Merck Pipeline Now Looking Slimmer with the Demise of Taranabant

Total Page:16

File Type:pdf, Size:1020Kb

Merck Pipeline Now Looking Slimmer with the Demise of Taranabant October 02, 2008 Merck pipeline now looking slimmer with the demise of taranabant Lisa Urquhart Merck & Co’s decision to call a halt to phase III trials of obesity treatment, taranabant, due to psychological issues is likely to call into question the future of the whole cannabinoid type 1 antagonist class following Sanofi-Avenits’ resounding failure last year to get US approval for similar product Acomplia, also due to psychiatric side effects. In studies taranabant showed increases in anxiety, irritability and depression; symptoms that were worryingly exacerbated according to higher doses of the drug. Alongside potentially sounding the death knell for the class of drugs that were designed to work on the same part of the brain that responds to marijuana, Merck’s action also highlights the increasing difficulty big pharma companies are experiencing in bringing obesity drugs to the market. Earlier this week, Pfizer announced that it would be exiting the indication to concentrate on slightly less troublesome therapy areas such as oncology. Lowering expectations As to how much of a blow this will be to Merck & Co is debatable. While the drug was the second most valuable in its pipeline and worth $777m to the company, according to EvaluatePharma's NPV Analyzer, the problems with Acomplia had seen analysts lower their forecasts for a number of cannabinoid type 1 antagonists currently in development. Over the last 12 months, 2012 sales forecasts for taranabant, which briefly rose in July, have drifted down by $41m to $229m, and they are a long cry from the $459m they were forecast to reach in February 2007. But the most dramatic fall in market expectations for a drug in this class has been for that of Acomplia, which back in February 2007 was forecast to have 2012 sales of a whopping $4bn. Following the suicides of three people taking the drug, and failure to get US approval, this has fallen dramatically to the current consensus of $543m. So those remaining in the field, which will now not include Pfizer’s otenabant if it sticks to its word, are more than likely to see already low sales forecasts for their drugs drift down even further following this latest setback. Cannabinoid type 1 antagonist: Top 10 Products in 2014 Annual Sales WW - Sales Generic Phase CAGR (07 - Rank Product Company 2007 2014 Name (Current) 14) 1 Acomplia/Zimulti rimonabant Sanofi-Aventis Marketed 108 713 31% 2 MK-0364 taranabant Merck & Co Phase III - 409 n/a 3 CP-945,598 otenabant Pfizer Phase III - 166 n/a Bristol-Myers 4 SLV 319 ibipinabant Phase II - 50 n/a Squibb - AVE-1625 - Sanofi-Aventis Phase III - - - - SLV 319 ibipinabant Solvay Phase II - - - - AZD2207 - AstraZeneca Phase II - - - Surinabant (SR - surinabant Sanofi-Aventis Phase II - - - 147778) - V24343 - Vernalis Phase I - - - Schering- - Org 50189 - Phase I - - - Plough Total 108 1,337 43% More from Evaluate Vantage Evaluate HQ 44-(0)20-7377-0800 Evaluate Americas +1-617-573-9450 Evaluate APAC +81-(0)80-1164-4754 © Copyright 2021 Evaluate Ltd..
