File Systems - FAT and NTFS

Total Page:16

File Type:pdf, Size:1020Kb

File Systems - FAT and NTFS Windows File Systems - FAT and NTFS The File Allocation Table (FAT) file system is a simple file system originally designed for small disks and simple folder structures. The FAT file system is named for its method of organization, the file allocation table, which resides at the beginning of the volume. To protect the volume, two copies of the table are kept, in case one becomes damaged. In addition, the file allocation tables and the root folder must be stored in a fixed location so that the files needed to start the system can be correctly located. A volume formatted with the FAT file system is allocated in clusters. The default cluster size is determined by the size of the volume. As disk drives have evolved, the maximum number of clusters has dramatically increased, and so the number of bits used to identify each cluster has grown. The successive major versions of the FAT format are named after the number of table element bits: 12 (FAT12), 16 (FAT16), and 32 (FAT32). Each is still in use. FAT12 FAT16 FAT32 Number of bits for 12 16 28 out of 32 (4 reserved) addressing Maximum number 212 – 1 = 4085 216 – 1 = 65,525 228 – 1 = 268,435,445 of clusters addressed Maximum volume 32 MB 2 GB (4 GB with 64 32 GB for all OS (8 TB for some OS) size KB clusters) Cluster Size 8 KB 32 KB 4 KB clusters for drives up to 8 GB in size (32 KB for drives more than 32 GB) A cluster is the minimum amount of space that can be assigned to any file. No file can use part of a cluster under the FAT file system. This means, essentially, that the amount of space a file uses on the disk is "rounded up" to an integer multiple of the cluster size. If you create a file containing exactly one byte, it will still use an entire cluster's worth of space. Then, you can expand that file in size until it reaches the maximum size of a cluster, and it will take up no additional space. As soon as you make the file larger than what a single cluster can hold, a second cluster will be allocated, and the file's disk usage will double, even though the file only increased in size by one byte. Think of this in terms of collecting rainwater in 1-liter glass bottles. Even if you collect just 25 ml of water, you have to use a whole bottle. Once the bottle is in use, however, you can fill it with 975 ml more, until it is full. Then you'll need another whole bottle to hold the next 25 ml. Since files are always allocated whole clusters, this means that on average, the larger the cluster size of the volume, the more space that will be wasted. (It's more efficient to use smaller, cup-sized bottles instead of 1 liter-sized ones, if minimizing the amount of storage space is a concern). Therefore, it is better to use smaller cluster sizes whenever possible. This is, unfortunately, often easier said than done. The number of clusters we can use is limited by the nature of the FAT file system, and there are also performance tradeoffs in using smaller cluster sizes (more clusters would mean more work to locate a file). Therefore, it isn't always possible to use the absolute smallest cluster size in order to maximize free space. NTFS (New Technology File System) is the standard file system of Windows NT, including its later versions Windows 2000, Windows XP, Windows Server 2003, Windows Server 2008, Windows Vista, and Windows 7. NTFS supersedes the FAT file system as the preferred file system for Microsoft’s Windows operating systems. NTFS v3.0 includes several new features over its predecessors: 1. Journaling: NTFS is a Journaling file system and uses the NTFS Log ($LogFile) to record metadata changes to the volume. It is a critical functionality of NTFS (a feature that FAT/FAT32 does not provide) for ensuring that its internal complex data structures will remain consistent in case of system crashes, and allow easy rollback of uncommitted changes to these critical data structures when the volume is remounted. 2. Compression: NTFS can compress files in 16-cluster chunks. With 4KB clusters, files are compressed in 64KB chunks. If the compression reduces 64KB of data to 60KB or less, NTFS treats the unneeded 4KB pages like empty sparse file clusters - they are not written. However, large compressible files become highly fragmented as then every 64K chunk becomes a fragment. Microsoft does not recommend compression for files exceeding 30MB because of the performance hit. The best use of compression is for files which are repetitive, written seldom, usually accessed sequentially, and not themselves compressed. 3. Encryption: NTFS provides strong and user-transparent encryption of any file or folder. NTFS- provided encryption and NTFS-provided compression are mutually exclusive; however, NTFS can be used for one and a third-party tool for the other. The support of encryption is not available in Basic, Home and MediaCenter versions of Windows, and must be activated after installation of Professional, Ultimate and Server versions of Windows. 