APP203741 Staff Assessment Report.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

APP203741 Staff Assessment Report.Pdf EPA advice for application APP203741 Staff Assessment Report December 2018 APP203741: To determine the new organism status of Kineosporia rhizophila, Actinoplanes cyanea, Actinoplanes digitatis, Actinoplanes ferrugineus, Cryptosporangium arvum and Cryptosporangium japonicum Purpose To determine if Kineosporia rhizophila, Actinoplanes cyanea, Actinoplanes digitatis, Actinoplanes ferrugineus, Cryptosporangium arvum and Cryptosporangium japonicum are new organisms under section 26 of the HSNO Act Application number APP203741 Application type Statutory determination Applicant Anther Experimental Distillation Pty Limited Date formally received 14 November 2018 1 Executive Summary and Recommendation Application APP203741, submitted by Anther Experimental Distillation Pty Limited, seeks a determination on the new organism status of Kineosporia rhizophila, Actinoplanes cyanea, Actinoplanes digitatis, Actinoplanes ferrugineus, Cryptosporangium arvum and Cryptosporangium japonicum. After reviewing all of the available information and completing a literature search concerning the organisms, EPA staff recommend that Kineosporia rhizophila, Actinoplanes cyanea, Actinoplanes digitatis, Actinoplanes ferrugineus, Cryptosporangium arvum and Cryptosporangium japonicum are not new organisms for the purpose of the HSNO Act based on evidence that these organisms have been identified and present in New Zealand since before 29 July 1998 when the HSNO Act came into effect. The genetic sequencing evidence also strongly suggests that these six microorganisms are ubiquitous in nature based on the isolations of these organisms across global continents, varying environments and timeframes. 2 EPA advice for application APP203741 Table of Contents Introduction and background ……………………………………………………………4 Organism description…………………………………………………………………………4 Review of information………………………………………………………………………10 Recommendation……………………………………………………………………………..11 References…………………………………………………………………………………….....12 Appendix 1: Decision pathway……..…………………………………………………..14 3 Introduction and background On 14 November 2018, Anther Experimental Distillation Pty Limited applied to the EPA under section 26 of the HSNO Act seeking a determination on the new organism status of Kineosporia rhizophila, Actinoplanes cyanea, Actinoplanes digitatis, Actinoplanes ferrugineus, Cryptosporangium arvum and Cryptosporangium japonicum. The EPA requested comment on the application from the Department of Conservation (DOC) and the Ministry for Primary Industries (MPI). DOC and MPI did not have any comments to make on this application. The applicant considers these species as not new organisms and to support this claim the applicant provided evidence to demonstrate that each of these organisms is present in New Zealand based on identification of these organisms in soil samples collected in New Zealand. In addition, the applicant argues that these organisms are likely to be ubiquitous organisms given the isolation of these organisms across geographical continents, varying environments and timeframes. Section 2A(1) of the HSNO Act prescribes that a new organism is, in part, an organism belonging to a species that was not present in New Zealand immediately before 29 July 1998. Description of organisms Kineosporia rhizophila Kineosporia rhizophila is a motile, spore-bearing, actinomycete bacterial species and a member of the genus, Kineosporia, due to its morphological and chemotaxonomic characteristics such as the inclusion of menaquinone, phospholipid and cellular fatty acid compositions. Kineosporia have the ability to release flagellated zoospores at a certain stage in their life cycle (Goodfellow & Cross, 1984). These motile, zoosporic actinomycetes have been associated with river and lake water, river sediments, decaying plant material submerged in streams and cast up on lake shores, grass inhabiting streams, in soil and a glacier in the Himalayas (Hasegawa 1991; Kudo et al. 1998; Cross 1986; Willoughby 1969; Shivaji et al. 1997; Shivaji et al. 2011). Kineosporia spp. have also been isolated in high numbers from leaf litter, dry stream beds and from branches overhanging water in Britain, the United States of America, Japan and Australia (Radajewski & Duxbury, 2001; Cross, 1986; Kudo et al. 1998). Furthermore, Actinomycete species belonging to the genera Actinoplanes, Kineosporia and Cryptosporangium have been frequently isolated from leaf litter samples which suggests they may have a significant role in the degradation of plant material (Hop et al. 2011; Tamura et al. 1998; Makkar & Cross, 1982). Kineosporia rhizophila was originally isolated in 1998 by Kudo et al. from various plant samples in Japan. In the same year, Kudo et al. also isolated this species from the roots of galingale (Cyperus micromona) and fallen leaves in Saitama, Japan, sphagnum in Mt Mikuni in Gumma, Japan and leaves of cat-tail (Typha latifolia) (Kudo et al. 1998). 4 EPA advice for application APP203741 International isolates of this species also include from leaf litter in Vietnam (Sakiyama et al, 2009), soil in Japan (Hayakawa et al, 2000) and soil and leaf litter from West Java, Indonesia (Widyastuti et al. 2012). In addition, the applicant analysed soil survey studies that are similar to BASE1 surveys. These surveys consisted of 16S rRNA sequence analysis of microbial communities found in soil and other environments collected from locations around the world (Table 1). Using the 16S rRNA sequence of Kineosporia rhizophila the applicant performed several BLAST2 searches online and found the following results: Table 1: Global locations of endemic species and identity matched to 97 – 100% sequence similarity to Kineosporia rhizophila. Source Country % Identity Lichen China 99 Farm soil USA 99 Soil samples Argentina 97 Soil samples Canada 97 Soil France 97 Furthermore, the applicant provided two 16S rRNA sequencing reports (New Zealand and Australia) from Monash University which identified Kineosporia rhizophila from soil samples across a wide distribution of Australia and the North Island of New Zealand (Monash University Microbe Species Identity and Location report, 18 November 2015; Monash University Microbe Species Identity and Location Report, 24 August 2018). Actinoplanes cyanea Actinoplanes is a genus in the family of Micromonosporaceae. Bacteria within this genus have aerial mycelia and spherical, motile spores. Actinoplanes species produce the pharmaceutically important compounds valienamine (a precursor to the antidiabetic drug acarbose and the antibiotic validamycin), teicoplanin and ramoplanin. Actinoplanes cyanea (syn. Actinoplanes cyaneus) was first isolated from Siberian soil in 1977 by Terekhova et al. Unlike several other Actinoplanes species, this species lacks aerial 1 BASE: Biomes of Australian Soil Environment. BASE is a map of Australia’s soil microbial diversity. https://www.csiro.au/en/Research/Collections/ANH/Our-research/Soil-and-plant-interactions/Mapping-soil- biodiversity 2 BLAST: basic local alignment search tool. An algorithm used for comparing primary biological sequence information. 5 mycelium. The cell wall contains meso-diaminopimelic acid, arabinose, xylose and a non- identified analogue of diaminopimelic acid. On synthetic media, this species produces a soluble blue pigment. In 2007, Actinoplanes cyaneus was isolated from soil sites in the three Mongolian provinces of Tov, Uvs and Dornad (Enkh-Amgalan et al. 2012). These three provinces span west (Tov), central (Uvs) and far-eastern (Dornad) Mongolia. Other closely related Actinoplanes species have been isolated from soil close to the Marmore waterfalls in Terni, Italy. These isolates had a 97.6% gene sequence similarity to Actinoplanes cyanea (Kampfer et al. 2007). Furthermore, isolations in region of Liguria, Italy, showed a 99.3% gene sequence similarity to Actinoplanes cyanea strains (Wink et al. 2006). In addition, the applicant analysed soil survey studies that are similar to BASE surveys. These surveys consisted of 16S rRNA sequence analysis of microbial communities found in soil and other environments collected from locations around the world (Table 2). Using the 16S rRNA sequence of Actinoplanes cyanea the applicant performed several BLAST searches online and found the following results: Table 2: Global locations of endemic species and identity matched to 97 – 100% sequence similarity to Actinoplanes cyanea. Source Country % Identity Soil Russia 98 Sediment Greece 98 Marine sediments Iran 99 Soil France 97 Soil Canada 100 Soil Chile 100 The applicant provided