Enslaver Parasites

Total Page:16

File Type:pdf, Size:1020Kb

Enslaver Parasites Chapter 13 Parasitism Key ConCepts Enslaver Parasites: A Case Study In science fiction books and movies, villains sometimes use mind con- ConCept 13.1 Parasites typically feed trol or physical devices to break the will and control the actions of their on only one or a few host individuals. ‣ victims. In these stories, a person may be forced to perform strange or ConCept 13.2 Hosts have adaptations grotesque actions, or to harm themselves or others—all against their will. ‣ for defending themselves against Real life can be just as strange. Consider the hapless cricket shown in the parasites, and parasites have adaptations video found in Web extension 13.1. This cricket does something that a cricket for overcoming host defenses. ordinarily would never do: it walks to the edge of a body of water, jumps in, ConCept 13.3 Host and parasite and drowns. Shortly afterward, a hairworm begins to emerge from the body populations can evolve together, each in of the cricket (Figure 13.1). For the worm, this is the final step in a journey ‣ response to selection pressure imposed that begins when a terrestrial arthropod—such as a cricket—drinks water by the other. in which a hairworm larva swims. The larva enters the cricket’s body and feeds on its tissues, growing from microscopic size into an adult that fills ConCept 13.4 Parasites can reduce all of the cricket’s body cavity except its head and legs. When fully grown, the sizes of host populations and alter the adult hairworms must return to the water to mate. After the adults mate, ‣ outcomes of species interactions, thereby the next generation of hairworm larvae are released to the water, where they causing communities to change. will die unless they are ingested by a terrestrial arthropod host. ConCept 13.5 Simple models of Has the hairworm “enslaved” its cricket host, forcing it to jump into ‣ host–pathogen dynamics suggest ways to the water—an act that kills the cricket, but is essential for the hairworm control the establishment and spread of to complete its life cycle? The answer appears to be yes. Observations diseases. have shown that when crickets infected with hairworms are near water, they are much more likely to enter the water than are uninfected crickets (Thomas et al. 2002). Furthermore, in ten out of ten trials, when infected crickets were rescued from the water, they immediately jumped back in. Uninfected crickets do not do this. Hairworms are not the only parasites that enslave their hosts. Maitland (1994) coined the term “enslaver parasites” for several fungal species that alter the perching behavior of their fly hosts in such a way that fungal spores can be dispersed more easily after the fly dies (Figure 13.2). The fungus Ophiocordyceps unilateralis also manipulates the final actions of its host, the ant Camponotus leonardi. First, an infected ant climbs down from its home in the upper branches of trees and selects a leaf in a protected environment about 25 cm above the soil (Andersen et al. 2009). Then, just before the fungus kills it, the ant bites into the selected leaf with a “death grip” that will hold its body in place after it is dead. The fungus grows well in such protected environments but cannot survive where the ant usually lives—at the tops of trees, where the temperature and humidity are more variable. Thus, while the ant’s final actions do not benefit the ant, they do allow the fungus to complete its life cycle in a favorable environment. Figure 13.1 Driven to Suicide the behavior of this wood cricket (Nemobius sylvestris) was manipulated by the hairworm (Paragordius tricus- pidatus) emerging from its body. By causing the cricket to jump into water (where it drowns), the hairworm is able to continue its life cycle. Flies infected by the fungus perch in an atypical position, from which fungal spores can easily spread to healthy flies. own bodies (Figure 13.3). Our faces are home to mites that feed on exudates from the pores of our Wind skin and on secretions at the base of our eyelashes. There are bacteria and fungi that grow on our skin and under our toenails. Arthropods such as lice Spores may live on our heads, pubic regions, and other Healthy flies typically parts of our bodies. Moving inward, our tissues, perch on the upper organs, and body cavities can be infested with a surfaces of low-lying rich variety of organisms, from bacteria to worms vegetation—where to fungi to protists. they are exposed to fungal spores. Although some symbionts are mutualists (as we will see in Chapter 14), the majority of them are parasites. A parasite consumes the tissues or body fluids of the organism on or within which it lives, its host; some parasites, called pathogens, cause diseases. Unlike predators, parasites usually have a higher reproductive rate