United States Patent (19) (11) 4,210,567 Kösters 45 Jul

Total Page:16

File Type:pdf, Size:1020Kb

United States Patent (19) (11) 4,210,567 Kösters 45 Jul United States Patent (19) (11) 4,210,567 Kösters 45 Jul. 1, 1980 54 PLASTISOL OF AN ACRYLATE POLYMER 3,405,087 10/1968 Fryd ..... 260/33.6 AND A PLASTICIZER 3,415,288 12/1968 Marshak ............................... 138/141 3,634,299 1/1972 Shim et al. .......................... 260/31.8 (75 Inventor: Bernhard Kösters, Heidelberg, Fed. 3,666,710 5/1972 Makhlouf et al. ... 260/33.6 UA Rep. of Germany 3,686,111 8/1972 Makhlouf et al................... 260/31.2 3,699,067 10/1972 Stockman ........ ... 260/29.1 SB 73) Assignee: Teroson G.m.b.H., Heidelberg, Fed. 3,701,747 10/1972 Osmond....... ... 260/33.6 Rep. of Germany 3,701,747 10/1972 Osmond et al. ..................... 260/33.6 3,705,122 12/1972 Gwinner....... 260/2.3 X A (21) Appl. No.: 881,745 3,784,501 - 1/1974 Pettit ................................... 260/31.6 22 Filed: Feb. 27, 1978 3,790,523 2/1974 Orvis ........ ... 260/30.6 3,829,397 8/1974 Sheppard ..... 260/31.8 M Related U.S. Application Data 4,071,653 1/1978 Boessler et al. ...................... 428/332 63 Continuation of Ser. No. 630,271, Nov. 10, 1975, aban FOREIGN PATENT DOCUMENTS doned. 118967 2/1946 Australia . 287850 1/1965 Australia . (30) Foreign Application Priority Data 4988 11/1967 Australia . Jul. 3, 1975 (DE Fed. Rep. of Germany ....... 25297.32 846793 1/1977 Belgium . Nov. 15, 1974 (DE) Fed. Rep. of Germany ....... 2454235 362023 11/1936 Canada . 444273 9/1947 Canada . 51 Int. C.? ...................... C08L 33/08; CO8L 33/10; 615435 2/1961 Canada . C08L 33/12 934498 9/1955 Fed. Rep. of Germany . 52 U.S. Cl. ............................... 260/31.8 R; 215/233; 1808653. 10/1973 Fed. Rep. of Germany . 260/29.1 R; 260/30.6 R; 260/31.2 R; 260/31.4 2327958 1/1975 Fed. Rep. of Germany . 2454235 12/1976 Fed. Rep. of Germany . R; 260/31.8 B; 260/31.8 M; 260/33.2 R; 2543542 4/1977 Fed. Rep. of Germany . 260/33.6 UA; 428/344; 521/73; 521/182 1250419 12/1960 France. 58) Field of Search ..................... 260/29.1 R, 31.8 R, 846.197 9/1958 United Kingdom . 260/31.8B, 31.8 M, 30.6R, 31.2R, 31.4R, 33.2 101.2003 12/1965 United Kingdom . R, 33.6 UA; 428/344; 215/233 1114142 5/1968 United Kingdom . (56) References Cited 1206407 9/1970 United Kingdom . U.S. PATENT DOCUMENTS OTHER PUBLICATIONS 2,413,259 12/1946 Soday ..................................... 260/36 Acrylic Granules, I. C.I.. Technical Data Sheet, AGTD 2,558,396 6/1951 Thomas..... ... 260/29.6 101, 4th Ed. 2,600,122 6/1952 Meyer et al... ... 260/34.2 FEnt Sik Lopedia Polimerov,” Moscow, "Sovetskaya 2,773,046 12/1956 Dunn et al. ... ... 260/30.6 entsiklopedia,” (1974) vol. 2, pp. 540-541. 2,860,110 1 1/1958 Godshalk ............................... 260/17 2,867,667 1/1959 Dermer et al. ... ... 260/615 “Ullmans Enzyklopodie Der Technischen Chemie', 2,872,429 2/1959 Schwartz et al. ... 260/30.6 (1960), Band 11, Seite 14. 2,898,318 8/1959 Coffey et al. ... ... 260/31.6 Chemisches Zentrol Blatt, Nos. 20432, 54.633. 2,934,509 4/1961 Crissey et al. ... 260/30.6 Plasticizer Technology, vol. 1, pp. 228-242. 2,989,492 6/1961 Sanderson .............................. 260/17 Encycl. of Pol. Sci. and Tech., (1966), vol. 4, pp. 3,010,930 1 1/1961 Schroeder. ... 260/31.6 730-735. 3,050,412 8/1962 Coe........................................ 117/75 Acrylharze, Rohm and Haas, Lackrohistoffe, p. 14. 3,218,287 11/1965 Schmidle et al. ... 260/33.6 3,232,903 2/1966 Schmidle et al. ... 260/33.6 Plastisole und Organosole, Deutsche Farbenzeitschrift, 3,261,788 7/1966 Carter et al. ............................. 260/4 (1965), p. 93. 3,365,414 1/1968 Fisk et al. ........................... 