4. Quotas: Disk quotas were introduced in NTFS v3. They allow the administrator of a computer that runs a version of Windows that supports NTFS to set a threshold of disk space that users may use. It also allows administrators to keep track of how much disk space each user is using. Applications that query the amount of free space will also see the amount of free space left to the user who has a quota applied to them. The support of disk quotas is not available in Basic, Home and MediaCenter versions of Windows, and must be activated after installation of Professional, Ultimate and Server versions of Windows. NTFS also manages the drive in terms of clusters, with cluster size typically 4 KB for disks up to 16 TB. Theoretical maximum limit of drives supported with NTFS is 256 TB with 64 KB cluster size. Other File Systems – ext4 and HFS The ext4 or fourth extended file system is a journaling file system for Linux, developed as the successor to ext3. Some of its features include: 1. Large file system: The ext4 filesystem can support volumes with sizes up to 1 exabyte (1018) and files with sizes up to 16 terabytes (1015). 2. Extents: Extents replace the traditional block mapping scheme used by ext2/3 filesystems. An extent is a range of contiguous physical blocks, improving large file performance and reducing fragmentation. A single extent in ext4 can map up to 128 MB of contiguous space with a 4 KB block size. 3. Delayed allocation: Ext4 uses a filesystem performance technique called allocate-on-flush, also known as delayed allocation. It consists of delaying block allocation until the data is going to be written to the disk, unlike some other file systems, which may allocate the necessary blocks before that step. This improves performance and reduces fragmentation by improving block allocation decisions based on the actual file size. 4. Break 32,000 subdirectory limit: In ext3 the number of subdirectories that a directory can contain is limited to 32,000. This limit has been raised to 64,000 in ext4 HFS Plus or HFS+ is a file system developed by Apple Inc. to replace their Hierarchical File System (HFS) as the primary file system used in Macintosh computers (or other systems running Mac OS). It is also one of the formats used by the iPod digital music player. HFS Plus volumes are divided into sectors (called logical blocks in HFS), which are usually 512 bytes in size. These sectors are then grouped together into allocation blocks, which can contain one or more sectors; the number of allocation blocks depends on the total size of the volume. HFS Plus uses a larger value to address allocation blocks than HFS, 32 bits rather than 16 bits; this means it can access 4,294,967,296 (= 232) allocation blocks rather than the 65,536 (= 216) allocation blocks available to HFS. Resources: http://www.ntfs.com/fat-systems.htm http://www.mrkay.org/zenpc/ref/hdd/file/partSlack-c.html http://en.wikipedia.org/wiki/NTFS http://en.wikipedia.org/wiki/Ext4 http://en.wikipedia.org/wiki/HFS_Plus .
Recommended publications
  • Copy on Write Based File Systems Performance Analysis and Implementation
    Copy On Write Based File Systems Performance Analysis And Implementation Sakis Kasampalis Kongens Lyngby 2010 IMM-MSC-2010-63 Technical University of Denmark Department Of Informatics Building 321, DK-2800 Kongens Lyngby, Denmark Phone +45 45253351, Fax +45 45882673 [email protected] www.imm.dtu.dk Abstract In this work I am focusing on Copy On Write based file systems. Copy On Write is used on modern file systems for providing (1) metadata and data consistency using transactional semantics, (2) cheap and instant backups using snapshots and clones. This thesis is divided into two main parts. The first part focuses on the design and performance of Copy On Write based file systems. Recent efforts aiming at creating a Copy On Write based file system are ZFS, Btrfs, ext3cow, Hammer, and LLFS. My work focuses only on ZFS and Btrfs, since they support the most advanced features. The main goals of ZFS and Btrfs are to offer a scalable, fault tolerant, and easy to administrate file system. I evaluate the performance and scalability of ZFS and Btrfs. The evaluation includes studying their design and testing their performance and scalability against a set of recommended file system benchmarks. Most computers are already based on multi-core and multiple processor architec- tures. Because of that, the need for using concurrent programming models has increased. Transactions can be very helpful for supporting concurrent program- ming models, which ensure that system updates are consistent. Unfortunately, the majority of operating systems and file systems either do not support trans- actions at all, or they simply do not expose them to the users.