than their hosts. Also unlike predators, Head Head louse Pediculus Mouth Bacterium Actinomyces Heart and blood Protist Plasmodium Lungs (malaria) Lung worm Bacterium Yersinia Angiostrongylus Figure 13.2 Enslaved by a Fungus Shortly before they die pestis (plague) Fungus Coccidioides from the infection, yellow dungflies infected by the fungus Ento- Bacterium mophthora muscae move to the downwind side of a relatively tall Liver Mycobacterium Liver fluke Fasciola plant and perch on the underside of one of its leaves. This position (tuberculosis) increases the chance that fungal spores released by Entomophthora Small intestine will land on healthy yellow dungflies. (after Maitland 1994.) Bacterium Vibrio Kidneys (cholera) Fungus Candida spp. Amoeba Entamoeba Even vertebrates can be enslaved by parasites. Tapeworm Taenia Rats typically engage in predator avoidance behav- Large intestine iors in areas that show signs of cats. However, rats Pinworm Enterobius Arms and legs infected with the protist parasite Toxoplasma gondii Tick Ixodes behave abnormally: they do not avoid cats, and in (Lyme disease) some cases they are actually attracted to cats. While such a behavioral change can be a fatal attraction for the rat, it benefits the parasite because it increases the chance that the parasite will be transmitted to the Body surface Skin Body louse Pediculus next host in its complex life cycle—a cat. Itch mite Ecology Cain How do some parasites enslave their hosts? Can Sarcoptes scabiei (scabies) Sinauer Associates the hosts fight back? More generally, what can these Body tissues Elizabeth Morales Illustration Services Nematode Wuchereria Figure Ecology 13.02.eps Date 12-17-07 remarkable interactions tell us about host–parasite relationships? (elephantiasis) Feet Fungus Trichophyton rubrum Introduction (athlete’s foot) More than half of the millions of species that live on Figure 13.3 The Human Body as Habitat Different parts Earth are symbionts, meaning that they live in or on of our bodies provide suitable habitat for a wide range of symbi- other organisms. To begin to understand how many onts, many of which are parasites; only a few examples are shown symbionts there are, we need look no further than our here. Some of these organisms are pathogens that cause disease. © 2011 Sinauer Associates, Inc. This material cannot be copied, reproduced, manufactured or disseminated in any form without express written permission from the publisher. Ecology Cain Sinauer Associates Elizabeth Morales Illustration Services Figure Ecology 13.03.eps Date 01-22-08 parasitism 285 parasites typically harm, but do not immediately kill, the Fishes organisms they eat. The negative effects of parasites on their hosts vary widely, from mild to lethal. We see this varia- Birds tion in our own species, for which some parasites, such as Mammals the fungus that causes athlete’s foot, are little more than a nuisance. Others, such as the protist Leishmania tropica, can True bugs cause disfigurement, and still others, such as Yersinia pestis, the bacterium that causes the plague, can kill. There is simi- Beetles lar variation in the degree of harm caused by parasites that Flies infect other species. Parasites vary in many other ways, as we’ll see next as we examine their basic biology. Wasps Butterflies and moths ConCept 13.1 Parasites typically feed on only one or a few host individuals. Trees 0 2 4 6 8 10 12 14 16 95 Parasite Natural History Average number of parasite species per host Parasites vary in size from relatively large species (macro- Figure 13.4 Many Species Are Host to More Than One parasites), such as arthropods and worms, to species too Parasite Species In a study conducted in Britain, most host spe- small to be seen with the naked eye (microparasites), such cies were found to harbor more than one parasite species. the as bacteria, protists, and unicellular fungi. But whether number of parasite species shown here for fishes, birds, and mam- they are large or small, parasites typically feed on only mals includes only helminth worm parasites and hence is likely to underestimate the actual number of parasite species found in one or a few host individuals over the course of their these vertebrates. lives. Thus, defined broadly, parasites include herbivores, Averaging across the six groups of organisms other than ver- such as aphids or nematodes, that feed on only one or a tebrates (which we exclude because the data underestimate few host plants, as well as parasitoids (see p. 264), insects the true number of parasites), what is the average number whose larvae feed on a single host, almost always killing it. of parasite species per host? Suppose the number of para- Most species are attacked by more than one parasite site species were determined for a previously unstudied (Figure 13.4), and even parasites have parasites.
