Machine Learning Methods for the Analysis of Data of an Electricity Distribution Network Operator
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Towards Advancing the Earthquake Forecasting by Machine Learning of Satellite Data
Towards advancing the earthquake forecasting by machine learning of satellite data Pan Xiong 1, 8, Lei Tong 3, Kun Zhang 9, Xuhui Shen 2, *, Roberto Battiston 5, 6, Dimitar Ouzounov 7, Roberto Iuppa 5, 6, Danny Crookes 8, Cheng Long 4 and Huiyu Zhou 3 1 Institute of Earthquake Forecasting, China Earthquake Administration, Beijing, China 2 National Institute of Natural Hazards, Ministry of Emergency Management of China, Beijing, China 3 School of Informatics, University of Leicester, Leicester, United Kingdom 4 School of Computer Science and Engineering, Nanyang Technological University, Singapore 5 Department of Physics, University of Trento, Trento, Italy 6 National Institute for Nuclear Physics, the Trento Institute for Fundamental Physics and Applications, Trento, Italy 7 Center of Excellence in Earth Systems Modeling & Observations, Chapman University, Orange, California, USA 8 School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast, United Kingdom 9 School of Electrical Engineering, Nantong University, Nantong, China * Correspondence: Xuhui Shen ([email protected]) 1 Highlights An AdaBoost-based ensemble framework is proposed to forecast earthquake Infrared and hyperspectral global data between 2006 and 2013 are investigated The framework shows a strong capability in improving earthquake forecasting Our framework outperforms all the six selected baselines on the benchmarking datasets Our results support a Lithosphere-Atmosphere-Ionosphere Coupling during earthquakes 2 Abstract Earthquakes have become one of the leading causes of death from natural hazards in the last fifty years. Continuous efforts have been made to understand the physical characteristics of earthquakes and the interaction between the physical hazards and the environments so that appropriate warnings may be generated before earthquakes strike. -
SQL Server 2017 自習書シリーズ No.3
SQL Server 2017 SQL Server 2017 自習書シリーズ No.3 SQL Server 2017 Machine Learning Services Published: 2017 年 11 月 30 日 有限会社エスキューエル・クオリティ SQL Server 2017 自習書 No.3 Machine Learning Services この文章に含まれる情報は、公表の日付の時点での Microsoft Corporation の考え方を表しています。市場の変化に応える必要 があるため、Microsoft は記載されている内容を約束しているわけではありません。この文書の内容は印刷後も正しいとは保障で きません。この文章は情報の提供のみを目的としています。 Microsoft、SQL Server、Visual Studio、Windows、Windows XP、Windows Server、Windows Vista は Microsoft Corporation の米国およびその他の国における登録商標です。 その他、記載されている会社名および製品名は、各社の商標または登録商標です。 この文章内での引用(図版やロゴ、文章など)は、日本マイクロソフト株式会社からの許諾を受けています。 © Copyright 2017 Microsoft Corporation. All rights reserved. 2 SQL Server 2017 自習書 No.3 Machine Learning Services 目次 STEP 1. SQL Server 2017 Machine Learning Services の概要 .................................................4 1.1 SQL Server 2017 で提供された主な新機能 ...................................................................5 1.2 Machine Learning Services(機械学習サービス)の概要 .................................................6 1.3 ML Services(Machine Learning Services)のインストール .......................................... 11 STEP 2. 機械学習の基礎 .................................................................................................. 15 2.1 機械学習の基本 ..................................................................................................... 16 2.2 決定木(Decision Tree:ディシジョン ツリー) .......................................................... 20 2.3 RevoScaleR の決定木(rxDTree) ............................................................................ 29 2.4 ランダム フォレスト(Random Forest) .................................................................. -
Machine Learning Methods for the Analysis of Data of an Electricity Distribution Network Operator