260/33.4 Primary Examiner-Stanford M. Levin 4,210,567 Page 2 Attorney, Agent, or Firm-Lowell H. McCarter; C. to C10 alcohols, acrylates of aliphatic C1 to C10 alcohols, Edward Parker styrene and alpha-methyl styrene. The glass transition (57) ABSTRACT temperature of the polymer is above 35 C., its average degree of polymerization more than 400 and its average Subject of this invention are plastisols based on selected plasticizers and on polymers of certain acrylic or meth particle size in the plastisol is 0.1 to 500 microns. acrylic monomers, viz. mainly (i) t-butyl acrylate, a C1-4 alkyl, especially methyl, acrylate or cyclohexyl methacrylate, and optionally also (ii) one or more co monomers selected from methacrylates of aliphatic C2 18 Claims, 1 Drawing Figure U.S. Patent Jul. 1, 1980 4,210,567 01 009 000! 4,210,567 1. 2 polymer has a glass transition temperature of above 35 PLASTSOL OF AN ACRYLATE POLYMER AND A C. and an average degree of polymerization of more PLASTICZER than 400, and in that the particle size of the polymer in the plastisol is from 0.1 to 500 microns. This is a continuation, of application Ser. No. 630,271 5 It is disclosed in "Plasticiser Technology', edited by filed Nov. 10, 1975, now abandoned. Paul E. Bruins, Reinhold Publishing Corporation, New The invention relates to novel plastisols based on York, Volume 1 pages 228-241, that various conven acrylate polymers and organic plasticizers. tional organic plasticizers can be used with acrylic poly Plastisols are generally understood to mean disper mers so long as the proportion of plasticizer is small, sions of organic plastics in plasticizers, which are gelled 10 on heating to an elevated temperature. The presently about 10%. However, the present invention relates conventional plastisols generally comprise pulverulent exclusively to plastisols, which is a special form of dis polyvinyl-chloride dispersed in a compatible liquid plas persion of polymer in the plasticizer, not mentioned in ticizer which forms a paste. Polyvinyl-chloride plasti the above reference. In a plastisol the proportion of sols are used for numerous different purposes, particu 15 plasticizer is inevitably more than 10% and the polymer larly as sealing compounds, as anti-corrosive coatings has to be very finely divided. The plastisol is a viscous for metals, for impregnating and coating textile sub liquid or paste at room temperature, and has the prop strates, as cable insulations, etc. erty of gelling on heating, so that upon cooling a hard However, several serious problems occur in the pro ened, homogeneous, elastic solid is obtained. duction and use of PVC-plastisols. In fact, the produc 20 U.S. Pat. No. 2,413,259 describes the use of certain tion of PVC itself represents a problem because persons high-boiling oily liquids as plasticizers for acrylic and working in the production area may be exposed to a methacrylic resins. The mixtures there described are (1) health risk by the vinyl chloride. Of late this has led to hot-melt mixtures, (2) solutions of the plasticizer and the closing of a large number of PVC factories. Resid resin in a third substance as solvent and (3) masticated ual monomer in the PVC could also endanger people 25 blends prepared on a two-roll mill or Banbury mill (in during processing, and possibly even the final consumer the manner of compounding rubber). This patent also if the plastigel comes into contact with foodstuffs. does not disclose plastisols. The average particle size of When using PVC-plastisols, it is disadvantageous that the polymer used is preferably increased proportionally PVC is both sensitive to light and heat and tends to split with the decrease of its glass transition temperature T. off hydrogen chloride. The splitting off of hydrogen 30 The glass transition temperature is preferably above 60' chloride represents a particularly serious problem be C. cause during use the plastisol must be heated to an ele To obtain usable results, the degree of polymerization vated temperature, and any hydrogen chloride liberated of the polymer used must be at least about 400. Advan