    [Show full text]
  • NTFS • Windows Reinstallation – Bypass ACL • Administrators Privilege – Bypass Ownership
    Windows Encrypting File System Motivation • Laptops are very integrated in enterprises… • Stolen/lost computers loaded with confidential/business data • Data Privacy Issues • Offline Access – Bypass NTFS • Windows reinstallation – Bypass ACL • Administrators privilege – Bypass Ownership www.winitor.com 01 March 2010 Windows Encrypting File System Mechanism • Principle • A random - unique - symmetric key encrypts the data • An asymmetric key encrypts the symmetric key used to encrypt the data • Combination of two algorithms • Use their strengths • Minimize their weaknesses • Results • Increased performance • Increased security Asymetric Symetric Data www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Confortable • Applying encryption is just a matter of assigning a file attribute www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Transparent • Integrated into the operating system • Transparent to (valid) users/applications Application Win32 Crypto Engine NTFS EFS &.[ßl}d.,*.c§4 $5%2=h#<.. www.winitor.com 01 March 2010 Windows Encrypting File System Characteristics • Flexible • Supported at different scopes • File, Directory, Drive (Vista?) • Files can be shared between any number of users • Files can be stored anywhere • local, remote, WebDav • Files can be offline • Secure • Encryption and Decryption occur in kernel mode • Keys are never paged • Usage of standardized cryptography services www.winitor.com 01 March 2010 Windows Encrypting File System Availibility • At the GUI, the availibility
    [Show full text]
  • Minimum Hardware and Operating System
    Hardware and OS Specifications File Stream Document Management Software – System Requirements for v4.5 NB: please read through carefully, as it contains 4 separate specifications for a Workstation PC, a Web PC, a Server and a Web Server. Further notes are at the foot of this document. If you are in any doubt as to which specification is applicable, please contact our Document Management Technical Support team – we will be pleased to help. www.filestreamsystems.co.uk T Support +44 (0) 118 989 3771 E Support [email protected] For an in-depth list of all our features and specifications, please visit: http://www.filestreamsystems.co.uk/document-management-specification.htm Workstation PC Processor (CPU) ⁴ Supported AMD/Intel x86 (32bit) or x64 (64bit) Compatible Minimum Intel Pentium IV single core 1.0 GHz Recommended Intel Core 2 Duo E8400 3.0 GHz or better Operating System ⁴ Supported Windows 8, Windows 8 Pro, Windows 8 Enterprise (32bit, 64bit) Windows 10 (32bit, 64bit) Memory (RAM) ⁵ Minimum 2.0 GB Recommended 4.0 GB Storage Space (Disk) Minimum 50 GB Recommended 100 GB Disk Format NTFS Format Recommended Graphics Card Minimum 128 MB DirectX 9 Compatible Recommended 128 MB DirectX 9 Compatible Display Minimum 1024 x 768 16bit colour Recommended 1280 x 1024 32bit colour Widescreen Format Yes (minimum vertical resolution 800) Dual Monitor Yes Font Settings Only 96 DPI font settings are supported Explorer Internet Minimum Microsoft Internet Explorer 11 Network (LAN) Minimum 100 MB Ethernet (not required on standalone PC) Recommended
    [Show full text]
  • CS 5600 Computer Systems
    CS 5600 Computer Systems Lecture 10: File Systems What are We Doing Today? • Last week we talked extensively about hard drives and SSDs – How they work – Performance characterisEcs • This week is all about managing storage – Disks/SSDs offer a blank slate of empty blocks – How do we store files on these devices, and keep track of them? – How do we maintain high performance? – How do we maintain consistency in the face of random crashes? 2 • ParEEons and MounEng • Basics (FAT) • inodes and Blocks (ext) • Block Groups (ext2) • Journaling (ext3) • Extents and B-Trees (ext4) • Log-based File Systems 3 Building the Root File System • One of the first tasks of an OS during bootup is to build the root file system 1. Locate all bootable media – Internal and external hard disks – SSDs – Floppy disks, CDs, DVDs, USB scks 2. Locate all the parEEons on each media – Read MBR(s), extended parEEon tables, etc. 3. Mount one or more parEEons – Makes the file system(s) available for access 4 The Master Boot Record Address Size Descripon Hex Dec. (Bytes) Includes the starEng 0x000 0 Bootstrap code area 446 LBA and length of 0x1BE 446 ParEEon Entry #1 16 the parEEon 0x1CE 462 ParEEon Entry #2 16 0x1DE 478 ParEEon Entry #3 16 0x1EE 494 ParEEon Entry #4 16 0x1FE 510 Magic Number 2 Total: 512 ParEEon 1 ParEEon 2 ParEEon 3 ParEEon 4 MBR (ext3) (swap) (NTFS) (FAT32) Disk 1 ParEEon 1 MBR (NTFS) 5 Disk 2 Extended ParEEons • In some cases, you may want >4 parEEons • Modern OSes support extended parEEons Logical Logical ParEEon 1 ParEEon 2 Ext.
