Carboxylesterase 1 Genetic Variability, Expression And

Total Page:16

File Type:pdf, Size:1020Kb

Carboxylesterase 1 Genetic Variability, Expression And CARBOXYLESTERASE 1 GENETIC VARIABILITY, EXPRESSION AND POTENTIAL FOR DRUG-DRUG INTERACTIONS Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy By Teresa Sofía Sánchez Pascua September 2014 TABLE OF CONTENTS Abstract i Acknowledgements ii Abbreviations iii List of figures viii Table of single nucleotide polymorphisms ix Chapter 1: General Introduction.......................................................................... 1 1.1. Human metabolism ................................................................................................. 2 1.1.1. Drug metabolising enzymes ........................................................................ 2 1.1.2. Drug transporters ......................................................................................... 5 1.1.3. Drug interactions ......................................................................................... 7 1.1.4. Pharmacogenetics ........................................................................................ 9 1.2. Carboxylesterase 1 ................................................................................................ 12 1.2.1. Protein classification .................................................................................. 12 1.2.2. Tissue expression ....................................................................................... 15 1.2.3. Physiological roles ..................................................................................... 16 1.2.4. Protein structure ......................................................................................... 18 1.2.5. Enzymatic mechanism ............................................................................... 19 1.2.6. Substrate specificity ................................................................................... 20 1.2.7. Therapeutic compounds ............................................................................. 21 1.2.8. CES1 gene ................................................................................................. 22 1.2.9. Genetic variability ..................................................................................... 23 1.2.10. Physio-pathological conditions .................................................................. 25 1.2.11. Regulation .................................................................................................. 26 1.2.12. DDIs and CES1 ......................................................................................... 27 1.3. Aims of the thesis .................................................................................................. 29 Chapter 2: Methods ............................................................................................. 30 2.1. Introduction ........................................................................................................... 31 2.2. HPLC-UV method for the quantification of clopidogrel main circulating metabolite in human plasma ................................................................................. 32 2.2.1. Introduction ............................................................................................... 32 2.2.2. Materials and methods ............................................................................... 34 2.2.3. Results ....................................................................................................... 41 2.2.4. Discussion .................................................................................................. 47 2.3. Optimization and validation of allelic discrimination assays of CES1 gene genetic variants .................................................................................................................. 49 2.3.1. Introduction ............................................................................................... 49 2.3.2. Materials and methods ............................................................................... 51 2.3.3. Results of the assays validation ................................................................. 63 2.3.4. Discussion .................................................................................................. 67 Chapter 3: Effect of CES1, CYP2C9 and CYP2C19 genetic variability on clopidogrel antiplatelet efficacy .............................................................................. 69 3.1. Introduction ........................................................................................................... 70 3.2. Methods................................................................................................................. 76 3.2.1. Clinical study ............................................................................................. 76 3.2.2. Study population ........................................................................................ 77 3.2.3. Platelet function testing ............................................................................. 77 3.2.4. Genotyping ................................................................................................ 78 3.2.5. Determination of plasma metabolite concentrations ................................. 81 3.2.6. Data analysis .............................................................................................. 81 3.3. Results ................................................................................................................... 83 3.3.1. Patient demographics ................................................................................. 83 3.3.2. SNP frequencies and linkage disequilibrium ............................................. 85 3.3.3. Impact of demographic, clinical and genetic factors on platelet aggregation . .................................................................................................................. 88 3.3.4. Demographics and genetic variants impact on CLPM plasma concentration . .................................................................................................................. 92 3.4. Discussion ............................................................................................................. 96 Chapter 4: Effect of efavirenz and nevirapine on the disposition of antiplatelet agent clopidogrel in HIV positive subjects ...................................... 101 4.1. Introduction ......................................................................................................... 102 4.2. Methods............................................................................................................... 105 4.2.1. Study design ............................................................................................ 105 4.2.2. Determination of CLPM plasma concentration ....................................... 108 4.2.3. PK and statistical analysis ....................................................................... 108 4.3. Results ................................................................................................................. 108 4.3.1. Subject characteristics ............................................................................. 110 4.3.2. PK assessment and comparison to historical data ................................... 112 4.3.3. Differences between NVP and EFV treated subjects .............................. 115 4.4. Discussion ........................................................................................................... 114 Chapter 5: Impact of CES1 single nucleotide polymorphisms on isoniazid pharmacokinetics ................................................................................................... 121 5.1. Introduction ......................................................................................................... 122 5.2. Methods............................................................................................................... 125 5.2.1. Study design ............................................................................................ 125 5.2.2. DNA extraction and SNP genotyping ...................................................... 126 5.2.3. INH plasma quantitation and PK parameters calculation ........................ 128 5.2.4. Statistical analysis .................................................................................... 128 5.3. Results ................................................................................................................. 130 5.3.1. Subjects demographics ............................................................................ 130 5.3.2. Frequencies of SNPs ................................................................................ 132 5.3.3. Demographics impact on INH PK parameters ........................................ 134 5.3.4. Impact of genetic variants on INH PK parameters .................................. 138 5.3.5. Multifactorial models and the effect of factor interactions on PK parameters ............................................................................................................... 141 5.4. Discussion ........................................................................................................... 145 Chapter 6: Impact of rifampicin, rifabutin and rifapentine on CES1 and CES2 expression ..................................................................................................... 149 6.1. Introduction ........................................................................................................