ARISTOTLE UNIVERSITY OF THESSALONIKI FACULTY OF SCIENCES SCHOOL OF INFORMATICS DEPARTMENT OF COMPUTER SCIENCE «KNOWLEDGE, DATA AND SOFTWARE TECHNOLOGIES» Master Thesis Machine learning methods for the analysis of data of an Electricity Distribution Network Operator by Ioannis Mamalikidis (UID: 633) for the degree of Master of Science Thesis Committee Supervisor: Eleftherios Angelis Members: Grigorios Tsoumakas Ioannis Vlahavas THESSALONIKI MARCH 2017 i ΑΡΙΣΤΟΤΕΛΕΙΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΘΕΣΣΑΛΟΝΙΚΗΣ ΣΧΟΛΗ ΘΕΤΙΚΩΝ ΕΠΙΣΤΗΜΩΝ ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ ΣΤΗΝ ΠΛΗΡΟΦΟΡΙΚΗ «ΤΕΧΝΟΛΟΓΙΕΣ ΓΝΩΣΗΣ, ΔΕΔΟΜΕΝΩΝ ΚΑΙ ΛΟΓΙΣΜΙΚΟΥ» ΤΜΗΜΑ ΠΛΗΡΟΦΟΡΙΚΗΣ Machine learning methods for the analysis of data of an Electricity Distribution Network Operator Διπλωματική Εργασία του Ιωάννη Μαμαλικίδη Εξεταστική Επιτροπή Επιβλέπων: Ελευθέριος Αγγελής Μέλη: Γρηγόριος Τσουμάκας Ιωάννης Βλαχάβας ΘΕΣΣΑΛΟΝΙΚΗ ΜΑΡΤΙΟΣ 2017 iii Abstract Once every few decades an invention changes the landscape of some aspects of our life. Industrial revolutions improved our everyday lives whilst medical revolutions expanded our lifespans. In the path we’re leading, most of sciences will be reduced to computer science, enabling faster and more accurate results. Machine learning is a vast field whose use spans over a plethora of tasks like optical character recognition, search engines and computer vision, to applications on other fields, such as the medical one. Here, two of the three main categories of machine learning are being used; namely unsupervised learning to cluster the data into geographical groups, and an array of different types of supervised learning to make predictions. The data which are subject to machine learning originate from the Hellenic Electricity Distribution Network Operator (HEDNO S.A.), the largest company for the operation, maintenance and development of the power distribution network in Greece. -
W Ramach Hackathonów Planujemy Udostępnić Następujące Środowiska I Narzędzia
W ramach Hackathonów planujemy udostępnić następujące środowiska i narzędzia. Środowiska: 1. Maszyna wirtualna z Windows OS oraz zainstalowanym Visual Studio – 4vCPU, 16GB RAM. 2. Maszyna wirtualna Windows bez zainstalowanego Visual Studio – 4vCPU, 16GB RAM. 3. Maszyna wirtualna Linux np. Ubuntu – 4vCPU, 16GB RAM. 4. Maszyna DataScience Virtual Machine Windows – 4vCPU, 16GB RAM. 5. Maszyna DataScience Virtual Machine for Linux (Ubuntu) – 4vCPU, 16GB RAM. 6. Maszyna DeepLearning Virtual Machine z wykorzystaniem GPU – 6vCPU, 56GB RAM. Narzędzia: .NET 4.6.2 and .NET 4.7 SDKs, Targeting Packs, and Developer Tools, Visual F#, GitHub Extension for Visual Studio, LINQ to SQL Tools, Microsoft ML Server - Dev Edition (Scalable R & Python), Azure Machine Learning Workbench, Anaconda Python, SQL Server 2017 Dev. Edition - With In-Database R and Python analytics, Microsoft Office 365 ProPlus BYOL - Shared Computer Activation, Julia Pro + Juno Editor, Jupyter notebooks, Visual Studio Community Ed. + Python, R & node.js tools, Power BI Desktop, Deep learning tools e.g. Microsoft Cognitive Toolkit (CNTK, TensorFlow, Chainer, & mxnet, ML algorithm libraries e.g. xgboost, Vowpal Wabbit, Azure SDKs + libraries for various Azure Cloud offerings (Azure Machine Learning, Azure Data Factory), Stream Analytics, SQL Data Warehouse, Hadoop + Apache Spark (HDICluster), Data Lake, Blob storage, Microsoft R Server 9.3 with Microsoft R Open 3.4.3, MicrosoftML package with machine learning algorithms, RevoScaleR and revoscalepy for distributed and remote computing, -
Introducing Microsoft SQL Server 2019
Introducing Microsoft SQL Server 2019 Reliability, scalability, and security both on premises and in the cloud Kellyn Gorman, Allan Hirt, Dave Noderer, James Rowland-Jones, Arun Sirpal, Dustin Ryan, and Buck Woody Introducing Microsoft SQL Server 2019 Copyright © 2019 Packt Publishing All rights reserved. No part of this course may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this course to ensure the accuracy of the information presented. However, the information contained in this course is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this course. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this course by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. Authors: Kellyn Gorman, Allan Hirt, Dave Noderer, James Rowland-Jones, Arun Sirpal, Dustin Ryan, and Buck Woody Additional material: Mitchell Pearson Managing Editor: Alexander Mazonowicz Acquisitions Editor: Alicia Wooding Production Editor: Nitesh Thakur Editorial Board: Shubhopriya Banerjee, Bharat Botle, Ewan Buckingham, Mahesh Dhyani, Taabish Khan, Manasa Kumar, Alex Mazonowicz, Pramod Menon, Bridget Neale, Dominic Pereira, Shiny Poojary, Erol Staveley, Ankita Thakur, Nitesh Thakur, and Jonathan Wray First Published: December 2019 Production Reference: 1111219 ISBN: 978-1-83882-621-5 Published by Packt Publishing Ltd.