    [Show full text]
  • Ext4 File System and Crash Consistency
    1 Ext4 file system and crash consistency Changwoo Min 2 Summary of last lectures • Tools: building, exploring, and debugging Linux kernel • Core kernel infrastructure • Process management & scheduling • Interrupt & interrupt handler • Kernel synchronization • Memory management • Virtual file system • Page cache and page fault 3 Today: ext4 file system and crash consistency • File system in Linux kernel • Design considerations of a file system • History of file system • On-disk structure of Ext4 • File operations • Crash consistency 4 File system in Linux kernel User space application (ex: cp) User-space Syscalls: open, read, write, etc. Kernel-space VFS: Virtual File System Filesystems ext4 FAT32 JFFS2 Block layer Hardware Embedded Hard disk USB drive flash 5 What is a file system fundamentally? int main(int argc, char *argv[]) { int fd; char buffer[4096]; struct stat_buf; DIR *dir; struct dirent *entry; /* 1. Path name -> inode mapping */ fd = open("/home/lkp/hello.c" , O_RDONLY); /* 2. File offset -> disk block address mapping */ pread(fd, buffer, sizeof(buffer), 0); /* 3. File meta data operation */ fstat(fd, &stat_buf); printf("file size = %d\n", stat_buf.st_size); /* 4. Directory operation */ dir = opendir("/home"); entry = readdir(dir); printf("dir = %s\n", entry->d_name); return 0; } 6 Why do we care EXT4 file system? • Most widely-deployed file system • Default file system of major Linux distributions • File system used in Google data center • Default file system of Android kernel • Follows the traditional file system design 7 History of file system design 8 UFS (Unix File System) • The original UNIX file system • Design by Dennis Ritche and Ken Thompson (1974) • The first Linux file system (ext) and Minix FS has a similar layout 9 UFS (Unix File System) • Performance problem of UFS (and the first Linux file system) • Especially, long seek time between an inode and data block 10 FFS (Fast File System) • The file system of BSD UNIX • Designed by Marshall Kirk McKusick, et al.
    [Show full text]
  • W4118: Linux File Systems
    W4118: Linux file systems Instructor: Junfeng Yang References: Modern Operating Systems (3rd edition), Operating Systems Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc File systems in Linux Linux Second Extended File System (Ext2) . What is the EXT2 on-disk layout? . What is the EXT2 directory structure? Linux Third Extended File System (Ext3) . What is the file system consistency problem? . How to solve the consistency problem using journaling? Virtual File System (VFS) . What is VFS? . What are the key data structures of Linux VFS? 1 Ext2 “Standard” Linux File System . Was the most commonly used before ext3 came out Uses FFS like layout . Each FS is composed of identical block groups . Allocation is designed to improve locality inodes contain pointers (32 bits) to blocks . Direct, Indirect, Double Indirect, Triple Indirect . Maximum file size: 4.1TB (4K Blocks) . Maximum file system size: 16TB (4K Blocks) On-disk structures defined in include/linux/ext2_fs.h 2 Ext2 Disk Layout Files in the same directory are stored in the same block group Files in different directories are spread among the block groups Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc. All rights reserved. 0-13-6006639 3 Block Addressing in Ext2 Twelve “direct” blocks Data Data BlockData Inode Block Block BLKSIZE/4 Indirect Data Data Blocks BlockData Block Data (BLKSIZE/4)2 Indirect Block Data BlockData Blocks Block Double Block Indirect Indirect Blocks Data Data Data (BLKSIZE/4)3 BlockData Data Indirect Block BlockData Block Block Triple Double Blocks Block Indirect Indirect Data Indirect Data BlockData Blocks Block Block Picture from Tanenbaum, Modern Operating Systems 3 e, (c) 2008 Prentice-Hall, Inc.
