The Trees That Miss the Trees That Once Depended on Animals Like the Wooly Mammoth for Survival H
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ancient Mitogenomes Shed Light on the Evolutionary History And
Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, Paul Szpak, Jorge Martinez, Jim Mead, H. Gregory Mcdonald, Ross Macphee, et al. To cite this version: Frédéric Delsuc, Melanie Kuch, Gillian Gibb, Emil Karpinski, Dirk Hackenberger, et al.. Ancient Mitogenomes Shed Light on the Evolutionary History and Biogeography of Sloths. Current Biology - CB, Elsevier, 2019. hal-02326384 HAL Id: hal-02326384 https://hal.archives-ouvertes.fr/hal-02326384 Submitted on 22 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Ancient Mitogenomes Shed Light on the Evolutionary 2 History and Biogeography of Sloths 3 Frédéric Delsuc,1,13,*, Melanie Kuch,2 Gillian C. Gibb,1,3, Emil Karpinski,2,4 Dirk 4 Hackenberger,2 Paul Szpak,5 Jorge G. Martínez,6 Jim I. Mead,7,8 H. Gregory 5 McDonald,9 Ross D. E. MacPhee,10 Guillaume Billet,11 Lionel Hautier,1,12 and 6 Hendrik N. Poinar2,* 7 Author list footnotes 8 1Institut des Sciences de l’Evolution de Montpellier -
Teacher Guide: Meet the Proboscideans
Teacher Guide: Meet the Proboscideans Concepts: • Living and extinct animals can be classified by their physical traits into families and species. • We can often infer what animals eat by the size and shape of their teeth. Learning objectives: • Students will learn about the relationship between extinct and extant proboscideans. • Students will closely examine the teeth of a mammoth, mastodon, and gomphothere and relate their observations to the animals’ diets. They will also contrast a human’s jaw and teeth to a mammoth’s. This is an excellent example of the principle of “form fits function” that occurs throughout biology. TEKS: Grade 5 § 112.16(b)7D, 9A, 10A Location: Hall of Geology & Paleontology (1st Floor) Time: 10 minutes for “Mammoth & Mastodon Teeth,” 5 minutes for “Comparing Human & Mammoth Teeth” Supplies: • Worksheet • Pencil • Clipboard Vocabulary: mammoth, mastodon, grazer, browser, tooth cusps, extant/extinct Pre-Visit: • Introduce students to the mammal group Proboscidea, using the Meet the Proboscideans worksheets. • Review geologic time, concentrating on the Pleistocene (“Ice Age”) when mammoths, mastodons, and gomphotheres lived in Texas. • Read a short background book on mammoths and mastodons with your students: – Mammoths and Mastodons: Titans of the Ice Age by Cheryl Bardoe, published in 2010 by Abrams Books for Young Readers, New York, NY. Post-Visit Classroom Activities: • Assign students a short research project on living proboscideans (African and Asian elephants) and their conservation statuses (use http://www.iucnredlist.org/). Discuss the possibilities of their extinction, and relate to the extinction events of mammoths and mastodons. Meet the Proboscideans Mammoths, Mastodons, and Gomphotheres are all members of Proboscidea (pro-bo-SID-ia), a group which gets its name from the word proboscis (the Latin word for nose), referring to their large trunks. -
Geology and Soils
4.7 GEOLOGY AND SOILS This section contains an analysis of the impacts the 2030 General Plan geology, soils, mineral resources, and paleontological resources in the City of Live Oak. The section provides a description of existing soil, geologic and seismic conditions, as well as a brief analysis of regulations and plans pertinent to the implementation of the 2030 General Plan. 4.7.1 REGULATORY FRAMEWORK FEDERAL PLANS, POLICIES, REGULATIONS, AND LAWS The U. S. Department of Agriculture Natural Resources Conservation Service (NRCS) produces soil surveys that assist planners in determining which land uses are suitable for specific soil types and locations. STATE PLANS, POLICIES, REGULATIONS, AND LAWS The California Geological Survey (CGS) provides information pertaining to soils, geology, mineral resources, and geologic hazards. Mineral Resource Protection Laws CGS maintains and provides information about California’s nonfuel mineral resources. CGS offers information about handling hazardous minerals and SMARA mineral land classifications. Surface Mining and Reclamation Act of 1975 SMARA requires all jurisdictions to incorporate mapped mineral resources designations approved by the California Mining and Geology Board within their general plans. SMARA was enacted to limit new development in areas with significant mineral deposits. The California Department of Conservation’s Office of Mine Reclamation and the California Mining and Geology Board are jointly charged with ensuring proper administration of the act’s requirements. The California Mining and Geology Board promulgates regulations to clarify and interpret the act’s provisions, and also serves as a policy and appeals board. The Office of Mine Reclamation (OMR) provides an ongoing technical assistance program for lead agencies and operators, maintains a database of mine locations and operational information statewide, and is responsible for compliance-related matters (OMR 2008). -
Waco Mammoth Site • Special Resource Study / Environmental Assessment • Texas Waco Mammoth Site Special Resource Study / Environmental Assessment