two 16S rRNA sequencing reports (New Zealand and Australia) from Monash University which identified Actinoplanes cyanea from soil samples across a wide distribution of Australia and the North Island of New Zealand (Monash University Microbe Species Identity and Location report, 18 November 2015; Monash University Microbe Species Identity and Location Report, 24 August 2018). Actinoplanes digitatis Isolation of Actinoplanes digitatis (syn. Ampullariella digitata) has occurred from soil samples in Sheboygan, Michigan, United States in 1963 by J.N. Couch and from tree bark in Mt Taibai, China (European Nucleotide Archives). The applicant provided two 16S rRNA sequencing reports (New Zealand and Australia) from Monash University which identified Actinoplanes digitatis from soil samples across a wide 6 EPA advice for application APP203741 distribution of Australia and the North Island of New Zealand (Monash University Microbe Species Identity and Location report, 18 November
Recommended publications
  • Inter-Domain Horizontal Gene Transfer of Nickel-Binding Superoxide Dismutase 2 Kevin M
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.12.426412; this version posted January 13, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Inter-domain Horizontal Gene Transfer of Nickel-binding Superoxide Dismutase 2 Kevin M. Sutherland1,*, Lewis M. Ward1, Chloé-Rose Colombero1, David T. Johnston1 3 4 1Department of Earth and Planetary Science, Harvard University, Cambridge, MA 02138 5 *Correspondence to KMS: [email protected] 6 7 Abstract 8 The ability of aerobic microorganisms to regulate internal and external concentrations of the 9 reactive oxygen species (ROS) superoxide directly influences the health and viability of cells. 10 Superoxide dismutases (SODs) are the primary regulatory enzymes that are used by 11 microorganisms to degrade superoxide. SOD is not one, but three separate, non-homologous 12 enzymes that perform the same function. Thus, the evolutionary history of genes encoding for 13 different SOD enzymes is one of convergent evolution, which reflects environmental selection 14 brought about by an oxygenated atmosphere, changes in metal availability, and opportunistic 15 horizontal gene transfer (HGT). In this study we examine the phylogenetic history of the protein 16 sequence encoding for the nickel-binding metalloform of the SOD enzyme (SodN). A comparison 17 of organismal and SodN protein phylogenetic trees reveals several instances of HGT, including 18 multiple inter-domain transfers of the sodN gene from the bacterial domain to the archaeal domain.
    [Show full text]
  • Biotechnological and Ecological Potential of Micromonospora Provocatoris Sp
    marine drugs Article Biotechnological and Ecological Potential of Micromonospora provocatoris sp. nov., a Gifted Strain Isolated from the Challenger Deep of the Mariana Trench Wael M. Abdel-Mageed 1,2 , Lamya H. Al-Wahaibi 3, Burhan Lehri 4 , Muneera S. M. Al-Saleem 3, Michael Goodfellow 5, Ali B. Kusuma 5,6 , Imen Nouioui 5,7, Hariadi Soleh 5, Wasu Pathom-Aree 5, Marcel Jaspars 8 and Andrey V. Karlyshev 4,* 1 Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; [email protected] 2 Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt 3 Department of Chemistry, Science College, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia; [email protected] (L.H.A.-W.); [email protected] (M.S.M.A.-S.) 4 School of Life Sciences Pharmacy and Chemistry, Faculty of Science, Engineering and Computing, Kingston University London, Penrhyn Road, Kingston upon Thames KT1 2EE, UK; [email protected] 5 School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; [email protected] (M.G.); [email protected] (A.B.K.); [email protected] (I.N.); [email protected] (H.S.); [email protected] (W.P.-A.) 6 Indonesian Centre for Extremophile Bioresources and Biotechnology (ICEBB), Faculty of Biotechnology, Citation: Abdel-Mageed, W.M.; Sumbawa University of Technology, Sumbawa Besar 84371, Indonesia 7 Leibniz-Institut DSMZ—German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Al-Wahaibi, L.H.; Lehri, B.; 38124 Braunschweig, Germany Al-Saleem, M.S.M.; Goodfellow, M.; 8 Marine Biodiscovery Centre, Department of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Kusuma, A.B.; Nouioui, I.; Soleh, H.; UK; [email protected] Pathom-Aree, W.; Jaspars, M.; et al.