Recommended publications
  • Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix
    United States International Trade Commission Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix USITC Publication 4208 December 2010 U.S. International Trade Commission COMMISSIONERS Deanna Tanner Okun, Chairman Irving A. Williamson, Vice Chairman Charlotte R. Lane Daniel R. Pearson Shara L. Aranoff Dean A. Pinkert Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Modifications to the Harmonized Tariff Schedule of the United States to Implement Changes to the Pharmaceutical Appendix Publication 4208 December 2010 (This page is intentionally blank) Pursuant to the letter of request from the United States Trade Representative of December 15, 2010, set forth at the end of this publication, and pursuant to section 1207(a) of the Omnibus Trade and Competitiveness Act, the United States International Trade Commission is publishing the following modifications to the Harmonized Tariff Schedule of the United States (HTS) to implement changes to the Pharmaceutical Appendix, effective on January 1, 2011. Table 1 International Nonproprietary Name (INN) products proposed for addition to the Pharmaceutical Appendix to the Harmonized Tariff Schedule INN CAS Number Abagovomab 792921-10-9 Aclidinium Bromide 320345-99-1 Aderbasib 791828-58-5 Adipiplon 840486-93-3 Adoprazine 222551-17-9 Afimoxifene 68392-35-8 Aflibercept 862111-32-8 Agatolimod
    [Show full text]
  • Mitochondrial ADP/ATP Exchange Inhibition
    www.nature.com/scientificreports OPEN Mitochondrial ADP/ATP exchange inhibition: a novel off-target mechanism underlying ibipinabant- Received: 27 March 2015 Accepted: 27 August 2015 induced myotoxicity Published: 29 September 2015 Tom J. J. Schirris1,2, Tina Ritschel3, G. Herma Renkema2,4, Peter H. G. M. Willems2,5, Jan A. M. Smeitink2,4 & Frans G. M. Russel1,2 Cannabinoid receptor 1 (CB1R) antagonists appear to be promising drugs for the treatment of obesity, however, serious side effects have hampered their clinical application. Rimonabant, the first in class CB1R antagonist, was withdrawn from the market because of psychiatric side effects. This has led to the search for more peripherally restricted CB1R antagonists, one of which is ibipinabant. However, this 3,4-diarylpyrazoline derivative showed muscle toxicity in a pre-clinical dog study with mitochondrial dysfunction. Here, we studied the molecular mechanism by which ibipinabant induces mitochondrial toxicity. We observed a strong cytotoxic potency of ibipinabant in C2C12 myoblasts. Functional characterization of mitochondria revealed increased cellular reactive oxygen species generation and a decreased ATP production capacity, without effects on the catalytic activities of mitochondrial enzyme complexes I–V or the complex specific-driven oxygen consumption. Using in silico off-target prediction modelling, combined with in vitro validation in isolated mitochondria and mitoplasts, we identified adenine nucleotide translocase (ANT)-dependent mitochondrial ADP/ATP exchange as a novel molecular mechanism underlying ibipinabant-induced toxicity. Minor structural modification of ibipinabant could abolish ANT inhibition leading to a decreased cytotoxic potency, as observed with the ibipinabant derivative CB23. Our results will be instrumental in the development of new types of safer CB1R antagonists.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2012/0022039 A1 Schwink Et Al
    US 20120022039A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2012/0022039 A1 Schwink et al. (43) Pub. Date: Jan. 26, 2012 (54) NOVEL SUBSTITUTED INDANES, METHOD Publication Classification FOR THE PRODUCTION THEREOF, AND USE (51) Int. Cl. THEREOF AS DRUGS A 6LX 3L/397 (2006.01) C07D 207/06 (2006.01) C07D 2L/22 (2006.01) C07D 22.3/04 (2006.01) (75) Inventors: Lothar Schwink, Frankfurt am C07D 22L/22 (2006.01) Main (DE); Siegfried Stengelin, C07C 235/54 (2006.01) Frankfurt am Main (DE); Matthias C07D 307/14 (2006.01) Gossel, Frankfurt am Main (DE); A63L/35 (2006.01) Klaus Wirth, Frankfurt am Main A6II 3/40 (2006.01) (DE) A6II 3/445 (2006.01) A6II 3/55 (2006.01) A63L/439 (2006.01) A6II 3/66 (2006.01) (73) Assignee: SANOFI, Paris (FR) A6II 3/34 (2006.01) A6IP3/10 (2006.01) A6IP3/04 (2006.01) A6IP3/06 (2006.01) (21) Appl. No.: 13/201410 A6IPL/I6 (2006.01) A6IP3/00 (2006.01) C07D 309/04 (2006.01) (52) U.S. Cl. .................... 514/210.01; 549/426: 548/578; (22) PCT Filed: Feb. 12, 2010 546/205; 540/484; 546/112:564/176; 549/494; 514/459:514/408: 514/319; 514/212.01; 514/299; 514/622:514/471 (86). PCT No.: PCT/EP2010/051796 (57) ABSTRACT The invention relates to substituted indanes and derivatives S371 (c)(1), thereof, to physiologically acceptable salts and physiologi (2), (4) Date: Oct. 4, 2011 cally functional derivatives thereof, to the production thereof, to drugs containing at least one substituted indane according (30) Foreign Application Priority Data to the invention or derivative thereof, and to the use of the Substituted indanes according to the invention and to deriva Feb.