Recommended publications
  • Insects Parasitoids: Natural Enemies of Helicoverpa
    Queensland the Smart State insects Parasitoids: Natural enemies of helicoverpa Introduction Helicoverpa caterpillars (often called heliothis) are serious pests of many crops in Australia. A range of parasitoid and predatory insects attack helicoverpa. Identifying and conserving these beneficial insects is fundamental to implementing pest management with a reduced reliance on chemical insecticides. This brochure describes the most important parasitoids of helicoverpa in Australian broadacre crops. Parasitoids versus parasites: What’s the difference? Parasitoids kill their hosts; parasites (such Figure 1. Netelia producta is one of the as lice and fleas) do not. All the insects most commonly encountered parasitoids in this brochure are parasitoids. Despite of helicoverpa. Females lay their eggs onto this difference, the terms parasitoid and caterpillars, and the hatching wasp larva parasite are often used interchangeably, if feeds on its host, eventually killing it. inaccurately. Parasitoids such as Netelia can be important biological control agents of helicoverpa in crops. (Photo: K. Power) All comments about parasitoid abundance in this publication are based on field observations in southern Queensland farming systems. These patterns may not occur in all parts of Australia. About parasitoids What is a parasitoid? How do parasitoids find their A parasitoid is an insect that kills (parasitises) hosts? its host — usually another insect — in Many adult parasitoids find their host by order to complete its lifecycle. In Australia, smell. They can detect the direct odour of helicoverpa are parasitised by many species the host itself, or odours associated with host of wasps and flies. All helicoverpa immature activity, such as plant damage or caterpillar stages are parasitised (that is, egg, caterpillar frass (dung).
    [Show full text]
  • Breeding Strategies in Females of the Parasitoid Wasp Spalangia Endius: Effects of Mating Status and Size
    P1: VENDOR/GXB Journal of Insect Behavior [joib] pp476-joir-371890 May 1, 2002 16:4 Style file version Feb 08, 2000 Journal of Insect Behavior, Vol. 15, No. 2, March 2002 (C 2002) Breeding Strategies in Females of the Parasitoid Wasp Spalangia endius: Effects of Mating Status and Size B. H. King1 Accepted October 29, 2001; revised November 28, 2001 Does the mating status or body size of a female parasitoid wasp affect her host size choice or propensity to burrow? In Spalangia endius, using smaller hosts appears to reduce a female’s cost of parasitization but not her son’s fit- ness. However, virgin females, which produce only sons, did not preferentially parasitize smaller hosts. Mated females also showed no host size preference. Mated females burrowed more than virgins in the presence of hosts, although not in their absence. Burrowing may reduce a mated female’s harassment from males, and not burrowing may increase a virgin female’s chance of mating because males avoid burrowing. Mating did not increase female longevity. Greater female size increased the offspring production of mated females bur- rowing for hosts but not in the absence of burrowing and not in virgin females. A female’s size had no significant effect on whether her first drill attempt was on a large or a small host or on the duration of her successful drills. KEY WORDS: breeding strategies; arrhenotoky; virgin; host size; body size; parasitoid. INTRODUCTION The evolution of behaviors is often described in terms of costs and benefits. Individuals are expected to behave in ways which maximize net benefits.
    [Show full text]
  • Parasitoid Case History: an Evaluation of Methods Used to Assess Host Ranges of Fire Ant Decapitating Flies
    Porter and Gilbert _____________________________________________________________________________ PARASITOID CASE HISTORY: AN EVALUATION OF METHODS USED TO ASSESS HOST RANGES OF FIRE ANT DECAPITATING FLIES Sanford D. PORTER1 and Lawrence E. GILBERT2 1USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology P.O. Box 14565 Gainesville, Florida 32604 U.S.A. [email protected] 2Brackenridge Field Laboratory and Section of Integrative Biology University of Texas Austin, Texas 78712 U.S.A. [email protected] ABSTRACT The first three papers in this section have discussed factors that affect the efficiency and suc- cess of laboratory host range tests. This paper presents an evaluation of how well those 634 factors applied to our investigations of host ranges of fire ant decapitating flies in the genus Pseudacteon (Diptera: Phoridae). We initially discuss the nature of the fire ant problem (Hy- menoptera: Formicidae: Solenopsis spp.) and the need for effective self-sustaining biological control agents. We briefly review the biology of Pseudacteon decapitating flies, the overall results of our host range tests, and the current status of field releases of these biological con- trol agents. We conclude by discussing how well the recommendations of the three initial papers about 1) statistical procedures, 2) biotypes and cryptic species, and 3) experimental design, plus a recent book on the subject of host range testing, apply to our experiences with fire ant decapitating flies. BACKGROUND OF PARASITOID SYSTEM THE FIRE ANT PROBLEM AND NEED FOR SELF-SUSTAINING BIOLOGICAL CONTROL The major problem with invasive fire ants (Hymenoptera: Formicidae: Solenopsis spp.) is that there are so many of them.