    [Show full text]
  • Actinoplanes Aureus Sp. Nov., a Novel Protease- Producing Actinobacterium Isolated from Soil
    Actinoplanes aureus sp. nov., a novel protease- producing actinobacterium isolated from soil Xiujun Sun Northeast Agricultural University Xianxian Luo Northeast Agricultural University Chuan He Northeast Agricultural University Zhenzhen Huang Northeast Agricultural University Junwei Zhao Northeast Agricultural University Beiru He Northeast Agricultural University Xiaowen Du Northeast Agricultural University Wensheng Xiang Northeast Agricultural University Jia Song ( [email protected] ) Northeast Agricultural University https://orcid.org/0000-0002-0398-2666 Xiangjing Wang Northeast Agricultural University Research Article Keywords: Actinoplanes aureus sp. nov, genome, polyphasic analysis, 16S rRNA gene Posted Date: April 26th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-260966/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/19 Version of Record: A version of this preprint was published at Antonie van Leeuwenhoek on July 29th, 2021. See the published version at https://doi.org/10.1007/s10482-021-01617-4. Page 2/19 Abstract A novel protease-producing actinobacterium, designated strain NEAU-A11T, was isolated from soil collected from Aohan banner, Chifeng, Inner Mongolia Autonomous Region, China, and characterised using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NEAU-A11T was indicated to belong to the genus Actinoplanes and was most closely related to Actinoplanes rectilineatus JCM 3194T (98.9 %). Cell walls contained meso-diaminopimelic acid as the diagnostic diamino acid and the whole-cell sugars were arabinose, xylose and glucose. The phospholipid prole contained diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidylinositol and two phosphatidylinositol mannosides. The predominant menaquinones were MK-9(H4), MK-9(H6) and MK- 9(H8).
    [Show full text]
  • The Complete Genome Sequence of the Acarbose Producer Actinoplanes Sp
    Schwientek et al. BMC Genomics 2012, 13:112 http://www.biomedcentral.com/1471-2164/13/112 RESEARCHARTICLE Open Access The complete genome sequence of the acarbose producer Actinoplanes sp. SE50/110 Patrick Schwientek1,2, Rafael Szczepanowski3, Christian Rückert3, Jörn Kalinowski3, Andreas Klein4, Klaus Selber5, Udo F Wehmeier6, Jens Stoye2 and Alfred Pühler1,7* Abstract Background: Actinoplanes sp. SE50/110 is known as the wild type producer of the alpha-glucosidase inhibitor acarbose, a potent drug used worldwide in the treatment of type-2 diabetes mellitus. As the incidence of diabetes is rapidly rising worldwide, an ever increasing demand for diabetes drugs, such as acarbose, needs to be anticipated. Consequently, derived Actinoplanes strains with increased acarbose yields are being used in large scale industrial batch fermentation since 1990 and were continuously optimized by conventional mutagenesis and screening experiments. This strategy reached its limits and is generally superseded by modern genetic engineering approaches. As a prerequisite for targeted genetic modifications, the complete genome sequence of the organism has to be known. Results: Here, we present the complete genome sequence of Actinoplanes sp. SE50/110 [GenBank:CP003170], the first publicly available genome of the genus Actinoplanes, comprising various producers of pharmaceutically and economically important secondary metabolites. The genome features a high mean G + C content of 71.32% and consists of one circular chromosome with a size of 9,239,851 bp hosting 8,270 predicted protein coding sequences. Phylogenetic analysis of the core genome revealed a rather distant relation to other sequenced species of the family Micromonosporaceae whereas Actinoplanes utahensis was found to be the closest species based on 16S rRNA gene sequence comparison.