    [Show full text]
  • Potential Cannabis Antagonists for Marijuana Intoxication
    Central Journal of Pharmacology & Clinical Toxicology Bringing Excellence in Open Access Review Article *Corresponding author Matthew Kagan, M.D., Cedars-Sinai Medical Center, 8730 Alden Drive, Los Angeles, CA 90048, USA, Tel: 310- Potential Cannabis Antagonists 423-3465; Fax: 310.423.8397; Email: Matthew.Kagan@ cshs.org Submitted: 11 October 2018 for Marijuana Intoxication Accepted: 23 October 2018 William W. Ishak, Jonathan Dang, Steven Clevenger, Shaina Published: 25 October 2018 Ganjian, Samantha Cohen, and Matthew Kagan* ISSN: 2333-7079 Cedars-Sinai Medical Center, USA Copyright © 2018 Kagan et al. Abstract OPEN ACCESS Keywords Cannabis use is on the rise leading to the need to address the medical, psychosocial, • Cannabis and economic effects of cannabis intoxication. While effective agents have not yet been • Cannabinoids implemented for the treatment of acute marijuana intoxication, a number of compounds • Antagonist continue to hold promise for treatment of cannabinoid intoxication. Potential therapeutic • Marijuana agents are reviewed with advantages and side effects. Three agents appear to merit • Intoxication further inquiry; most notably Cannabidiol with some evidence of antipsychotic activity • THC and in addition Virodhamine and Tetrahydrocannabivarin with a similar mixed receptor profile. Given the results of this research, continued development of agents acting on cannabinoid receptors with and without peripheral selectivity may lead to an effective treatment for acute cannabinoid intoxication. Much work still remains to develop strategies that will interrupt and reverse the effects of acute marijuana intoxication. ABBREVIATIONS Therapeutic uses of cannabis include chronic pain, loss of appetite, spasticity, and chemotherapy-associated nausea and CBD: Cannabidiol; CBG: Cannabigerol; THCV: vomiting [8]. Recreational cannabis use is on the rise with more Tetrahydrocannabivarin; THC: Tetrahydrocannabinol states approving its use and it is viewed as no different from INTRODUCTION recreational use of alcohol or tobacco [9].
    [Show full text]
  • Endocannabinoids in Body Weight Control
    pharmaceuticals Review Endocannabinoids in Body Weight Control Henrike Horn †, Beatrice Böhme †, Laura Dietrich and Marco Koch * Institute of Anatomy, Medical Faculty, University of Leipzig, 04103 Leipzig, Germany; [email protected] (H.H.); [email protected] (B.B.); [email protected] (L.D.) * Correspondence: [email protected]; Tel.: +49-341-97-22047 † These authors contributed equally. Received: 28 April 2018; Accepted: 28 May 2018; Published: 30 May 2018 Abstract: Maintenance of body weight is fundamental to maintain one’s health and to promote longevity. Nevertheless, it appears that the global obesity epidemic is still constantly increasing. Endocannabinoids (eCBs) are lipid messengers that are involved in overall body weight control by interfering with manifold central and peripheral regulatory circuits that orchestrate energy homeostasis. Initially, blocking of eCB signaling by first generation cannabinoid type 1 receptor (CB1) inverse agonists such as rimonabant revealed body weight-reducing effects in laboratory animals and men. Unfortunately, rimonabant also induced severe psychiatric side effects. At this point, it became clear that future cannabinoid research has to decipher more precisely the underlying central and peripheral mechanisms behind eCB-driven control of feeding behavior and whole body energy metabolism. Here, we will summarize the most recent advances in understanding how central eCBs interfere with circuits in the brain that control food intake and