    [Show full text]
  • Improving Journaling File System Performance in Virtualization
    SOFTWARE – PRACTICE AND EXPERIENCE Softw. Pract. Exper. 2012; 42:303–330 Published online 30 March 2011 in Wiley Online Library (wileyonlinelibrary.com). DOI: 10.1002/spe.1069 VM aware journaling: improving journaling file system performance in virtualization environments Ting-Chang Huang1 and Da-Wei Chang2,∗,† 1Department of Computer Science, National Chiao Tung University, No. 1001, University Road, Hsinchu 300, Taiwan 2Department of Computer Science and Information Engineering, National Cheng Kung University, No. 1, Ta-Hsueh Road, Tainan 701, Taiwan SUMMARY Journaling file systems, which are widely used in modern operating systems, guarantee file system consistency and data integrity by logging file system updates to a journal, which is a reserved space on the storage, before the updates are written to the data storage. Such journal writes increase the write traffic to the storage and thus degrade the file system performance, especially in full data journaling, which logs both metadata and data updates. In this paper, a new journaling approach is proposed to eliminate journal writes in server virtualization environments, which are gaining in popularity in server platforms. Based on reliable hardware subsystems and virtual machine monitor (VMM), the proposed approach eliminates journal writes by retaining journal data (i.e. logged file system updates) in the memory of each virtual machine and ensuring the integrity of these journal data through cooperation between the journaling file systems and the VMM. We implement the proposed approach in Linux ext3 in the Xen virtualization environment. According to the performance results, a performance improvement of up to 50.9% is achieved over the full data journaling approach of ext3 due to journal write elimination.
    [Show full text]
  • 11.7 the Windows 2000 File System
    830 CASE STUDY 2: WINDOWS 2000 CHAP. 11 11.7 THE WINDOWS 2000 FILE SYSTEM Windows 2000 supports several file systems, the most important of which are FAT-16, FAT-32, and NTFS (NT File System). FAT-16 is the old MS-DOS file system. It uses 16-bit disk addresses, which limits it to disk partitions no larger than 2 GB. FAT-32 uses 32-bit disk addresses and supports disk partitions up to 2 TB. NTFS is a new file system developed specifically for Windows NT and car- ried over to Windows 2000. It uses 64-bit disk addresses and can (theoretically) support disk partitions up to 264 bytes, although other considerations limit it to smaller sizes. Windows 2000 also supports read-only file systems for CD-ROMs and DVDs. It is possible (even common) to have the same running system have access to multiple file system types available at the same time. In this chapter we will treat the NTFS file system because it is a modern file system unencumbered by the need to be fully compatible with the MS-DOS file system, which was based on the CP/M file system designed for 8-inch floppy disks more than 20 years ago. Times have changed and 8-inch floppy disks are not quite state of the art any more. Neither are their file systems. Also, NTFS differs both in user interface and implementation in a number of ways from the UNIX file system, which makes it a good second example to study. NTFS is a large and complex system and space limitations prevent us from covering all of its features, but the material presented below should give a reasonable impression of it.
    [Show full text]
  • Ext3 = Ext2 + Journaling
    FS Sistem datoteka-skup metoda i struktura podataka koje operativni sistem koristi za čuvanje podataka Struktura sistema datoteka: - 1. zaglavlje→neophodni podaci za funkcionisanje sistema datoteka - 2. strukture za organizaciju podataka na medijumu→meta podaci - 3. podaci→datoteke i direktorijumi Strukture podataka neophodne za realizaciju sistema datoteka: - PCB(Partition Control Block) - BCB(Boot control Block) - Kontrolne strukture za alokaciju datoteka(i-node tabela kod Linux-a) - Direktorijumske strukture koje sadrže kontrolne blokove datoteka - FCB(File Control Block) ext3 Slide 1 of 51 VIRTUELNI SISTEM DATOTEKA(VFS) Linux podržava rad sa velikim brojem sistema datoteka(ext2,ext3, XFS,FAT, NTFS...) VFS-objektno orjentisani način realizacije sistema datoteka koji omogućava korisniku da na isti način pristupa svim sistemima datoteka Način obraćanja korisnika sistemu datoteka - korisnik->API - VFS->sistem datoteka ext3 Slide 2 of 51 Linux FS Linux posmatra svaki sistem datoteka kao nezavisnu hijerarhijsku strukturu objekata(datoteka i direktorijuma) na čijem se vrhu nalazi root(/) direktorijum Objekti Linux sistema datoteka: Super block - zaglavlje(superblock) - i-node tabela I-Node Table - blokovi sa podacima - direktorijumski blokovi - blokovi indirektnih pokazivača Data Area i-node-opisuje objekte, oko 128B na disku Kompromis između veličine i-node tabele i brzine rada sistema datoteka - prvih 10-12 pokazivača na blokove sa podacima - za alokaciju većih datoteka koristi se single indirection block - za još veće datoteke
    [Show full text]
  • Comparing Filesystem Performance: Red Hat Enterprise Linux 6 Vs
    COMPARING FILE SYSTEM I/O PERFORMANCE: RED HAT ENTERPRISE LINUX 6 VS. MICROSOFT WINDOWS SERVER 2012 When choosing an operating system platform for your servers, you should know what I/O performance to expect from the operating system and file systems you select. In the Principled Technologies labs, using the IOzone file system benchmark, we compared the I/O performance of two operating systems and file system pairs, Red Hat Enterprise Linux 6 with ext4 and XFS file systems, and Microsoft Windows Server 2012 with NTFS and ReFS file systems. Our testing compared out-of-the-box configurations for each operating system, as well as tuned configurations optimized for better performance, to demonstrate how a few simple adjustments can elevate I/O performance of a file system. We found that file systems available with Red Hat Enterprise Linux 6 delivered better I/O performance than those shipped with Windows Server 2012, in both out-of- the-box and optimized configurations. With I/O performance playing such a critical role in most business applications, selecting the right file system and operating system combination is critical to help you achieve your hardware’s maximum potential. APRIL 2013 A PRINCIPLED TECHNOLOGIES TEST REPORT Commissioned by Red Hat, Inc. About file system and platform configurations While you can use IOzone to gauge disk performance, we concentrated on the file system performance of two operating systems (OSs): Red Hat Enterprise Linux 6, where we examined the ext4 and XFS file systems, and Microsoft Windows Server 2012 Datacenter Edition, where we examined NTFS and ReFS file systems.