Recommended publications
  • Proteomic Analyses Reveal a Role of Cytoplasmic Droplets As an Energy Source During Sperm Epididymal Maturation
    Proteomic analyses reveal a role of cytoplasmic droplets as an energy source during sperm epididymal maturation Shuiqiao Yuana,b, Huili Zhenga, Zhihong Zhengb, Wei Yana,1 aDepartment of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, NV, 89557; and bDepartment of Laboratory Animal Medicine, China Medical University, Shenyang, 110001, China Corresponding author. Email: [email protected] Supplemental Information contains one Figure (Figure S1), three Tables (Tables S1-S3) and two Videos (Videos S1 and S2) files. Figure S1. Scanning electron microscopic images of purified murine cytoplasmic droplets. Arrows point to indentations resembling the resealed defects at the detaching points when CDs come off the sperm flagella. Scale bar = 1µm Table S1 Mass spectrometry-based identifiaction of proteins highly enriched in murine cytoplasmic droplets. # MS/MS View:Identified Proteins (105) Accession Number Molecular Weight Protein Grouping Ambiguity Dot_1_1 Dot_2_1 Dot_3_1 Dot_4_1Dot_5_1 Dot_1_2 Dot_2_2 Dot_3_2 Dot_4_2 Dot_5_2 1 IPI:IPI00467457.3 Tax_Id=10090 Gene_Symbol=Ldhc L-lactate dehydrogenase C chain IPI00467457 36 kDa TRUE 91% 100% 100% 100% 100% 100% 100% 100% 100% 2 IPI:IPI00473320.2 Tax_Id=10090 Gene_Symbol=Actb Putative uncharacterized protein IPI00473320 42 kDa TRUE 75% 100% 100% 100% 100% 89% 76% 100% 100% 100% 3 IPI:IPI00224181.7 Tax_Id=10090 Gene_Symbol=Akr1b7 Aldose reductase-related protein 1 IPI00224181 36 kDa TRUE 100% 100% 76% 100% 100% 4 IPI:IPI00228633.7 Tax_Id=10090 Gene_Symbol=Gpi1 Glucose-6-phosphate
    [Show full text]
  • 1 Metabolic Dysfunction Is Restricted to the Sciatic Nerve in Experimental
    Page 1 of 255 Diabetes Metabolic dysfunction is restricted to the sciatic nerve in experimental diabetic neuropathy Oliver J. Freeman1,2, Richard D. Unwin2,3, Andrew W. Dowsey2,3, Paul Begley2,3, Sumia Ali1, Katherine A. Hollywood2,3, Nitin Rustogi2,3, Rasmus S. Petersen1, Warwick B. Dunn2,3†, Garth J.S. Cooper2,3,4,5* & Natalie J. Gardiner1* 1 Faculty of Life Sciences, University of Manchester, UK 2 Centre for Advanced Discovery and Experimental Therapeutics (CADET), Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK 3 Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK 4 School of Biological Sciences, University of Auckland, New Zealand 5 Department of Pharmacology, Medical Sciences Division, University of Oxford, UK † Present address: School of Biosciences, University of Birmingham, UK *Joint corresponding authors: Natalie J. Gardiner and Garth J.S. Cooper Email: [email protected]; [email protected] Address: University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom Telephone: +44 161 275 5768; +44 161 701 0240 Word count: 4,490 Number of tables: 1, Number of figures: 6 Running title: Metabolic dysfunction in diabetic neuropathy 1 Diabetes Publish Ahead of Print, published online October 15, 2015 Diabetes Page 2 of 255 Abstract High glucose levels in the peripheral nervous system (PNS) have been implicated in the pathogenesis of diabetic neuropathy (DN). However our understanding of the molecular mechanisms which cause the marked distal pathology is incomplete. Here we performed a comprehensive, system-wide analysis of the PNS of a rodent model of DN.