    [Show full text]
  • Diversity of Nonribosomal Peptide Synthetase and Polyketide Synthase Genes in the Genus Actinoplanes Foundinmongolia
    The Journal of Antibiotics (2012) 65, 103–108 & 2012 Japan Antibiotics Research Association All rights reserved 0021-8820/12 $32.00 www.nature.com/ja NOTE Diversity of nonribosomal peptide synthetase and polyketide synthase genes in the genus Actinoplanes foundinMongolia Jigjiddorj Enkh-Amgalan1, Hisayuki Komaki2, Damdinsuren Daram1, Katsuhiko Ando2 and Baljinova Tsetseg1 The Journal of Antibiotics (2012) 65, 103–108; doi:10.1038/ja.2011.115; published online 14 December 2011 Keywords: Actinoplanes; antimicrobial activity; nonribosomal peptide synthetase; polyketide synthase Mongolia has an undisturbed ecosystem with rich biodiversity, but Genetic Analyzer (Applied Biosystems, CA, USA). For phylogenetic only a few research groups have focused attention on the region for its analysis, the 16S rDNA sequences were aligned with genus Actino- actinomycetes diversity and their antimicrobial activities.1,2 The genus planes reference sequences using the CLUSTAL_X software and a Actinoplanes is representative of rare actinomycetes and the reported phylogenetic tree constructed using the neighbor-joining method.12 source of more than 120 antibiotics.3 This study was designed to assess Adenylation (A) domain regions in NRPS genes, ketosynthase (KS) the individual abilities of taxonomically diverse Actinoplanes strains, domain regions in type-I PKS genes and KSa genes in type-II PKS isolated from Mongolian soil, to produce biologically active com- genes were amplified using specific primer sets described by Ayuso- pounds. First, the antimicrobial activities of culture samples were Sacido et al.,8 Schermer et al.13 and Metsa-Ketela et al.,14 respectively. examined, using a conventional assay that was facile and suitable for The PCR products were cloned, sequenced and searched by BLASTX preliminary screening, to check the strains’ abilities to produce on the NCBI website and phylogenetic trees were constructed.10,14 antibiotics.
    [Show full text]
  • A New Member of the Family Micromonosporaceae, Planosporangium Flavigriseum Gen
    International Journal of Systematic and Evolutionary Microbiology (2008), 58, 1324–1331 DOI 10.1099/ijs.0.65211-0 A new member of the family Micromonosporaceae, Planosporangium flavigriseum gen. nov., sp. nov. Jutta Wiese,1 Yi Jiang,1,2 Shu-Kun Tang,2 Vera Thiel,1 Rolf Schmaljohann,1 Li-Hua Xu,2 Cheng-Lin Jiang2 and Johannes F. Imhoff1 Correspondence 1Leibniz-Institut fu¨r Meereswissenschaften, IFM-GEOMAR, Du¨sternbrooker Weg 20, D-24105 Johannes F. Imhoff Kiel, Germany [email protected] 2Yunnan Institute of Microbiology, Yunnan University, Kunming 650091, PR China Li-Hua Xu [email protected] A novel actinomycete, designated strain YIM 46034T, was isolated from an evergreen broadleaved forest at Menghai, in southern Yunnan Province, China. Phenotypic characterization and 16S rRNA gene sequence analysis indicated that the strain belonged to the family Micromonosporaceae. Strain YIM 46034T showed more than 3 % 16S rRNA gene sequence divergence from recognized species of genera in the family Micromonosporaceae. Characteristic features of strain YIM 46034T were the production of two types of spores, namely motile spores, which were formed in sporangia produced on substrate mycelia, and single globose spores, which were observed on short sporophores of the substrate mycelia. The cell wall contained meso-diaminopimelic acid, glycine, arabinose and xylose, which are characteristic components of cell-wall chemotype II of actinomycetes. Phosphatidylethanolamine was the major phospholipid (phospholipid type II). Based on morphological, chemotaxonomic, phenotypic and genetic characteristics, strain YIM 46034T is considered to represent a novel species of a new genus in the family Micromonosporaceae, for which the name Planosporangium flavigriseum gen.