    [Show full text]
  • Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model
    G C A T T A C G G C A T genes Article Possible Therapeutic Doses of Cannabinoid Type 1 Receptor Antagonist Reverses Key Alterations in Fragile X Syndrome Mouse Model Maria Gomis-González 1, Arnau Busquets-Garcia 1,†, Carlos Matute 2,3,4, Rafael Maldonado 1,‡, Susana Mato 2,3,4,‡ and Andrés Ozaita 1,*,‡ 1 Laboratory of Neuropharmacology-NeuroPhar, Department of Experimental and Health Sciences, Program of Genetics and Neurosciences, University Pompeu Fabra, Barcelona 08003, Spain; [email protected] (M.G.-G.); [email protected] (A.B.-G.); [email protected] (R.M.) 2 Department of Neurosciences, University of the Basque Country UPV/EHU, Leioa 48940, Spain; [email protected] (C.M.); [email protected] (S.M.) 3 Achucarro Basque Center for Neuroscience, Zamudio 48170, Spain 4 Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid 28031, Spain * Correspondence: [email protected]; Tel.: +34-93-316-0823 † Present affiliation: Endocannabinoids and Neuroadaptation Group, NeuroCentre Magendie, INSERM U1215, Bordeaux 33077, France. ‡ These authors contributed equally to this work. Academic Editor: Mark Hirst Received: 21 July 2016; Accepted: 22 August 2016; Published: 31 August 2016 Abstract: Fragile X syndrome (FXS) is the most common monogenetic cause of intellectual disability. The cognitive deficits in the mouse model for this disorder, the Fragile X Mental Retardation 1 (Fmr1) knockout (KO) mouse, have been restored by different pharmacological approaches, among those the blockade of cannabinoid type 1 (CB1) receptor. In this regard, our previous study showed that the CB1 receptor antagonist/inverse agonist rimonabant normalized a number of core features in the Fmr1 knockout mouse.
    [Show full text]
  • Liver Disease ISSUE BRIEF on LIVER DISEASE
    Liver Disease ISSUE BRIEF ON LIVER DISEASE Introduction Briefings such as this one are prepared in response to petitions to add new conditions to the list of qualifying conditions for the Minnesota medical cannabis program. The intention of these briefings is to present to the Commissioner of Health, to members of the Medical Cannabis Review Panel, and to interested members of the public scientific studies of cannabis products as therapy for the petitioned condition. Brief information on the condition and its current treatment is provided to help give context to the studies. The primary focus is on clinical trials and observational studies, but for many conditions there are few of these. A selection of articles on pre-clinical studies (typically laboratory and animal model studies) will be included, especially if there are few clinical trials or observational studies. Though interpretation of surveys is usually difficult because it is unclear whether responders represent the population of interest and because of unknown validity of responses, when published in peer-reviewed journals surveys will be included for completeness. When found, published recommendations or opinions of national organizations medical organizations will be included. Searches for published clinical trials and observational studies are performed using the National Library of Medicine’s MEDLINE database using key words appropriate for the petitioned condition. Articles that appeared to be results of clinical trials, observational studies, or review articles of such studies, were accessed for examination. References in the articles were studied to identify additional articles that were not found on the initial search. This continued in an iterative fashion until no additional relevant articles were found.