    [Show full text]
  • Carboxylesterase 1 / CES1 Antibody (Internal) Goat Polyclonal Antibody Catalog # ALS12250
    10320 Camino Santa Fe, Suite G San Diego, CA 92121 Tel: 858.875.1900 Fax: 858.622.0609 Carboxylesterase 1 / CES1 Antibody (Internal) Goat Polyclonal Antibody Catalog # ALS12250 Specification Carboxylesterase 1 / CES1 Antibody (Internal) - Product Information Application WB, IHC Primary Accession P23141 Reactivity Human Host Goat Clonality Polyclonal Calculated MW 63kDa KDa Carboxylesterase 1 / CES1 Antibody (Internal) - Additional Information Gene ID 1066 Antibody (0.03 ug/ml) staining of Human Liver lysate (35 ug protein in RIPA buffer). Other Names Liver carboxylesterase 1, Acyl-coenzyme A:cholesterol acyltransferase, ACAT, Brain carboxylesterase hBr1, Carboxylesterase 1, CE-1, hCE-1, 3.1.1.1, Cocaine carboxylesterase, Egasyn, HMSE, Methylumbelliferyl-acetate deacetylase 1, 3.1.1.56, Monocyte/macrophage serine esterase, Retinyl ester hydrolase, REH, Serine esterase 1, Triacylglycerol hydrolase, TGH, CES1, CES2, SES1 Target/Specificity Human CES1. This antibody is expected to recognise all three reported isoforms (NP_001020366.1; NP_001020365.1; Anti-CES1 antibody IHC of human lung. NP_001257.4). Reconstitution & Storage Carboxylesterase 1 / CES1 Antibody Store at -20°C. Minimize freezing and (Internal) - Background thawing. Involved in the detoxification of xenobiotics Precautions and in the activation of ester and amide Carboxylesterase 1 / CES1 Antibody prodrugs. Hydrolyzes aromatic and aliphatic (Internal) is for research use only and not esters, but has no catalytic activity toward for use in diagnostic or therapeutic amides or a fatty acyl-CoA ester. Hydrolyzes procedures. the methyl ester group of cocaine to form benzoylecgonine. Catalyzes the transesterification of cocaine to form Carboxylesterase 1 / CES1 Antibody (Internal) - cocaethylene. Displays fatty acid ethyl ester Protein Information synthase activity, catalyzing the ethyl esterification of oleic acid to ethyloleate.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Current Drug Metabolism, 2019, 20, 91-102
    Send Orders for Reprints to [email protected] 91 Current Drug Metabolism, 2019, 20, 91-102 REVIEW ARTICLE ISSN: 1389-2002 eISSN: 1875-5453 Current Drug Impact Factor: Metabolism 2.655 The Impact of Carboxylesterases in Drug Metabolism and Pharmacokinetics The international journal for timely in-depth reviews on Drug Metabolism BENTHAM SCIENCE Li Di* Pfizer Inc., Eastern Point Road, Groton, Connecticut, CT 06354, USA Abstract: Background: Carboxylesterases (CES) play a critical role in catalyzing hydrolysis of esters, amides, car- bamates and thioesters, as well as bioconverting prodrugs and soft drugs. The unique tissue distribution of CES en- zymes provides great opportunities to design prodrugs or soft drugs for tissue targeting. Marked species differences in CES tissue distribution and catalytic activity are particularly challenging in human translation. Methods: Review and summarization of CES fundamentals and applications in drug discovery and development. A R T I C L E H I S T O R Y Results: Human CES1 is one of the most highly expressed drug metabolizing enzymes in the liver, while human intestine only expresses CES2. CES enzymes have moderate to high inter-individual variability and exhibit low to no expression in the fetus, but increase substantially during the first few months of life. The CES genes are highly po- Received: June 04, 2018 Revised: August 03, 2018 lymorphic and some CES genetic variants show significant influence on metabolism and clinical outcome of certain Accepted: August 08, 2018 drugs. Monkeys appear to be more predictive of human pharmacokinetics for CES substrates than other species. Low risk of clinical drug-drug interaction is anticipated for CES, although they should not be overlooked, particularly DOI: 10.2174/1389200219666180821094502 interaction with alcohols.