    [Show full text]
  • A Koinobiont Parasitoid Mediates Competition and Generates Additive Mortality in Healthy Host Populations
    OIKOS 110: 620Á/628, 2005 A koinobiont parasitoid mediates competition and generates additive mortality in healthy host populations Tom C. Cameron, Helen J. Wearing, Pejman Rohani and Steven M. Sait Cameron, T. C., Wearing, H. J., Rohani, P. and Sait, S. M. 2005. A koinobiont parasitoid mediates competition and generates additive mortality in healthy host populations. Á/ Oikos 110: 620Á/628. Insects are subject to attack from a range of natural enemies. Many natural enemies, such as parasitoids, do not immediately, or ever, kill their victims but they are nevertheless important in structuring biological communities. The lag that often occurs between attack and host death results in mixed populations of healthy and parasitised hosts. However, little is understood about how the effects of parasitism during this lag period affect the competitive ability of parasitised hosts and how this, in turn, affects the survival and dynamics of the surviving healthy host populations. Here we investigate the impact of the timing of introduction, and the strength of that introduction, of a parasitoid natural enemy Venturia canescens (Gravenhorst) on the outcome of intraspecific competition between larvae of the Indian meal moth, Plodia interpunctella (Hu¨bner). In contrast to healthy hosts alone, we find reduced survival of healthy larvae with increasing periods of exposure to greater numbers of parasitised conspecifics. This represents indirect mortality of the host, which is in addition to that imposed by parasitism itself. Furthermore, longer periods of exposure to parasitised larvae resulted in an increase in development time of healthy individuals and they were larger when they emerged as adults.
    [Show full text]
  • The Use of the Biodiverse Parasitoid Hymenoptera (Insecta) to Assess Arthropod Diversity Associated with Topsoil Stockpiled
    RECORDS OF THE WESTERN AUSTRALIAN MUSEUM 83 355–374 (2013) SUPPLEMENT The use of the biodiverse parasitoid Hymenoptera (Insecta) to assess arthropod diversity associated with topsoil stockpiled for future rehabilitation purposes on Barrow Island, Western Australia Nicholas B. Stevens, Syngeon M. Rodman, Tamara C. O’Keeffe and David A. Jasper. Outback Ecology (subsidiary of MWH Global), 41 Bishop St, Jolimont, Western Australia 6014, Australia. Email: [email protected] ABSTRACT – This paper examines the species richness and abundance of the Hymenoptera parasitoid assemblage and assesses their potential to provide an indication of the arthropod diversity present in topsoil stockpiles as part of the Topsoil Management Program for Chevron Australia Pty Ltd Barrow Island Gorgon Project. Fifty six emergence trap samples were collected over a two year period (2011 and 2012) from six topsoil stockpiles and neighbouring undisturbed reference sites. An additional reference site that was close to the original source of the topsoil on Barrow Island was also sampled. A total of 14,538 arthropod specimens, representing 22 orders, were collected. A rich and diverse hymenopteran parasitoid assemblage was collected with 579 individuals, representing 155 species from 22 families. The abundance and species richness of parasitoid wasps had a strong positive linear relationship with the abundance of potential host arthropod orders which were found to be higher in stockpile sites compared to their respective neighbouring reference site. The species richness and abundance of new parasitoid wasp species yielded from the relatively small sample area indicates that there are many species on Barrow Island that still remain to be discovered. This study has provided an initial assessment of whether the hymenoptera parasitoid assemblage can give an indication of arthropod diversity.