    [Show full text]
  • Cannabinoid-1 Receptor Inverse Agonists: Current Understanding of Mechanism of Action and Unanswered Questions
    International Journal of Obesity (2009) 33, 947–955 & 2009 Macmillan Publishers Limited All rights reserved 0307-0565/09 $32.00 www.nature.com/ijo REVIEW Cannabinoid-1 receptor inverse agonists: current understanding of mechanism of action and unanswered questions TM Fong1 and SB Heymsfield2 1Merck Research Laboratories, Department of Metabolic Disorders, Rahway, NJ, USA and 2Merck Research Laboratories, Global Center of Scientific Affairs, Rahway, NJ, USA Rimonabant and taranabant are two extensively studied cannabinoid-1 receptor (CB1R) inverse agonists. Their effects on in vivo peripheral tissue metabolism are generally well replicated. The central nervous system site of action of taranabant or rimonabant is firmly established based on brain receptor occupancy studies. At the whole-body level, the mechanism of action of CB1R inverse agonists includes a reduction in food intake and an increase in energy expenditure. At the tissue level, fat mass reduction, liver lipid reduction and improved insulin sensitivity have been shown. These effects on tissue metabolism are readily explained by CB1R inverse agonist acting on brain CB1R and indirectly influencing the tissue metabolism through the autonomic nervous system. It has also been hypothesized that rimonabant acts directly on adipocytes, hepatocytes, pancreatic islets or skeletal muscle in addition to acting on brain CB1R, although strong support for the contribution of peripherally located CB1R to in vivo efficacy is still lacking. This review will carefully examine the published literature
    [Show full text]
  • 2 Spice English Presentation
    Spice Spice contains no compensatory substances Специи не содержит компенсационные вещества Spice is a mix of herbs (shredded plant material) and manmade chemicals with mind-altering effects. It is often called “synthetic marijuana” because some of the chemicals in it are similar to ones in marijuana; but its effects are sometimes very different from marijuana, and frequently much stronger. It is most often labeled “Not for Human Consumption” and disguised as incense. Eliminationprocess • The synthetic agonists such as THC is fat soluble. • Probably, they are stored as THC in cell membranes. • Some of the chemicals in Spice, however, attach to those receptors more strongly than THC, which could lead to a much stronger and more unpredictable effect. • Additionally, there are many chemicals that remain unidentified in products sold as Spice and it is therefore not clear how they may affect the user. • Moreover, these chemicals are often being changed as the makers of Spice alter them to avoid the products being illegal. • To dissolve the Spice crystals Acetone is used endocannabinoids synhtetic THC cannabinoids CB1 and CB2 agonister Binds to cannabinoidreceptor CB1 CB2 - In the brain -in the immune system Decreased avtivity in the cell ____________________ Maria Ellgren Since some of the compounds have a longer toxic effects compared to naturally THC, as reported: • negative effects that often occur the day after consumption, as a general hangover , but without nausea, mentally slow, confused, distracted, impairment of long and short term memory • Other reports mention the qualitative impairment of cognitive processes and emotional functioning, like all the oxygen leaves the brain.
    [Show full text]
  • Pdf4 Complex I and the Aryl Palladium Precursor II Underwent Sequential Single Electron Abstraction from Aryl Pd(II) Complex
    Design, synthesis, methodology development, and evaluation of PET imaging agents targeting cancer and CNS disorders By Gengyang Yuan B.S. in Chemical Engineering and Technology, Zhejiang University of Technology M.S. in Pharmaceutical Engineering, Zhejiang University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 21, 2017 Dissertation directed by Michael P. Pollastri Associate Professor and Chair of Chemistry and Chemical Biology Co-directed by Neil Vasdev Adjunct Associate Professor of Chemsitry and Chemical Biology Associate Professor of Radiology, Massachusetts General Hospital and Harvard Medical School Dedication To my parents Zhijun and Yongmian and my wife Ran and daughter Isabella ii Acknowledgements This dissertation would not have been possible without the support, guidance and encouragement of numerous people who have helped me along the way. First and foremost, I would like to thank Northeastern University and the Department of Chemistry and Chemical Biology for supporting me to pursue my doctoral study. I would like to especially thank my current advisor Professor Michael Pollastri for helping me out when I needed it the most. I appreciate you for taking me into your group and giving me full support to finish my thesis projects. I also especially thank my co-advisor Professor Neil Vasdev for taking me into his group at Mass. General Hospital & Harvard Medical School and teaching me the PET radiochemistry and PET imaging. I could not image how I could accomplish this work without your help. I also got a lot of help from Dr.