Waco Mammoth Site Waco National Park Service U.S. Department of the Interior Waco Mammoth Site • Special Resource Study / Environmental Assessment • Texas Waco Mammoth Site Special Resource Study Special Resource / Environmental Assessment Environmental National Park Service • United States Department of the Interior Special Resource Study/Environmental Assessment Texas July • 2008 As the nation’s principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering sound use of our land and water resources; protecting our fish, wildlife, and biological diversity; preserving the environmental and cultural values of our national This report has been prepared to provide Congress and the public with information about parks and historical places; and providing for the enjoyment of life through outdoor the resources in the study area and how they relate to criteria for inclusion within the recreation. The department assesses our energy and mineral resources and works to ensure national park system. Publication and transmittal of this report should not be considered an that their development is in the best interests of all our people by encouraging stewardship endorsement or a commitment by the National Park Service to seek or support either and citizen participation in their care. The department also has a major responsibility for specific legislative authorization for the project or appropriation for its implementation. American Indian reservation communities and for people who live in island territories under Authorization and funding for any new commitments by the National Park Service will have U.S. administration. to be considered in light of competing priorities for existing units of the national park system and other programs. -
Reveals That Glyptodonts Evolved from Eocene Armadillos
Molecular Ecology (2016) 25, 3499–3508 doi: 10.1111/mec.13695 Ancient DNA from the extinct South American giant glyptodont Doedicurus sp. (Xenarthra: Glyptodontidae) reveals that glyptodonts evolved from Eocene armadillos KIEREN J. MITCHELL,* AGUSTIN SCANFERLA,† ESTEBAN SOIBELZON,‡ RICARDO BONINI,‡ JAVIER OCHOA§ and ALAN COOPER* *Australian Centre for Ancient DNA, School of Biological Sciences, University of Adelaide, Adelaide, SA 5005, Australia, †CONICET-Instituto de Bio y Geociencias del NOA (IBIGEO), 9 de Julio No 14 (A4405BBB), Rosario de Lerma, Salta, Argentina, ‡Division Paleontologıa de Vertebrados, Facultad de Ciencias Naturales y Museo (UNLP), CONICET, Museo de La Plata, Paseo del Bosque, La Plata, Buenos Aires 1900, Argentina, §Museo Arqueologico e Historico Regional ‘Florentino Ameghino’, Int De Buono y San Pedro, Rıo Tercero, Cordoba X5850, Argentina Abstract Glyptodonts were giant (some of them up to ~2400 kg), heavily armoured relatives of living armadillos, which became extinct during the Late Pleistocene/early Holocene alongside much of the South American megafauna. Although glyptodonts were an important component of Cenozoic South American faunas, their early evolution and phylogenetic affinities within the order Cingulata (armoured New World placental mammals) remain controversial. In this study, we used hybridization enrichment and high-throughput sequencing to obtain a partial mitochondrial genome from Doedicurus sp., the largest (1.5 m tall, and 4 m long) and one of the last surviving glyptodonts. Our molecular phylogenetic analyses revealed that glyptodonts fall within the diver- sity of living armadillos. Reanalysis of morphological data using a molecular ‘back- bone constraint’ revealed several morphological characters that supported a close relationship between glyptodonts and the tiny extant fairy armadillos (Chlamyphori- nae). -
The Childs Elephant Free Download
THE CHILDS ELEPHANT FREE DOWNLOAD Rachel Campbell-Johnston | 400 pages | 03 Apr 2014 | Random House Children's Publishers UK | 9780552571142 | English | London, United Kingdom Rachel Campbell-Johnston Penguin 85th by Coralie Bickford-Smith. Stocking Fillers. The Childs Elephant the other The Childs Elephant of the scale, when elephants eat in one location and defecate in another, they function as crucial dispersers of seeds; many plants, trees, The Childs Elephant bushes would have a hard time surviving if their seeds didn't feature on elephant menus. Share Flipboard Email. I cannot trumpet this book loudly enough. African elephants are much bigger, fully grown males approaching six or seven tons making them the earth's largest terrestrial mammalscompared to only four or five tons for Asian elephants. As big as they are, elephants have an outsize influence on their habitats, uprooting trees, trampling ground underfoot, and even deliberately enlarging water holes so they can take relaxing baths. Events Podcasts Penguin Newsletter Video. If only we could all be Jane Goodall or Dian Fossey, and move to the jungle or plains and thoroughly dedicate our lives to wildlife. For example, an elephant can use its trunk to shell a peanut without damaging the kernel nestled inside or to wipe debris from its eyes or other parts of its body. Elephants are polyandrous and The Childs Elephant mating happens year-round, whenever females are in estrus. Habitat and Range. Analytics cookies help us to improve our website by collecting and reporting information on how you use it. Biology Expert. Elephants are beloved creatures, but they aren't always fully understood by humans. -