    [Show full text]
  • Habitat Complexity Modiwes Ant–Parasitoid Interactions: Implications for Community Dynamics and the Role of Disturbance
    Oecologia (2007) 152:151–161 DOI 10.1007/s00442-006-0634-6 COMMUNITY ECOLOGY Habitat complexity modiWes ant–parasitoid interactions: implications for community dynamics and the role of disturbance Elliot B. Wilkinson · Donald H. Feener Jr Received: 4 November 2006 / Accepted: 27 November 2006 / Published online: 22 December 2006 © Springer-Verlag 2006 Abstract Species must balance eVective competition itat complexity was also studied, and demonstrated with avoidance of mortality imposed by predators or that the immediate negative impact of Wre on habitat parasites to coexist within a local ecological commu- complexity can persist for multiple years. Our Wndings nity. Attributes of the habitat in which species interact, indicate that habitat complexity can increase dominant such as structural complexity, have the potential to host competitive success even in the presence of parasi- aVect how species balance competition and mortality toids, which may have consequences for coexistence of by providing refuge from predators or parasites. Dis- subordinate competitors and community diversity in turbance events such as Wre can drastically alter habitat general. complexity and may be important modiWers of species interactions in communities. This study investigates Keywords Competition · Formicidae · Fire · whether the presence of habitat complexity in the form Trade-oVs · Indirect interactions of leaf litter can alter interactions between the behav- iorally dominant host ants Pheidole diversipilosa and Pheidole bicarinata, their respective specialist dipteran Introduction parasitoids (Phoridae: Apocephalus sp. 8 and Apoceph- alus sp. 25) and a single species of ant competitor Trade-oVs resulting from variability in resource acqui- (Dorymyrmex insanus). We used a factorial design to sition, competition and mortality are central to our manipulate competition (presence/absence of competi- understanding of coexistence in local ecological com- tors), mortality risk (presence/absence of parasitoids) munities (Tilman 1994; Kneitel and Chase 2004).
    [Show full text]
  • Commercial Sources of Predators
    SP290-Z Frank A. Hale, Professor Darrell Hensley, Assistant Extension Specialist Entomology and Plant Pathology The Agricultural Extension Service receives lives on or inside a host, which the parasitoid numerous inquiries for information about eventually kills. Trichogramma wasps lay their where insect predators and parasitoids can be eggs into the eggs of caterpillars, where they purchased. These insects are intended for use by develop by feeding inside the host’s egg. An both homeowners and commercial growers as example of a benefi cial pathogen is Bacillus biological control agents. thuringiensis, which is used as a microbial Biological control uses benefi cial organisms insecticide. rather than insecticides to reduce insect The Tennessee Department of Agriculture populations. Almost all insect groups include does not list the decollate snail, Rumina decollata, some benefi cial members. The use of benefi cial as a biological control organism suitable to be organisms is particularly important where brought into Tennessee. chemical residues are undesirable. Benefi cial The Agricultural Extension Service is organisms can be predators, such as ladybugs, not in the business of advertising, selling lacewings and praying mantids that feed on or buying benefi cial organisms. This list of other insects. Others, such as some species of sources was compiled as a response to public nematodes and wasps, including Trichogramma, requests for information. This listing and are parasitoids with an immature stage that general description of benefi cial organisms are not recommendations and do not imply effectiveness in controlling any pest. Commercially Available Biological Control Agents 1 Aphidoletes aphidimyza: A predatory midge that feeds on aphids.
    [Show full text]
  • Exploring the Lotka-Volterra Competition Model Using Two Species of Parasitoid Wasps
    TIEE Teaching Issues and Experiments in Ecology - Volume 2, August 2004 EXPERIMENTS Exploring the Lotka-Volterra Competition Model using Two Species of Parasitoid Wasps Christopher W. Beck 1, Judy A. Guinan 2, Lawrence S. Blumer 3, and Robert W. Matthews 4 1 - Emory University, Department of Biology, 1510 Clifton Rd., Atlanta, GA 30322, 404-712-9012 [email protected] 2 - Radford University, Department of Biology, P.O. Box 6931, Radford, VA 24142, 540-831-5222 [email protected] 3 - Morehouse College, Department of Biology, 830 Westview Dr., Atlanta, GA 30314, 404-658-1142, [email protected] parasitic wasps Melittobia digitata (above) and Nasonia vitripennis (below) 4 - University of Georgia, Department of Entomology, on their host Neobellierria pupa Athens, GA 30602, 706-542-2311, © Jorge M. González [email protected] Table of Contents: ABSTRACT AND KEYWORD DESCRIPTORS...........................................................2 SYNOPSIS OF THE EXPERIMENT.............................................................................4 DESCRIPTION OF THE EXPERIMENT Introduction..............................................................................................................7 Materials and Methods......................................................................................…..12 Questions for Further Thought and Discussion......................................................15 References and Links.............................................................................................16 Tools for Assessment of Student
    [Show full text]
  • What Is a Parasitoid?