    [Show full text]
  • Cannabinoid Receptor Cannabinoid Receptor
    Cannabinoid Receptor Cannabinoid Receptor Cannabinoid receptors are currently classified into three groups: central (CB1), peripheral (CB2) and GPR55, all of which are G-protein-coupled. CB1 receptors are primarily located at central and peripheral nerve terminals. CB2 receptors are predominantly expressed in non-neuronal tissues, particularly immune cells, where they modulate cytokine release and cell migration. Recent reports have suggested that CB2 receptors may also be expressed in the CNS. GPR55 receptors are non-CB1/CB2 receptors that exhibit affinity for endogenous, plant and synthetic cannabinoids. Endogenous ligands for cannabinoid receptors have been discovered, including anandamide and 2-arachidonylglycerol. www.MedChemExpress.com 1 Cannabinoid Receptor Antagonists, Agonists, Inhibitors, Modulators & Activators (S)-MRI-1867 (±)-Ibipinabant Cat. No.: HY-141411A ((±)-SLV319; (±)-BMS-646256) Cat. No.: HY-14791A (S)-MRI-1867 is a peripherally restricted, orally (±)-Ibipinabant ((±)-SLV319) is the racemate of bioavailable dual cannabinoid CB1 receptor and SLV319. (±)-Ibipinabant ((±)-SLV319) is a potent inducible NOS (iNOS) antagonist. (S)-MRI-1867 and selective cannabinoid-1 (CB-1) receptor ameliorates obesity-induced chronic kidney disease antagonist with an IC50 of 22 nM. (CKD). Purity: >98% Purity: 99.93% Clinical Data: No Development Reported Clinical Data: No Development Reported Size: 1 mg, 5 mg Size: 10 mM × 1 mL, 5 mg, 10 mg, 25 mg, 50 mg 2-Arachidonoylglycerol 2-Palmitoylglycerol Cat. No.: HY-W011051 (2-Palm-Gl) Cat. No.: HY-W013788 2-Arachidonoylglycerol is a second endogenous 2-Palmitoylglycerol (2-Palm-Gl), an congener of cannabinoid ligand in the central nervous system. 2-arachidonoylglycerol (2-AG), is a modest cannabinoid receptor CB1 agonist. 2-Palmitoylglycerol also may be an endogenous ligand for GPR119.
    [Show full text]
  • WTO Documents Online
    WORLD TRADE RESTRICTED G/MA/TAR/RS/291 4 August 2011 ORGANIZATION (11-3946) Committee on Market Access Original: English MODIFICATIONS AND RECTIFICATIONS OF URUGUAY ROUND SCHEDULES Schedule XXXVIII – Japan The following communication, 28 July 2011, is being circulated at the request of the delegation of Japan. _______________ Japan submits herewith the draft modifications and rectifications to Schedule XXXVIII – Japan pursuant to paragraph 3 of the Decision of 26 March 1980 (BISD 27S/25). These modifications and rectifications1 reflect the outcome of the forth review for the coverage of tariff elimination regarding pharmaceutical products and will become effective in accordance with the relevant notification provided by the Government of Japan to the Director-General upon completion of its domestic procedures. _______________ If no objection is notified to the Secretariat within three months from the date of this document, the modifications and rectifications of Schedule XXXVIII – Japan will be deemed approved and formally certified. 1 In English only. MODIFICATIONS AND RECTIFICATIONS TO SCHEDULE XXXVIII – JAPAN G/MA/TAR/RS/291 Page 3 Page 4 G/MA/TAR/RS/291 SCHEDULE XXXVIII – JAPAN PART I MOST-FAVOURED-NATION TARIFF SECTION II Other Products Mark the tariff item number 2843.29, 2910.20, 2921.51 with a letter “P” G/MA/TAR/RS/291 Page 5 Page 6 G/MA/TAR/RS/291 Attachment to SCHEDULE XXXVIII – JAPAN Replace “Annexes IA, IB, IC and ID” in category (3) by “Annexes IA, IB, IC, ID and IE”. Replace “Annex II” in category (4) by “Annexes IIA and IIB. Replace “Annexes IVA, IVB, IVC and IVD” in category (6) by “Annexes IVA, IVB, IVC, IVD and IVE”.
    [Show full text]