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Baboon JMP CES Paper
    Baboon carboxylesterases 1 and 2: sequences, structures and phylogenetic relationships with human and other primate carboxylesterases Author Holmes, Roger S, Glenn, Jeremy P, VandeBerg, John L, Cox, Laura A Published 2009 Journal Title Journal of Medical Primatology DOI https://doi.org/10.1111/j.1600-0684.2008.00315.x Copyright Statement © 2009 John Wiley & Sons A/S. This is the author-manuscript version of the paper. Reproduced in accordance with the copyright policy of the publisher.The definitive version is available at www.interscience.wiley.com Downloaded from http://hdl.handle.net/10072/29362 Griffith Research Online https://research-repository.griffith.edu.au Baboon Carboxylesterases 1 and 2: Sequences, Structures and Phylogenetic Relationships with Human and other Primate Carboxylesterases Roger S. Holmes 1,2,3 , Jeremy P. Glenn 1, John L. VandeBerg 1,2 , Laura A. Cox 1,2,4 1. Department of Genetics and 2. Southwest National Primate Research Center, Southwest Foundation for Biomedical Research, San Antonio, TX, USA, and 3. School of Biomolecular and Physical Sciences, Griffith University, Nathan. Queensland, Australia 4. Corresponding Author: Laura A. Cox, Ph.D. Department of Genetics Southwest National Primate Research Center Southwest Foundation for Biomedical Research San Antonio, TX, USA 78227 Email: [email protected] Phone: 210-258-9687 Fax: 210-258-9600 Keywords: cDNA sequence; amino acid sequence; 3-D structure Running Head: Carboxylesterases: sequences and phylogeny Published in Journal of Medical Primatology (2009) 38: 27-38. Abstract Background Carboxylesterase (CES) is predominantly responsible for the detoxification of a wide range of drugs and narcotics, and catalyze several reactions in cholesterol and fatty acid metabolism.
    [Show full text]
  • Synthesis, Molecular Docking, and Biological Evaluation of 3-Oxo-2
    Bioorganic Chemistry 91 (2019) 103097 Contents lists available at ScienceDirect Bioorganic Chemistry journal homepage: www.elsevier.com/locate/bioorg Synthesis, molecular docking, and biological evaluation of 3-oxo-2- T tolylhydrazinylidene-4,4,4-trifluorobutanoates bearing higher and natural alcohol moieties as new selective carboxylesterase inhibitors Galina F. Makhaevaa, Natalia A. Elkinab, Evgeny V. Shchegolkovb, Natalia P. Boltnevaa, Sofya V. Lushchekinac, Olga G. Serebryakovaa, Elena V. Rudakovaa, Nadezhda V. Kovalevaa, Eugene V. Radchenkod, Vladimir A. Palyulind, Yanina V. Burgartb, Victor I. Saloutinb, ⁎ Sergey O. Bachurina, Rudy J. Richardsone,f, a Institute of Physiologically Active Compounds Russian Academy of Sciences, Chernogolovka 142432, Russia b Postovsky Institute of Organic Synthesis, Urals Branch of Russian Academy of Sciences, Yekaterinburg 620990, Russia c Emanuel Institute of Biochemical Physics Russian Academy of Sciences, Moscow 119334, Russia d Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia e Departments of Environmental Health Sciences and Neurology, University of Michigan, Ann Arbor, MI 48109, USA f Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI 48109, USA ARTICLE INFO ABSTRACT Keywords: To search for effective and selective inhibitors of carboxylesterase (CES), a series of 3-oxo-2-tolylhy- 3-oxo-2-tolylhydrazinylidene-4,4,4- drazinylidene-4,4,4-trifluorobutanoates bearing higher or natural alcohol moieties was synthesized viapre- trifluorobutanoates transesterification of ethyl trifluoroacetylacetate with alcohols to isolate transesterificated oxoesters aslithium Higher alcohols salts, which were then subjected to azo coupling with tolyldiazonium chloride. Inhibitory activity against por- Natural alcohols cine liver CES, along with two structurally related serine hydrolases, acetylcholinesterase and butyr- Transesterification ylcholinesterase, were investigated using enzyme kinetics and molecular docking.