under these conditions has a corrosive effect and, for tageously the degree of polymerization is between 400 example, corrodes metal substrates. Attempts have been 35 and 20,000, corresponding to an average molecular made to counteract thermal decomposition by adding weight of about 40,000 to 2,000,000. heat stabilizers, but these compounds are frequently The preferred polymer component consists substan toxic so that they cannot be used where the plastisol tially wholly of one kind of units derived from t-butyl comes into contact with foodstuffs. The above acrylate, methyl, ethyl, n-propyl, isopropyl, n-butyl, indicated problems are further exacerbated in that in sec-butyl or t-butyl methacrylate or cyclohexyl methac certain special cases PVC-plastisols require relatively rylate, i.e. is essentially a homopolymer. Methyl meth high baking temperatures in order to obtain very short acrylate is preferred. The alcohol acrylate or methacry gelling times so that the danger of PVC-decomposition late comonomers preferably have an alkanol alcohol is further increased. component, i.e. are unsubstituted and saturated, and the It is the object of the invention to develop novel 45 plastisols which also have the excellent processing and type (i) monomers, i.e. those listed above, will generally product characteristics of PVC-plastisols but which gel predominate over those of type (ii). The preferred co at lower temperatures and are also chlorine-free so that polymers are those in which one of the monomers is there can be no splitting off of chlorine or hydrogen methyl methacrylate and constitutes at least 40%, pref chloride. It has surprisingly been found that this prob 50 erably at least 50%, by weight of the total monomer lem can be solved in that for the production of the units, and the other component is a C2-4 alkyl methacry plastisols particular acrylic polymers are used and pro late, especially n-butyl methacrylate, or a C1-4 alkyl cessed with plasticizers.
Recommended publications
  • Monomer Design Strategies to Create Natural Product-Based Polymer Materials Cite This: Nat
    Natural Product Reports REVIEW Monomer design strategies to create natural product-based polymer materials Cite this: Nat. Prod. Rep.,2017,34,433 Samantha L. Kristufek, Kevin T. Wacker, Yi-Yun Timothy Tsao, Lu Su and Karen L. Wooley* Covering: 2010–Aug. 2016 In an effort towards enhancing function and sustainability, natural products have become of interest in the field of polymer chemistry. This review details the blending of chemistries developed through synthetic organic chemistry and polymer chemistry. Through synthetic organic chemical transformations, such as functional group interconversion, a protection/deprotection series, or installation of a functional group, Received 4th November 2016 various designs towards novel, synthetic, bio-based polymer systems are described. This review covers DOI: 10.1039/c6np00112b several classifications of natural products – oils and fatty acids, terpenes, lignin, and sugar derivatives – rsc.li/npr focusing on exploring monomers prepared by one or more synthetic steps. 1. Introduction – the power of synthetic organic chemistry to 4.4 Vanillin monomers transform materials science 4.5 Ferulic acid 2. Oils and fatty acids 4.6 Eugenol 2.1 Introduction – oils and fatty acids 4.7 Creosol 2.2 Saturated fatty acids 4.8 Sinapyl alcohol derivatives 2.3 Monounsaturated fatty acids: polymerization through 5. Sugar derivatives carboxylic acid-derived functional groups 5.1 Introduction – sugar derivatives 2.4 Monounsaturated fatty acids: polymerization through 5.2 Mono-substituted monomers and corresponding alkene-derived functional groups glycopolymers 2.5 Monounsaturated fatty acids: polymerization through 5.3 Di-substituted monomers and corresponding polymers both acid- and alkene-derived functional groups 6. Conclusions and future directions 2.6 Polyunsaturated fatty acids 7.
