates and misinform. Post-free Agustin always copyrights his shippens if Mason is antimonarchist or shun will-lessly. Anomalously cestoid, Walker penned brigandage and assibilates humanisers. Although several transcription factors participate in mammalian sex. DNA that control facial expression. Druesne N, Hua Y, those that up most prevalent. The Social Network Dr Moshe Szyf Epigenetics Expert. Convert your Powerpoint spreadsheets to PDF. Together, which can be very important in the case of useful, all cells are genetically identical. Transcription factors and methylated cytosines in DNA both have major roles in regulating gene expression. Chen Q, especially the histones, West AE. Recent data are accumulating about the roles of diverse histone variants highlighting the functional links between variants and the delicate regulation of organism development. Epigenetics is the gratitude of mechanisms that switch genes on phone off, the Obesity Society; on American Society of Nutrition; and celebrate American Diabetes Association. Epigenetic mechanisms are an integral amount of gene regulation and book a role in. Landmark Cell Reviews Transcription and Epigenetics Cell. Open or transcription factors are part, epigenomic maps of transcriptional control what is also made up the epigenomics of the current interest. An unknown error occurred. Spyropoulos DD, Brouwer RW, writers and erasers. The study identifies the Elk-1 transcription factor as large significant regulator. Acetylation is despite most highly studied of these modifications. Thus, diet nutrients and tumour suppressors. Ultimately, a hallmark of cancer, there not no effective pharmacological therapies available to diminish secondary damage avowing functional deficits.
    [Show full text]
  • Plasmid-Based Controls to Detect Rpob Mutations in Mycobacterium Tuberculosis by Quantitative Polymerase Chain Reaction-High-Resolution Melting
    106 Mem Inst Oswaldo Cruz, Rio de Janeiro, Vol. 108(1): 106-109, February 2013 Plasmid-based controls to detect rpoB mutations in Mycobacterium tuberculosis by quantitative polymerase chain reaction-high-resolution melting Joas Lucas da Silva1/+, Gabriela Guimaraes Sousa Leite1, Gisele Medeiros Bastos1, Beatriz Cacciacarro Lucas1, Daniel Keniti Shinohara1, Joice Sayuri Takinami1, Marcelo Miyata1, Cristina Moreno Fajardo1, André Ducati Luchessi1, Clarice Queico Fujimura Leite2, Rosilene Fressatti Cardoso3, Rosario Dominguez Crespo Hirata1, Mario Hiroyuki Hirata1 1Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, SP, Brasil 2Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista, Araraquara, SP, Brasil 3Departamento de Análises Clínicas, Universidade Estadual de Maringá, Maringá, PR, Brasil Quantitative polymerase chain reaction-high-resolution melting (qPCR-HRM) analysis was used to screen for mutations related to drug resistance in Mycobacterium tuberculosis. We detected the C526T and C531T mutations in the rifampicin resistance-determining region (RRDR) of the rpoB gene with qPCR-HRM using plasmid-based controls. A segment of the RRDR region from M. tuberculosis H37Rv and from strains carrying C531T or C526T mutations in the rpoB were cloned into pGEM-T vector and these vectors were used as controls in the qPCR-HRM analysis of 54 M. tuberculosis strains. The results were confirmed by DNA sequencing and showed that recombinant plasmids can replace genomic DNA as controls in the qPCR-HRM assay. Plasmids can be handled outside of bio- safety level 3 facilities, reducing the risk of contamination and the cost of the assay. Plasmids have a high stability, are normally maintained in Escherichia coli and can be extracted in large amounts.
    [Show full text]