    [Show full text]
  • Mobility for the Masses Unleashing a World of Possibilities
    Mobility for the Masses Unleashing a World of Possibilities Uday Marty Director of Product Marketing Mobile Platforms Group Risk Factors Today’s presentations contain forward-looking statements. All statements made that are not historical facts are subject to a number of risks and uncertainties, and actual results may differ materially. Please refer to our most recent Earnings Release and our most recent Form 10-Q or 10-K filing available on our website for more information on the risk factors that could cause actual results to differ. Copyright © 2009 Intel Corporation Agenda • Today’s news • Current environment • The latest on Intel’s mobile platforms • Ultra-thin laptops come to the mainstream • Expanded wireless capability • Summary Copyright © 2009 Intel Corporation This presentation and materials related to it are under embargo until June 1, 2009, 9 p.m. PDT Copyright © 2009 Intel Corporation Today’s News What’s launching today: – Three new Intel® Core®2 Duo processors (T9900, P9700, and P8800) – New ULV Intel® Pentium® processor (SU2700) – New Mobile Intel® GS40 Express Chipset Enabling significant improvements in the four vectors of mobility – Extended performance leadership – Enabling Ultra-thin systems at mainstream price points – Enhancing battery life – Expanded wireless capabilities For more information, go to – http://www.intel.com/pressroom/kits/events/computex2009 Copyright © 2009 Intel Corporation Worldwide Mobile Growth Continues Mobile Shift Strong Across Mature and Emerging Markets Source: IDC Worldwide Quarterly PC
    [Show full text]
  • Refs: Is It a Game Changer? Presented By: Rick Vanover, Director, Technical Product Marketing & Evangelism, Veeam
    Technical Brief ReFS: Is It a Game Changer? Presented by: Rick Vanover, Director, Technical Product Marketing & Evangelism, Veeam Sponsored by ReFS: Is It a Game Changer? OVERVIEW Backing up data is more important than ever, as data centers store larger volumes of information and organizations face various threats such as ransomware and other digital risks. Microsoft’s Resilient File System or ReFS offers a more robust solution than the old NT File System. In fact, Microsoft has stated that ReFS is the preferred data volume for Windows Server 2016. ReFS is an ideal solution for backup storage. By utilizing the ReFS BlockClone API, Veeam has developed Fast Clone, a fast, efficient storage backup solution. This solution offers organizations peace of mind through a more advanced approach to synthetic full backups. CONTEXT Rick Vanover discussed Microsoft’s Resilient File System (ReFS) and described how Veeam leverages this technology for its Fast Clone backup functionality. KEY TAKEAWAYS Resilient File System is a Microsoft storage technology that can transform the data center. Resilient File System or ReFS is a valuable Microsoft storage technology for data centers. Some of the key differences between ReFS and the NT File System (NTFS) are: ReFS provides many of the same limits as NTFS, but supports a larger maximum volume size. ReFS and NTFS support the same maximum file name length, maximum path name length, and maximum file size. However, ReFS can handle a maximum volume size of 4.7 zettabytes, compared to NTFS which can only support 256 terabytes. The most common functions are available on both ReFS and NTFS.
    [Show full text]