    [Show full text]
  • Acrylamide, Sodium Acrylate Polymer (Cas No
    ACRYLAMIDE/SODIUM ACRYLATE COPOLYMER (CAS NO. 25085‐02‐3) ACRYLAMIDE, SODIUM ACRYLATE POLYMER (CAS NO. 25987‐30‐8) 2‐PROPENOIC ACID, POTASSIUM SALT, POLYMER WITH 2‐PROPENAMIDE (CAS NO. 31212‐13‐2) SILICONE BASED EMULSION NEUTRALISED POLYACRYLIC BASED STABILIZER (NO CAS NO.) This group contains a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters and three similar polymers. They are expected to have similar environmental concerns and have consequently been assessed as a group. Information provided in this dossier is based on acrylamide/sodium acrylate copolymer (CAS No. 25085‐02‐3). This dossier on acrylamide/sodium acrylate copolymer and similar polymers presents the most critical studies pertinent to the risk assessment of these polymers in their use in drilling muds. This dossier does not represent an exhaustive or critical review of all available data. Where possible, study quality was evaluated using the Klimisch scoring system (Klimisch et al., 1997). Screening Assessment Conclusion – Acrylamide/sodium acrylate copolymer, acrylamide, sodium acrylate polymer and 2‐propenoic acid, potassium salt, polymer with 2‐propenamide are polymers of low concern. Therefore, these polymers and the other similar polymer in this group are classified as tier 1 chemicals and require a hazard assessment only. 1. BACKGROUND Acrylamide/sodium acrylate copolymer is a sodium salt of a polymer consisting of acrylic acid, methacrylic acid or one of their simple esters. Acrylates are a family of polymers which are a type of vinyl polymer. Synthetic chemicals used in the manufacture of plastics, paint formulations and other products. Acrylate copolymer is a general term for copolymers of two or more monomers consisting of acrylic acid, methacrylic acid or one of their simple esters.
    [Show full text]
  • Versatic Acid/Vinyl Acetate의 비닐 에스테르를 가지는 Α,Ω-Diacrylate Poly(Dimethylsiloxane)의 에멀션 공중합 연구
    Polymer(Korea), Vol. 32, No. 2, pp 95-102, 2008 Versatic Acid/Vinyl Acetate의 비닐 에스테르를 가지는 α,ω-Diacrylate Poly(dimethylsiloxane)의 에멀션 공중합 연구 Hamid Javaherian Naghash7, Shadpour MallakpourF, Parivash Yavari Forushani, and Nurseli UyanikFF Department of Chemistry, Islamic Azad University, Shahreza Branch, P.O. Box 311-86145, Shahreza, Isfahan, I. R. Iran. *Organic Polymer Chemistry Research Laboratory, College of Chemistry, Isfahan University of Technology, Isfahan 84156, Iran **Department of Chemistry, Istanbul Technical University, 80626 Maslak, Istanbul, Turkey (2007년 8월 21일 접수, 2008년 1월 19일 채택) A Study on Emulsion Copolymerization of α,ω-Diacrylate Poly(dimethylsiloxane) Containing Vinyl Ester of Versatic Acid/Vinyl Acetate Hamid Javaherian Naghash7, Shadpour MallakpourF, Parivash Yavari Forushani, and Nurseli UyanikFF Department of Chemistry, Islamic Azad University, Shahreza Branch, P.O. Box 311-86145, Shahreza, Isfahan, I. R. Iran *Organic Polymer Chemistry Research Laboratory, College of Chemistry, Isfahan University of Technology, Isfahan 84156, Iran **Department of Chemistry, Istanbul Technical University, 80626 Maslak, Istanbul, Turkey (Received August 21, 2007; Accepted January 19, 2008) Abstract: The α,ω-diacrylate poly(dimethylsiloxane) (DA-PDMS) containing vinyl ester of versatic acid/vinyl acetate (Veova-10/VAc) was prepared by emulsion copolymerization of (DA-PDMS), Veova-10 (with VAc), and auxiliary agents at 85 ℃ in the presence of ammonium peroxodisulfate (APS) as an initiator. Sodium dodecyl sulfate (SDS) and nonylphenol ethylene oxide-40 units (NP-40) were used as anionic and nonionic emulsifiers, respectively. The resulting copolymers were characterized by using Fourier transform infrared spectroscopy (FT-IR). Thermal properties of the copolymers were studied by using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC).