Elephant Escapades Audience Activity Designed for 10 Years Old and Up
Elephant Escapades Audience Activity designed for 10 years old and up Goal Students will learn the differences between the African and Asian elephants, as well as, how their different adaptations help them survive in their habitats. Objective • To understand elephant adaptations • To identify the differences between African and Asian elephants Conservation Message Elephants play a major role in their habitats. They act as keystone species which means that other species depend on them and if elephants were removed from the ecosystem it would change drastically. It is important to understand these species and take efforts to encourage the preservation of African and Asian elephants and their habitats. Background Information Elephants are the largest living land animal; they can weigh between 6,000 and 12,000 pounds and stand up to 12 feet tall. There are only two species of elephants; the African Elephants and the Asian Elephant. The Asian elephant is native to parts of South and Southeast Asia. While the African elephant is native to the continent of Africa. While these two species are very different, they do share some common traits. For example, both elephant species have a trunk that can move in any direction and move heavy objects. An elephant’s trunk is a fusion, or combination, of the nose and upper lip and does not contain any bones. Their trunks have thousands of muscles and tendons that make movements precise and give the trunk amazing strength. Elephants use their trunks for snorkeling, smelling, eating, defending themselves, dusting and other activities that they perform daily. Another common feature that the two elephant species share are their feet. -
The Human-Elephant Conflict
Gajaha 30 (2009) 41-52 The Human-Elephant Confl ict: A Review of Current Status and Mitigation Methods B. M. A. Oswin Perera Faculty of Veterinary Medicine & Animal Science, University of Peradeniya, Peradeniya, Sri Lanka Globally, wild elephants are present in 50 of the ecosystems they inhabit. Due to their countries, 13 of which are in Asia and 37 in requirement for large areas of forest habitat, Africa. At present the number of wild Asian conservation of elephants will automatically elephants (Elephas maximus) is between 35,000 ensure the conservation of other species that and 50,000 (www.elephantcare.org), while the co-exist in the same habitat. However, they can number in captivity is around 16,000. The trend also modify the environment in positive as well in almost all Asian range states has been a drastic as negative ways by their actions. The elephant decline in wild elephant numbers, due to a range is also a ‘fl agship’ species, especially in Asian of anthropogenic factors related to increasing countries, being closely associated with the social human population, loss and degradation of forest and cultural aspects of people, and this factor can habitat, fragmentation of breeding populations and be harnessed to promote its conservation. increasing human-elephant confl ict (HEC). The Asian elephant is categorized as an ‘endangered’ Many studies have been carried out on HEC both species in the Red List of the World Conservation in Asia (Sukumar 2003; Jayawardena 2004; de Union (IUCN, 2008: www.iucnredlist.org) and is Silva & de Silva 2007) and Africa (Hoare 1999; classifi ed with the Convention for International Walpole & Linkie 2007), but despite the lessons Trade of Endangered Species (CITES, www. -
African Elephant
Species fact sheet: African Elephant A powerful symbol of nature, the world’s largest land animal is still under threat African elephant, Kenya. © WWF-Canon / Martin Harvey African elephants are the largest living land animals. Once 2. The forest elephant (L. a. cyclotis) is smaller and darker numbering millions across the African continent, their than the savannah elephant, has straighter, populations had been decimated by the mid-1980s by downward-pointing tusks, and lives in central and western systematic poaching. The status of the species now varies Africa’s equatorial forests. Forest elephants are more greatly across Africa. Some populations remain generally threatened than the savannah sub-species due endangered due to poaching for meat and ivory, habitat to poaching and loss of forest habitat. loss, and conflict with humans, while others are secure and Elephant numbers vary greatly over the 37 range states; expanding. some populations remain endangered, while others are There are two sub-species of African now secure. For example, most countries in West Africa elephant: count their elephants in tens or hundreds, with animals scattered in small blocks of isolated forest; probably only 1. The savannah elephant (L. a. africana), also known as the bush elephant, is the largest elephant in the world, with three countries in this region have more than 1,000 a maximum shoulder height of 4m and weighing up to animals. In contrast, elephant populations in southern 7,500kg. It is recognizable by its large outward-curving Africa are large and expanding, with some 300,000 tusks, and it lives throughout the grassy plains and elephants now roaming across the sub-region. -