    BUTTERFLY INSECT PARASITOID FAUNA AT PIERCE CEDAR CREEK INSTITUTE JULIA MESSENGER, ALICIA FREEMAN, AND DR. MATTHEW DOUGLAS Department of Biology, Grand Rapids Community College Grand Rapids, MI 49503, USA November 25, 2011 For Submission To: Journal of the Lepidopterists’ Society Los Angeles County Museum of Natural History 900 Exposition Blvd. Los Angeles, California 90007-4057 ABSTRACT Butterflies (Order Lepidoptera; Superfamily Papilionoidea) at Pierce Cedar Creek Institute were hypothesized to be the hosts for a number of insect parasitoid species that ultimately kill their hosts in the larval or pupal stages. Our research attempted to understand the basic ecology of these native insect parasitoids and their abundance at PCCI. We were able to successfully rear just three parasitoid species (two from Order Hymenoptera; one from Order Diptera) from the following hosts: the monarch butterfly (Danaus plexippus), the Spicebush swallowtail (Papilio troilus), and the Baltimore checkerspot (Euphydryas phaeton). We discuss these unexpected results and also attempt to operationally define the following terms: parasitoid, parasite, pathogen, and predator. Our intent in this latter regard is to clearly distinguish between insect parasites and insect parasitoids. A Definition Conundrum: What is a Parasitoid? In this paper we will first attempt to establish operational (functional) definitions that will distinguish parasitoids from parasites, pathogens, and predators. The term parasitoid was first coined by the German writer O.M. Reuter in 1913 and adopted by the American hymenopterist and insect embryologist William Morton Wheeler in 1937. Only in the last 25 years has this term become universally accepted. Before that, parasitoids were most commonly referred to as insect parasites (van Lenteren, 2004).
    [Show full text]
  • 23 BIOLOGY and HOST RELATIONSHIPS of PARASITOIDS Notes I
    Parasitoid Biology 23 BIOLOGY AND HOST RELATIONSHIPS OF PARASITOIDS Notes I. Definitions of Parasitoid and Host A. Parasitoid: A parasitic insect that lives in or on and eventually kills a larger host insect (or other arthropod). B. Host: Those animals attacked by parasitoids. II. Characteristics of Parasitoids A. Parasitoids usually destroy their hosts during development. B. The parasitoid's host is usually in the same taxonomic class (Insecta). C. Parasitoids are large relative to their hosts. D. Parasitoid adults are freeliving while only the immature stages are parasitic. E. Parasitoids develop on only one host individual during the immature stages. F. With respect to population dynamics, parasitoids are similar to predatory insects. III. Mode of Development of Parasitoids A. With respect to the host 1. Endoparasitoid (internal): usually in situations where the host is exposed. 2. Ectoparasitoid (external): usually in situations where host lives within protected location (e.g., leafminers, in cocoons, under scale covers). B. With respect to numbers of immatures per individual host 1. Solitary parasitoid 2. Gregarious parasitoid C. With respect to host stage 1. Egg 2. Larvae 3. Pupa 4. Adult 5. Combinations of the above (i.e., egg-larval parasitoid) D. With respect to affect on host 1. Idiobionts: host development arrested or terminated upon parasitization (e.g., egg parasitoids) 2. Koinobionts: host continues to develop following parasitization (e.g., larval -pupal parasitoids) E. With respect to other parasitoid species 1. Primary parasitoid 2. Secondary parasitoid (Hyperparasitism) 3. Tertiary parasitoid (Hyperparasitism) Parasitoid Biology 24 Notes F. Competition among immature parasitoid stages 1. Intraspecific competition: Superparasitism 2.