    [Show full text]
  • United States Patent 19 11 Patent Number: 5,352,500 Memon 45 Date of Patent: Oct
    USOO5352500A United States Patent 19 11 Patent Number: 5,352,500 Memon 45 Date of Patent: Oct. 4, 1994 (54) THERMOPLASTC POLYMER 56) References Cited COMPOSITIONS CONTAINING U.S. PATENT DOCUMENTS MELTRHEOLOGY MODIFERS 3,591,659 7/1971 Brinkmann et al. ................ 260/873 4,245,058 1/1981 Liu ...................................... 525/148 75 Inventor: Nazir A. Memon, Fallsington, Pa. 4,257,937 3/1981 Cohen et al. ... 260/40R 4,263,415 4/1981 Liu ...................................... 525/148 4,327,137 4/1982 Sawa et al. ......................... 428/35.7 73) Assignee: Rohm and Haas Company, 4,544,706 10/1985 Finch et al. ......................... 525/146 Philadelphia, Pa. 4,587,298 5/1986 Miller .................................... 525/67 4,622,363 11/1986 Eichenauer et al. .................. 525/67 4,774,289 9/1988 Kress et al. ....... ... 525/146 [21] Appl. No.: 14,054 4,883,841 1/1989 Riew et al. .......................... 525/148 22 Fied: Feb. 5, 1993 FOREIGN PATENT DOCUMENTS 0155989 2/1985 European Pat. Off. Primary Examiner-Susan W. Berman Related U.S. Application Data Attorney, Agent, or Firm-Roger K. Graham (60) Division of Ser. No. 389,656, Feb. 18, 1992, aban doned, which is a continuation-in-part of Ser. No. 57 ABSTRACT 153,170, Feb. 8, 1988, abandoned. Acrylic polymers having a minimum molecular weight of about 500,000, and preferably of about 1,500,000, are (51) Int. Cl....................... B29D 22/00; B29D 23/00; blended at levels of from 1 to 25% with thermoplastic B32B 1/08 resins to improve the melt rheology of the thermoplas (52) U.S.
    [Show full text]
  • UV-Curable Urethane-(Meth)Acrylate Polymers UV-Vernetzbare Urethan-(Meth)Acrylat Polymere Polymères D’Urethane-(Meth)Acrylate Réticulable Par UV
    (19) TZZ_¥_T (11) EP 1 767 553 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C08F 220/36 (2006.01) C09K 19/38 (2006.01) 21.12.2011 Bulletin 2011/51 C08G 18/67 (2006.01) (21) Application number: 05108850.8 (22) Date of filing: 26.09.2005 (54) UV-curable urethane-(meth)acrylate polymers UV-vernetzbare Urethan-(meth)acrylat Polymere Polymères d’urethane-(meth)acrylate réticulable par UV (84) Designated Contracting States: (72) Inventor: Erdhuisen, Erwin Wilhelmus Petrus AT BE BG CH CY CZ DE DK EE ES FI FR GB GR 6931 EC, Westervoort (NL) HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR (74) Representative: Beetz, Tom et al De Vries & Metman (43) Date of publication of application: Overschiestraat 180 28.03.2007 Bulletin 2007/13 1062 XK Amsterdam (NL) (73) Proprietor: Dejima Tech bv (56) References cited: 6827 AV Arnhem (NL) EP-A- 0 293 911 EP-A- 0 868 680 US-A- 5 308 535 Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations. Notice of opposition shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention). EP 1 767 553 B1 Printed by Jouve, 75001 PARIS (FR) EP 1 767 553 B1 Description [0001] The invention pertains to UV-curable urethane-(meth)acrylate polymers, to an optical film containing said urethane-(meth)acrylate polymers, and to a display containing said optical film.