Taphonomy and Significance of Jefferson's Ground Sloth (Xenarthra: Megalonychidae) from Utah
Western North American Naturalist Volume 61 Number 1 Article 9 1-29-2001 Taphonomy and significance of Jefferson's ground sloth (Xenarthra: Megalonychidae) from Utah H. Gregory McDonald Hagerman Fossil Beds National Monument, Hagerman, Idaho Wade E. Miller Thomas H. Morris Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation McDonald, H. Gregory; Miller, Wade E.; and Morris, Thomas H. (2001) "Taphonomy and significance of Jefferson's ground sloth (Xenarthra: Megalonychidae) from Utah," Western North American Naturalist: Vol. 61 : No. 1 , Article 9. Available at: https://scholarsarchive.byu.edu/wnan/vol61/iss1/9 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 61(1), © 2001, pp. 64–77 TAPHONOMY AND SIGNIFICANCE OF JEFFERSON’S GROUND SLOTH (XENARTHRA: MEGALONYCHIDAE) FROM UTAH H. Gregory McDonald1, Wade E. Miller2, and Thomas H. Morris2 ABSTRACT.—While a variety of mammalian megafauna have been recovered from sediments associated with Lake Bonneville, Utah, sloths have been notably rare. Three species of ground sloth, Megalonyx jeffersonii, Paramylodon har- lani, and Nothrotheriops shastensis, are known from the western United States during the Pleistocene. Yet all 3 are rare in the Great Basin, and the few existing records are from localities on the basin margin. The recent discovery of a partial skeleton of Megalonyx jeffersonii at Point-of-the-Mountain, Salt Lake County, Utah, fits this pattern and adds to our understanding of the distribution and ecology of this extinct species. -
(Dasypus) in North America Based on Ancient Mitochondrial DNA
bs_bs_banner A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA BETH SHAPIRO, RUSSELL W. GRAHAM AND BRANDON LETTS Shapiro, B. Graham, R. W. & Letts, B.: A revised evolutionary history of armadillos (Dasypus) in North America based on ancient mitochondrial DNA. Boreas. 10.1111/bor.12094. ISSN 0300-9483. The large, beautiful armadillo, Dasypus bellus, first appeared in North America about 2.5 million years ago, and was extinct across its southeastern US range by 11 thousand years ago (ka). Within the last 150 years, the much smaller nine-banded armadillo, D. novemcinctus, has expanded rapidly out of Mexico and colonized much of the former range of the beautiful armadillo. The high degree of morphological similarity between these two species has led to speculation that they might be a single, highly adaptable species with phenotypical responses and geographical range fluctuations resulting from environmental changes. If this is correct, then the biology and tolerance limits for D. novemcinctus could be directly applied to the Pleistocene species, D. bellus. To investigate this, we isolated ancient mitochondrial DNA from late Pleistocene-age specimens of Dasypus from Missouri and Florida. We identified two genetically distinct mitochondrial lineages, which most likely correspond to D. bellus (Missouri) and D. novemcinctus (Florida). Surprisingly, both lineages were isolated from large specimens that were identified previously as D. bellus. Our results suggest that D. novemcinctus, which is currently classified as an invasive species, was already present in central Florida around 10 ka, significantly earlier than previously believed. Beth Shapiro ([email protected]), Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA 95064, USA; Russell W. -
Elephant TAG/SSP Key Messages
Elephant TAG/SSP Key Messages The most important thing that we can do to positively influence visitors about elephants and elephant conservation is to be clear about the messages, communicate them positively and succinctly and to use staff to reinforce them personally. San Diego Wild Animal Park Introduction: The Elephant TAG/SSP Steering Committee has drafted these Elephant Key Messages for AZA institutions to incorporate into their on-site elephant graphics and/or presentations. We also hope that they will be a useful resource as you craft future programs or refine current ones. Our goal was to create elephant natural history, conservation, management and welfare messages that would be meaningful, relevant and inspiring to all. With so much confusion around the general public’s view of elephant management, this document includes important, consistent information to share with visitors about the high quality of elephant care and welfare in responsible AZA institutions. These messages are not meant to be delivered all at once, but rather to select one or a few messages that suit a program’s objectives. NATURAL HISTORY MESSAGE 1 Elephants have special features that are unique in the animal world. • Elephants are the largest land animals in the world. • Their unique trunk acts as part nose, part hand to assist in breathing, detecting odors, manipulating objects, social interactions, eating, dust bathing, drawing-up water and releasing water into the mouth. • Elephants have the longest gestation of any land animal of 21.5 months. • Elephants have the largest brain of any land animals. • Elephants are long lived. Studies have shown that life expectancy at birth in African elephants is 41 years for females and 24 years for males.