    [Show full text]
  • Parasitoids As Biological Control Agents of Thrips Pests Promotor: Prof
    Parasitoids as Biological Control Agents of Thrips Pests Promotor: Prof. dr. J.C. van Lenteren Hoogleraar in de Entomologie, Wageningen Universiteit Promotie Commissie: Prof. dr. L.E.M. Vet, Wageningen Universiteit, Wageningen Dr. B. Aukema, Plantenziektenkundige Dienst, Wageningen Dr. W.J. de Kogel, Plant Research International, Wageningen Prof. dr. H. Eijsackers, Vrije Universiteit, Amsterdam. Parasitoids as Biological Control Agents of Thrips Pests Antoon Loomans Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. Dr. Ir. L. Speelman, in het openbaar te verdedigen op maandag 8 september 2003 des namiddags te vier uur in de Aula Loomans, A.J.M. (2003) Parasitoids as Biological Control Agents of Thrips Pests Thesis Wageningen University – with references – with summaries in English, Dutch and Italian Subject headings / Thysanoptera / Frankliniella occidentalis / Hymenoptera / Ceranisus menes / Ceranisus americensis / biological control / ISBN : 90-5808-884-7 to Giorgio Nicoli aan Lois, Romi, Oskar, Viktor & Sofia Contents Chapter 1 Evaluation of hymenopterous parasitoids as biological control agents of 1 thrips pests in protected crops: introduction Chapter 2 Exploration for hymenopterous parasitoids of thrips 45 Chapter 3 Mass-rearing thrips and parasitoids 67 Chapter 4 Host selection by thrips parasitoids: effects of host age, host size and 79 period of exposure on behaviour and development Chapter 5 Host selection by Ceranisus menes and C. americensis: inter- and
    [Show full text]
  • The Parasitoid Complex of Forest Tent Caterpillar, Malacosoma Disstria (Lepidoptera: Lasiocampidae), in Eastern Wyoming Shelterbelts
    The Great Lakes Entomologist Volume 24 Number 4 - Winter 1991 Number 4 - Winter Article 7 1991 December 1991 The Parasitoid Complex of Forest Tent Caterpillar, Malacosoma Disstria (Lepidoptera: Lasiocampidae), in Eastern Wyoming Shelterbelts G. A. Knight R. J. Lavigne Department of Plant, Soil and Insect Sciences M. G. Pogue Follow this and additional works at: https://scholar.valpo.edu/tgle Part of the Entomology Commons Recommended Citation Knight, G. A.; Lavigne, R. J.; and Pogue, M. G. 1991. "The Parasitoid Complex of Forest Tent Caterpillar, Malacosoma Disstria (Lepidoptera: Lasiocampidae), in Eastern Wyoming Shelterbelts," The Great Lakes Entomologist, vol 24 (4) Available at: https://scholar.valpo.edu/tgle/vol24/iss4/7 This Peer-Review Article is brought to you for free and open access by the Department of Biology at ValpoScholar. It has been accepted for inclusion in The Great Lakes Entomologist by an authorized administrator of ValpoScholar. For more information, please contact a ValpoScholar staff member at [email protected]. Knight et al.: The Parasitoid Complex of Forest Tent Caterpillar, <i>Malacosoma 1991 THE GREAT LAKES ENTOMOLOGIST 255 THE PARASITOID COMPLEX OF FOREST TENT CATERPILLAR, MALA COSOMA DISSTRJA (LEPIDOPTERA: LASIOCAMPIDAE), IN EASTERN WYOMING SHELTERBELTSI G. A. Knight2, R. J. Lavigne3 and M. G. Pogue4 ABSTRACT A parasitoid complex affecting the forest tent caterpillar, Malacosoma disstria, was investigated during 1978-79 in shelterbelts in eastern Wyoming. Egg parasitoids included five species: Ablerus clisiocampae, Ooencyrtus clisiocampae, Telenomus clisiocampae, Tetrastichus sp. 1 and Telenomus sp. Thirteen hymenopterous species and five dipterous species were reared from larvae and pupae of the forest tent caterpillar.
    [Show full text]