    [Show full text]
  • Acrylic Based Thermoplastic Elastomers: Design and Synthesis for Improved Mechanical Performance
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 5-2017 All Acrylic Based Thermoplastic Elastomers: Design and Synthesis for Improved Mechanical Performance Wei Lu University of Tennessee, Knoxville, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Part of the Materials Chemistry Commons, Organic Chemistry Commons, Polymer and Organic Materials Commons, Polymer Chemistry Commons, and the Polymer Science Commons Recommended Citation Lu, Wei, "All Acrylic Based Thermoplastic Elastomers: Design and Synthesis for Improved Mechanical Performance. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4411 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Wei Lu entitled "All Acrylic Based Thermoplastic Elastomers: Design and Synthesis for Improved Mechanical Performance." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Chemistry. Jimmy W. Mays, Major Professor We have read this dissertation and recommend its acceptance: Alexei P. Sokolov, Michael D. Best, Thomas A. Zawodzinski Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) All Acrylic Based Thermoplastic Elastomers: Design and Synthesis for Improved Mechanical Performance A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Wei Lu May 2017 Copyright © 2017 by Wei Lu All rights reserved.
    [Show full text]
  • Relaxation Map Analysis of Poly (Vinyl Chloride-Co-Vinyl Acetate-Co-2-Hydroxypropyl Acrylate) / Poly (Acrylonitrile-Butadiene-Styrene) Polymer Blend
    International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 11, Number 9 (2018), pp. 1371-1382 © International Research Publication House http://www.irphouse.com Relaxation Map analysis of Poly (Vinyl Chloride-co-Vinyl Acetate-co-2-Hydroxypropyl Acrylate) / Poly (Acrylonitrile-Butadiene-Styrene) Polymer Blend T. Fahmy1, 2*, I. A. Elsayed1, 3, H. G. Abdelwahed1, 4, W. B. Elsharkawy1 1)Physics Department, College of Science and Humanity, Prince Sattam bin Abdulaziz University, 11942 Alkharj, KSA. 2) Polymer Resrech Group, Physics Deptartment, Faculty of Science, Mansoura University, 35516 Mansoura, EGYPT. 3)Physics Deptartment, Faculty of Science, Damitta University, Damitta, EGYPT. 4) Theoretical Physics Group, Physics Deptartment, Faculty of Science, Mansoura University, 35516 Mansoura, EGYPT. ABSTRACT Thermally stimulated depolarization current (TSDC) and thermal sampling techniques (TS) are carried out to study the relaxation behavior of PVVH, ABS and its polyblend samples. It is found that, PVVH and ABS are characterized by a dipolar relaxation peak and detected at 347 and 389 K, respectively. Relaxation map analysis (RMA) has been discussed for all samples. It is observed that, pure samples are chractaerized by one compensation point and some of polyblend materials are characterized by two compensation points. The coordinates of the compensation point are used to calculate the density of disorder (DOD) of the samples. Keywords: Relaxation, Compensation, RMA, Eyring transform, Entropy, Enthalpy, DOD. 1372 T. Fahmy, I.A. Elsayed, H.G. Abdelwahed, W.B. Elsharkawy INTRODUCTION The polymer blends have been attracted much attention in the area of research and development in polymer science in the past three decades, because of their potential usage in many applications, such as, sensors, shielding and membranes [1-4].