    [Show full text]
  • Molecular Identification of Two Rare Actinomycetes Isolated from Mosul, Iraq
    Indonesian Journal of Biology Education Vol. 3, No. 1, 2020, pp: 24-30 pISSN: 2654-5950, eISSN: 2654-9190 Email: [email protected] Website: jurnal.untidar.ac.id/index.php/ijobe Molecular Identification of Two Rare Actinomycetes Isolated from Mosul, Iraq Talal S. Salih1*, Mohammed A. Ibraheem2, Muhammad A. Muhammad2 1Department of Biophysics, College of Science, University of Mosul 2 Department of Biology, College of Science, University of Mosul Email: [email protected], [email protected], [email protected], Article History Abstract Rare actinomycetes from diverse habitats are continued to be Received :11 – 05 – 2020 isolated and screened for their novel bioactive compounds. The Revised : 10 – 06 – 2020 present study aims to molecular, morphological and physiological Accepted : 16 – 07 – 2020 characterisation of two rare actinomycetes isolated from an Iraqi soil. Based on the 16S rRNA gene sequencing, the two isolates were categorized into two different rare genera Actinoplanes and *Corresponding Author Amycolatopsis that were designated as Actinoplanes sp. MOSUL Talal S. Salih and Amycolatopsis sp. MOSUL respectively. Phylogenetic trees Department of Biophysics analyses revealed that Act. sp. MOSUL was closely related strain to University of Mosul Act. xinjiangensis (jgi.1107663; identity 96.75%) and Act. lobatus 00964-Mosul, Iraq (AB037006; identity 96.76%), and Amy. sp. MOSUL was most [email protected] related to Amy. bullii (HQ65173099; identity 99.71%) and Amy. Keywords: tolypomycina (FNSO01000004; identity 99.26%). The two rare rare actinomycetes, isolates had different morphological properties when grown on Actinoplanes sp. MOSUL, International Streptomyces Project (ISP) media, and different Amycolatopsis sp. MOSUL, 16S physiological and biochemical patterns when grown on Minimal rRNA gene.
    [Show full text]
  • Bioactive Actinobacteria Associated with Two South African Medicinal Plants, Aloe Ferox and Sutherlandia Frutescens
    Bioactive actinobacteria associated with two South African medicinal plants, Aloe ferox and Sutherlandia frutescens Maria Catharina King A thesis submitted in partial fulfilment of the requirements for the degree of Doctor Philosophiae in the Department of Biotechnology, University of the Western Cape. Supervisor: Dr Bronwyn Kirby-McCullough August 2021 http://etd.uwc.ac.za/ Keywords Actinobacteria Antibacterial Bioactive compounds Bioactive gene clusters Fynbos Genetic potential Genome mining Medicinal plants Unique environments Whole genome sequencing ii http://etd.uwc.ac.za/ Abstract Bioactive actinobacteria associated with two South African medicinal plants, Aloe ferox and Sutherlandia frutescens MC King PhD Thesis, Department of Biotechnology, University of the Western Cape Actinobacteria, a Gram-positive phylum of bacteria found in both terrestrial and aquatic environments, are well-known producers of antibiotics and other bioactive compounds. The isolation of actinobacteria from unique environments has resulted in the discovery of new antibiotic compounds that can be used by the pharmaceutical industry. In this study, the fynbos biome was identified as one of these unique habitats due to its rich plant diversity that hosts over 8500 different plant species, including many medicinal plants. In this study two medicinal plants from the fynbos biome were identified as unique environments for the discovery of bioactive actinobacteria, Aloe ferox (Cape aloe) and Sutherlandia frutescens (cancer bush). Actinobacteria from the genera Streptomyces, Micromonaspora, Amycolatopsis and Alloactinosynnema were isolated from these two medicinal plants and tested for antibiotic activity. Actinobacterial isolates from soil (248; 188), roots (0; 7), seeds (0; 10) and leaves (0; 6), from A. ferox and S. frutescens, respectively, were tested for activity against a range of Gram-negative and Gram-positive human pathogenic bacteria.