    [Show full text]
  • Recombinant Human Carboxylesterase 1/CES1 Protein Catalog Number: ATGP3862
    Recombinant human Carboxylesterase 1/CES1 protein Catalog Number: ATGP3862 PRODUCT INPORMATION Expression system Baculovirus Domain 19-568aa UniProt No. P23141 NCBI Accession No. NP_001020366 Alternative Names Liver carboxylesterase 1 isoform a, CES1, ACAT, CE-1, CEH, CES2, hCE-1, HMSE, HMSE1, PCE-1, REH, SES1, TGH PRODUCT SPECIFICATION Molecular Weight 61.7 kDa (559aa) Concentration 0.5mg/ml (determined by absorbance at 280nm) Formulation Liquid in. 25mM Sodium Acetate (pH 4.0) containing 10% glycerol, 0.1M NaCl, 0.1mM PMSF Purity > 90% by SDS-PAGE Endotoxin level < 1 EU per 1ug of protein (determined by LAL method) Biological Activity Specific activity is > 700pmol/min/ug and is defined as the amount of enzyme that hydrolyze 1pmole of p- nitrophenyl acetate to pnitrophenol per minute at pH 7.5 at 37C. Tag His-Tag Application Enzyme Activity,SDS-PAGE Storage Condition Can be stored at +2C to +8C for 1 week. For long term storage, aliquot and store at -20C to -80C. Avoid repeated freezing and thawing cycles. BACKGROUND 1 Recombinant human Carboxylesterase 1/CES1 protein Catalog Number: ATGP3862 Description Carboxylesterase 1, also known as liver carboxylesterase 1 isoform a, is a member of a large family of carboxylesterases. It is also part of the alpha/beta fold hydrolase family. Carboxylesterases hydrolyze long-chain fatty acid esters and thioesters. The resulting carboxylates are then often conjugated by other enzymes to increase solubility and eventually excreted. Also, this enzyme may play a role in detoxification in the lung and/or protection of the central nervous system from ester or amide compounds.
    [Show full text]
  • Carboxylesterases in Lipid Metabolism: from Mouse to Human
    Protein Cell DOI 10.1007/s13238-017-0437-z Protein & Cell REVIEW Carboxylesterases in lipid metabolism: from mouse to human & Jihong Lian1,2 , Randal Nelson1,2, Richard Lehner1,2,3 1 Group on Molecular and Cell Biology of Lipids, University of Alberta, Edmonton, Alberta, Canada 2 Department of Pediatrics, University of Alberta, Edmonton, Alberta, Canada 3 Department of Cell Biology, University of Alberta, Edmonton, Alberta, Canada & Correspondence: [email protected] (J. Lian) Received March 2, 2017 Accepted May 31, 2017 Cell & ABSTRACT Hatfield et al., 2016; Fukami et al., 2015; Laizure et al., 2013; Staudinger et al., 2010; Sanghani et al., 2009; Imai, 2006). Mammalian carboxylesterases hydrolyze a wide range However, carboxylesterases have also been demonstrated of xenobiotic and endogenous compounds, including to hydrolyze endogenous esters and thioesters including lipid esters. Physiological functions of car- lipids and some of these enzymes have been shown to play Protein boxylesterases in lipid metabolism and energy home- important physiological functions in lipid metabolism and ostasis in vivo have been demonstrated by genetic energy homeostasis. Recent research endeavors have manipulations and chemical inhibition in mice, and provided more insight into the roles of human car- in vitro through (over)expression, knockdown of boxylesterases in metabolic diseases. expression, and chemical inhibition in a variety of cells. Genes encoding six human carboxylesterases and twenty Recent research advances have revealed the relevance mouse carboxylesterases have been classified. However, of carboxylesterases to metabolic diseases such as given the interspecies diversity of carboxylesterases both in obesity and fatty liver disease, suggesting these the number and primary amino acid sequences there is a enzymes might be potential targets for treatment of need to define functional mouse and human orthologs.