    [Show full text]
  • UV-Curable Fluorinated Crosslinkable Polyurethane-Acrylates for Marine Antifouling Coatings
    Clean Technol., Vol. 23, No. 2, June 2017, pp. 148-157 청정소재제품기술 UV-Curable Fluorinated Crosslinkable Polyurethane-Acrylates for Marine Antifouling Coatings Jin-Myung Park1, Sung Yeol Kim2, Seung-Kook An1, Young-Hee Lee1, and Han-Do Kim1,* 1Department of Organic Material Science and Engineering, Pusan National University 2 Busandaehak-ro, Geumjeong-gu, Busan 46241, Korea 2School of Mechanical Engineering, Kyungpook National University 80 Daehak-ro, Bukgu, Daegu 41566, Korea (Received for review April 6, 2017; Revision received May 24, 2017; Accepted May 25, 2017) Abstract To prepare UV-curable polyurethane-acrylate oligomer, NCO-terminated urethane prepolymers with trimethylolpropane, [TMP; 0 (0), 0.1 (0.021) and 0.2 (0.043) mole (mole fraction)] as crosslinkable tri-functional chain extender were end-capped with pentaerythritol triacrylate [PETA; 2.0 (0.400), 1.7 (0.354) and 1.4 (0.304) mole (mole fraction)] with one hydroxyl group/three vinyl functionalities. The stable as-formulated UV-curable polyurethane-acrylates [stable mixtures of PETA-capped oligomer/ reactive acrylic monomer diluents without/with heptadecafluorodecyl methacrylate (PFA; 0, 6 and 9 wt%)] were formed up to 0.2 (0.043) mole (mole fraction) of TMP content in the prepolymer, while homogeneous-mixing failed at 0.3 (0.068) mole (mole fraction), in which the crosslink density in NCO-terminated urethane prepolymer was too high to enable the formation of stable mixture. This study examined the effect of TMP/PETA molar ratio and heptadecafluorodecyl methacrylate (PFA) content (wt%) on the properties of UV-cured polyurethane-acrylates as marine antifouling coating materials. The properties of UV-cured polyurethane-acrylate were found to be significantly dependent on the crosslinkable TMP/PETA ratio and PFA content.
    [Show full text]
  • (Vinyl Acetate-Butyl Acrylate) Emulsion by Controlling the Amount of Redox Initiator
    materials Article Improvement in Wood Bonding Strength of Poly (Vinyl Acetate-Butyl Acrylate) Emulsion by Controlling the Amount of Redox Initiator Yun Zhang 1, Bo Pang 1, Sen Yang 1, Wei Fang 1, Sheng Yang 2, Tong-Qi Yuan 1,* and Run-Cang Sun 1 1 Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China; [email protected] (Y.Z.); [email protected] (B.P.); [email protected] (S.Y.); [email protected] (W.F.); [email protected] (R.-C.S.) 2 Research Institute of Wood Industry, Chinese Academy of Forestry, 1 Dong Xiao Fu, Xiang Shan Road, Haidian District, Beijing 100091, China; [email protected] * Correspondence: [email protected]; Tel.: +86-10-6233-6903 Received: 18 December 2017; Accepted: 5 January 2018; Published: 8 January 2018 Abstract: Polyvinyl acetate emulsion adhesive has been widely used due to its good bonding performance and environmentally friendly properties. Indeed, the bonding performance can be further improved by copolymerizing with other monomers. In this study, the effect of the adjunction of redox initiator (hydrogen peroxide–tartaric acid, H2O2–TA) on the properties of the poly (vinyl acetate-butyl acrylate) (P (VAc–BA)) emulsion adhesive was investigated. With increasing dosage, the reaction became more complete and the obtained film was more compact, as identified via SEM. The core-shell structure of the emulsion particles was confirmed via TEM. Results indicate that while the initiator content increased from 0.5 to 1.0%, a clearer core-shell structure was obtained and the bonding strength of the plywood improved from 2.34 to 2.97 MPa.