    [Show full text]
  • I. Taxonomicstudies of the Producing Microorganism and Fermentation
    VOL. 53 NO. 8, AUG. 2000 THE JOURNAL OF ANTIBIOTICS pp.807 - 815 Friulimicins: Novel Lipopeptide Antibiotics with Peptidoglycan Synthesis Inhibiting Activity from Actinoplanesfriuliensis sp. nov. I. Taxonomic Studies of the Producing Microorganism and Fermentation W. Aretz, J. Meiwes, G. Seibert, G. Vobis1" and J. Wink* HMRDeutschland GmbH, 65926 Frankfurt am Main, Germany, ^ Universidad Nacional del Comahue, Centro Regional Universitario Bariloche, 0100 San Carlos de Bariloche, Argentina (Received for publication November 22, 1999) A strain that produces new lipopeptide antibiotics is a new species of the genus Actinoplanes for which we propose the name Actinoplanes friuliensis (type strain: HAG 010964). The strain is an actinoplanete actinomycete having cell wall II composition and forming sporangia. Comparisons with Actinoplanes spp. which have similarities with our isolate, including fatty acid analysis, showed that the isolate belongs to a new species. Taxonomicstudies and fermentation are presented. The genus Actinoplanes is one of the most important German Culture Collection (DSMZ)under number DSM genera among actinomycetes in the production of 7358. secondary metabolites. Gardimycin1} and teicoplanin2) are two reported antibiotics from the genus Actinoplanes. Lipopeptides have been reported from Actinoplanes Materials and Methods nipponensis3). The a-glucosidase inhibitor acarbose is similarly a product ofActinoplanes sp.4). Isolation In our screening program for new antibiotics active Strain HAG010964 was isolated from a soil sample against methicillin-resistant Staphylococcus aureus, a strain collected at the garden entrance of a house in the Friuli that produced a group of new lipopeptide antibiotics (the Province, Italy on June 3, 1987, using the chemotactic structure elucidation will be presented in the following method of Palleroni7) and starch-casein-sulfate agar paper) was isolated from a soil sample collected in northern medium recommended by Vobis8).
    [Show full text]
  • Actinoplanes and Dactylosporangium
    Int.J.Curr.Microbiol.App.Sci (2019) 8(4): 920-931 International Journal of Current Microbiology and Applied Sciences ISSN: 2319-7706 Volume 8 Number 04 (2019) Journal homepage: http://www.ijcmas.com Original Research Article https://doi.org/10.20546/ijcmas.2019.804.106 Biocatalytic Reduction of Carbonyl Compounds by Actinobacteria from Two Genera of the Micromonosporaceae Family: Actinoplanes and Dactylosporangium K. Ishihara1*, K. Morita1, Y. Nishimori1, S. Okamoto1, T. Hiramatsu1, A. Ohkawa1, D. Uesugi2, M. Yanagi1, H. Hamada1, N. Masuoka3 and N. Nakajima4 1Department of Life Science, Okayama University of Science, Okayama, Japan 2Department of Research & Development, JO Cosmetics Co., Ltd., Tokyo, Japan 3Department of Research & Development, Institute for Fruit Juice Research in Tsudaka, Co., Ltd., Okayama, Japan 4Department of Nutritional Science, Okayama Prefectural University, Soja, Okayama, Japan *Corresponding author ABSTRACT K e yw or ds We screened 10 Actinoplanes and 14 Dactylosporangium strains to investigate the biocatalytic ability of two genera of the Micromonosporaceae family. Two Actinoplanes Biocatalyst, strains (A. ferrugineus NBRC15555 and A. missouriensis NBRC102363) exhibited good Actinomycete, Stereoselective growth when cultured in 228 and 231 media, as did two Dactylosporangium strains reduction, Chiral (Dactylosporangium sp. NBRC101297 and Dactylosporangium sp. NBRC101730) when hydroxy ester, cultured in 227 and 266 media. The stereoselective reduction of various carbonyl Actinoplanes, compounds using these four strains was therefore investigated. The present study Dactylosporangium discovered that these strains can reduce aliphatic and aromatic α-keto esters and an aromatic α-keto amide. On the basis of the conversion ratio and stereoselectivity of the Article Info alcohols produced, A. ferrugineus NBRC15555 is a potential biocatalyst for the Accepted: stereoselective reduction of α-keto esters and an aromatic α-keto amide to the 10 March 2019 corresponding chiral alcohols when cultured in the 227 medium.