    [Show full text]
  • Identification of Genomic Biomarkers of Exposure to Ahr Ligands Bladimir J Ovando1, Corie a Ellison1, Chad M Vezina2, James R Olson1*
    Ovando et al. BMC Genomics 2010, 11:583 http://www.biomedcentral.com/1471-2164/11/583 RESEARCH ARTICLE Open Access Toxicogenomic analysis of exposure to TCDD, PCB126 and PCB153: identification of genomic biomarkers of exposure to AhR ligands Bladimir J Ovando1, Corie A Ellison1, Chad M Vezina2, James R Olson1* Abstract Background: Two year cancer bioassays conducted by the National Toxicology Program have shown chronic exposure to dioxin-like compounds (DLCs) to lead to the development of both neoplastic and non-neoplastic lesions in the hepatic tissue of female Sprague Dawley rats. Most, if not all, of the hepatotoxic effects induced by DLC’s are believed to involve the binding and activation of the transcription factor, the aryl hydrocarbon receptor (AhR). Toxicogenomics was implemented to identify genomic responses that may be contributing to the development of hepatotoxicity in rats. Results: Through comparative analysis of time-course microarray data, unique hepatic gene expression signatures were identified for the DLCs, 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) (100 ng/kg/day) and 3,3’,4,4’,5-pentachlorobiphenyl (PCB126) (1000 ng/kg/day) and the non-DLC 2,2’,4,4’,5,5’,-hexachlorobiphenyl (PCB153) (1000 μg/kg/day). A common time independent signature of 41 AhR genomic biomarkers was identified which exhibited at least a 2-fold change in expression following subchronic (13-wk) and chronic (52-wk) p.o. exposure to TCDD and PCB126, but not the non DLC, PCB153. Real time qPCR analysis validated that 30 of these genes also exhibited at least a 2-fold change in hepatic expression at 24 hr following a single exposure to TCDD (5 μg/kg, po).
    [Show full text]
  • Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’S Disease
    SAGE-Hindawi Access to Research International Journal of Alzheimer’s Disease Volume 2010, Article ID 604792, 56 pages doi:10.4061/2010/604792 Research Article Complex and Multidimensional Lipid Raft Alterations in a Murine Model of Alzheimer’s Disease Wayne Chadwick, 1 Randall Brenneman,1, 2 Bronwen Martin,3 and Stuart Maudsley1 1 Receptor Pharmacology Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA 2 Miller School of Medicine, University of Miami, Miami, FL 33124, USA 3 Metabolism Unit, National Institute on Aging, National Institutes of Health, 251 Bayview Boulevard, Suite 100, Baltimore, MD 21224, USA Correspondence should be addressed to Stuart Maudsley, [email protected] Received 17 May 2010; Accepted 27 July 2010 Academic Editor: Gemma Casadesus Copyright © 2010 Wayne Chadwick et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Various animal models of Alzheimer’s disease (AD) have been created to assist our appreciation of AD pathophysiology, as well as aid development of novel therapeutic strategies. Despite the discovery of mutated proteins that predict the development of AD, there are likely to be many other proteins also involved in this disorder. Complex physiological processes are mediated by coherent interactions of clusters of functionally related proteins. Synaptic dysfunction is one of the hallmarks of AD. Synaptic proteins are organized into multiprotein complexes in high-density membrane structures, known as lipid rafts. These microdomains enable coherent clustering of synergistic signaling proteins.
    [Show full text]