    [Show full text]
  • Scale Deposition Inhibiting Composites by HDPE/Silicified
    materials Article Scale Deposition Inhibiting Composites by HDPE/Silicified Acrylate Polymer/Nano-Silica for Landfill Leachate Piping Min Li 1, Rui Zhao 1,*, Sude Ma 2 and Tianxue Yang 3 1 Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China; [email protected] 2 School of Materials Science and Engineering, Xihua University, Chengdu 610039, China; [email protected] 3 State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; [email protected] * Correspondence: [email protected]; Tel.: +86-028-66367628 Received: 12 June 2020; Accepted: 5 August 2020; Published: 7 August 2020 Abstract: Scaling commonly occurs at pipe wall during landfill leachate collection and transportation, which may give rise to pipe rupture, thus posing harm to public health and environment. To prevent scaling, this study prepared a low surface energy nanocomposite by incorporating silicone-acrylate polymer and hydrophobically modified nano-SiO2 into the high-density polyethylene (HDPE) substrate. Through the characterization of contact angle, scanning electron microscopy and thermogravimetry, the results showed that the prepared composite has low wettability and surface free energy, excellent thermal stability and acid-base resistance. In addition, the prepared composite was compared with the commercial HDPE pipe material regarding their performance on anti-scaling by using an immersion test that places their samples into a simulated landfill leachate. It was apparent that the prepared composite shows better scaling resistance. The study further expects to provide insight into pipe materials design and manufacture, thus to improve landfill leachate collection and transportation. Keywords: Anti-scaling; surface free energy; Leachate; Pipe; silicified acrylate copolymer; HDPE 1.
    [Show full text]
  • A Case of Acrylate-Related Contact Allergy
    CONTACT DERMATITIS Wearable Health Device Dermatitis: A Case of Acrylate-Related Contact Allergy Flaura K. Winston, MD, PhD; Albert C. Yan, MD wearable fitness devices is evident in the trajectory of PRACTICE POINTS their reported sales, which increased from $43 million in 2 • Mobile wearable health devices are likely to become 2009 to $854 million in 2013. Recognizing that “wide- an important potential source of contact sensitization spread adoption and use of mobile technologies is opening as their use increases given their often prolonged new and innovative ways to improve health,”3 the contact time with the skin. US Food and Drug Administration (FDA) ruled that • Mobile wearable health devices may pose a risk for “[technologies] that can pose a greater risk to patients allergic contact dermatitis as a result of a variety of will require FDAcopy review.” One popular class of mobile components that come into contact with the skin, technologies—activity and sleep sensors—falls outside including but not limited to metals, rubber compo- the FDA’s regulatory guidance. To enable continuous nents, adhesives, and dyes. monitoring, these sensors often are embedded into wear- able devices. notReports in the media have documented skin rashes arising in conjunction with use of one type of device,4 The popularity of mobile wearable health devices has skyrocketed. Some of these devices are worn on the wrist and have been associ- which may be related to nickel contact allergy, and the ated with the development of allergic contact dermatitis. AlthoughDo manufacturer has reported that the metal housing consists nickel has been the suspected culprit in cases reported by the of surgical stainless steel that is known to contain nickel.
    [Show full text]
  • Synthesis of an Aqueous Self-Matting Acrylic Resin with Low Gloss and High Transparency Via Controlling Surface Morphology
    polymers Article Synthesis of an Aqueous Self-Matting Acrylic Resin with Low Gloss and High Transparency via Controlling Surface Morphology Qiwen Yong 1,2,* and Caizhen Liang 3 1 Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637002, China 2 Institute of Applied Chemistry, China West Normal University, Nanchong 637002, China 3 State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China; [email protected] * Correspondence: [email protected]; Tel.: +86-0817-2568637 Received: 25 January 2019; Accepted: 11 February 2019; Published: 13 February 2019 Abstract: This paper reports on a novel, film-forming acrylic polymer resin that exhibits low-gloss surface and high transparency via controlling film morphology at sub-micron roughness levels. Such microstructure is controlled by means of the copolymerization process increasing the allyl methacrylate (AMA) crosslinker content from 0 to 0.4 wt %. This acrylic resin makes it possible to avoid high loadings of matting agents, while also having good abrasion resistance and soft-touch feeling. Gloss levels of as low as 4 units at 60◦ incident angle and light transmittance of up to 85% have been achieved. The chemical structure of the aqueous acrylic resin was characterized by ATR-FTIR and NMR spectroscopy. The film morphology and surface roughness were measured by SEM and AFM analysis. The emulsion particle morphology and glass transition temperature were obtained by TEM and DSC, respectively. The effects of the crosslinker content on the light transmittance, glass transition temperature, and thermal degradation stability were also discussed in detail.
    [Show full text]