    [Show full text]
  • Complete Article
    JOURNAL OF BACTERIOLOGY, Dec. 1967, p. 2037-2047 Vol. 94, No. 6 Copyright © 1967 American Society for Microbiology Printed in U.S.A. Cell Wall Composition in Relation to the Taxonomy of Some Actinoplanaceae' PAUL J. SZANISZLO2 AND HARRY GOODER Department of Botany and Department of Bacteriology, University of North Carolina, Chapel Hill, North Carolina 27514 Received for publication 11 September 1967 Hydrolytic residues of the cell walls of 48 strains of Actinoplanaceae, previously assigned to 10 species and the four genera, Actinoplanes, Ampullariella, Amorpho- sporangium, and Pilimelia, were examined by paper chromatography and column chromatography. Comparisons were made for taxonomic purposes between the groupings obtained, by use of chemical characters and the groupings currently recognized morphologically. Most of the species investigated had qualitatively dis- tinct cell wall compositions. Often, however, the cell wall compositions of species in different genera were more similar, in some respects, than were those of species in the same genus. Quantification of the cell wall amino acids and amino sugars substan- tiated that cross-generic similarities existed. Based on these results and the morpho- logical conclusions reached by other investigators, a single-genus concept is sug- gested for the Actinoplanaceae examined. Existing schemes of bacterial classification often The present investigation was undertaken to need re-examination to determine whether tra- compare the cell wall composition of numerous ditional criteria are obscuring natural relation- strains of Actinoplanes, Ampullariella, and Amor- ships. Among the Actinoplanaceae (Actinomy- phosporangium to determine whether the tra- cetales), many species are placed in their genus ditional criteria are obscuring natural relation- category on the basis of a relatively few morpho- ships among species presently classified in these logical characters.
    [Show full text]
  • The Extremophilic Actinobacteria: from Microbes to Medicine
    antibiotics Review The Extremophilic Actinobacteria: From Microbes to Medicine Martha Lok-Yung Hui 1, Loh Teng-Hern Tan 1,2 , Vengadesh Letchumanan 1 , Ya-Wen He 3, Chee-Mun Fang 4 , Kok-Gan Chan 5,6,7,* , Jodi Woan-Fei Law 1,* and Learn-Han Lee 1,* 1 Novel Bacteria and Drug Discovery Research Group (NBDD), Microbiome and Bioresource Research Strength (MBRS), Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Malaysia; [email protected] (M.L.-Y.H.); [email protected] (L.T.-H.T.); [email protected] (V.L.) 2 Clinical School Johor Bahru, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Johor Bahru 80100, Malaysia 3 State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200030, China; [email protected] 4 Division of Biomedical Sciences, School of Pharmacy, University of Nottingham Malaysia, Semenyih, Selangor 43500, Malaysia; [email protected] 5 Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia 6 International Genome Centre, Jiangsu University, Zhenjiang 212013, China 7 Faculty of Applied Sciences, UCSI University, Kuala Lumpur 50600, Malaysia * Correspondence: [email protected] (K.-G.C.); [email protected] (J.W.-F.L.); [email protected] (L.-H.L.) Abstract: Actinobacteria constitute prolific sources of novel and vital bioactive metabolites for Citation: Hui, M.L.-Y.; Tan, L.T.-H.; pharmaceutical utilization.
    [Show full text]