Letter from the Chairman

Total Page:16

File Type:pdf, Size:1020Kb

Letter from the Chairman Letter from the Chairman For our inaugural annual report, I am thrilled to describe the tremendous progress that eLife Sciences has achieved during its first year of operation. In June 2011, the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust announced eLife Sciences – a disruptive, refreshing new model for the publishing and dissemination of cutting-edge scientific research. It is built on digital technologies, and driven by the needs of academic science, the research community, and the broader population interested in science. The mission of eLife Sciences is to establish a leading journal for the publication of advancements in the life and biomedical sciences, using active researchers to assess the science efficiently and quickly, and leveraging the power of digital media to bring the work to life and make it openly accessible in multiple dimensions to a global audience. The Board is very proud of the eLife Sciences team’s accomplishments in 2012, including the initial development and operation of the journal and the! warm and open reception from the research community. Critical to eLife Sciences’ success has been the driving force of our talented academic editorial team. Led by Editor-in-Chief Randy Schekman (University of California at Berkeley, USA), and Deputy Editors Fiona Watt (King’s College, London, UK) and Detlef Weigel (Max Planck Institute for Developmental Biology, Germany) the team has devised an open and transparent editorial process that has been welcomed by the scientific community. This process ensures that new submissions are assessed swiftly and fairly, and that the editorial feedback after peer review is focused on essential revision requests. The eLife Sciences staff, based in Cambridge, England, have also put together a leading-edge publishing platform that delivers a rich, intuitive digital content experience and was launched with eLife’s new website in December 2012. It has been eLife’s goal to quickly attract the highest calibre of content and to build a reputation for excellence in editorial standards. Given that eLife is competing with established and influential venues for the most important scientific work, this is a considerable challenge. It is, therefore, hugely gratifying that well over 100 research articles that meet our high standards of excellence have already been published mid-way through 2013. Subjects range from structural biology to human perception, from plant-predator interactions to public health, and each article is accompanied by an eLife Digest to make these stories more accessible for the broader public interested in science. eLife Sciences Publications, Ltd is a limited liability non-profit non-stock corporation incorporated in the State of Delaware, USA, with company number 5030732, and is registered in the UK with company number FC030576 and branch number BR015634 at the address Suite 203, Sheraton House, Castle Park, Cambridge CB3 0AX. It is important to remember, however, that the eLife Sciences project is about more than launching a journal. It is about exploiting the potential of a new medium to communicate and share the results of scientific research. The digital medium has had profound and widespread effects on the way we conduct our lives, and yet has had limited impact on journals and research communication in general. Indeed, this area has been severely limited by the paradigm of the printed medium and outmoded print-based business models. The eLife Sciences Board will also therefore assess the progress of the initiative in terms of how journals and publishing practices change more broadly. This Annual Report includes the audited accounts of eLife Sciences Publications Limited. Consistent with the far-reaching ambitions of the project, the founders have committed more than £15 million to its launch and development. We would like to acknowledge the important contributions to the eLife Sciences Board from two colleagues who have moved on to other positions: Sir Mark Walport, who led the W ellcome Trust for 10 years and was instrumental in the conception and early life of the project; and Elizabeth Marincola, who chaired the Board for our first year. Sir Mark is currently the UK Government’s Chief Science Advisor, and Elizabeth has become the CEO of the open-access publisher, PLOS. We wish them both well in their new endeavours. The Board could not be happier with the start that eLife Sciences has made, and we congratulate all involved, most especially the researchers who have taken part – as editors, reviewers or authors – in this unique opportunity to transform the dissemination of knowledge and stimulate scientific innovation. Toby Coppel Chairman, Board of Directors eLife Sciences To view the complete eLife Sciences 2012 Annual Report, please visit 2012.elifesciences.org. eLife Sciences Publications, Ltd Financial Statements December 31, 2012 (With Independent Auditors’ Report Thereon) eLife Sciences Publications, Ltd Financial Statements December 31, 2012 Table of Contents Page Independent Auditors’ Report 1 Balance Sheet 2 Statement of Activities 3 Statement of Functional Expenses 4 Statement of Cash Flows 5 Notes to Financial Statements 6 – 11 Independent Auditors’ Report The Board of Directors eLife Sciences Publications, Ltd: Report on the Financial Statements We have audited the accompanying financial statements of eLife Sciences Publications, Ltd, which comprise the balance sheet as of December 31, 2012, and the related statements of activities, functional expenses, and cash flows for the year then ended, and the related notes to the financial statements. Management's Responsibility for the Financial Statements Management is responsible for the preparation and fair presentation of these financial statements in accordance with U.S. generally accepted accounting principles; this includes the design, implementation, and maintenance of internal control relevant to the preparation and fair presentation of financial statements that are free from material misstatement, whether due to fraud or error. Auditors’ Responsibility Our responsibility is to express an opinion on these financial statements based on our audit. We conducted our audit in accordance with auditing standards generally accepted in the United States of America. Those standards require that we plan and perform the audit to obtain reasonable assurance about whether the financial statements are free from material misstatement. An audit involves performing procedures to obtain audit evidence about the amounts and disclosures in the financial statements. The procedures selected depend on the auditors’ judgment, including the assessment of the risks of material misstatement of the financial statements, whether due to fraud or error. In making those risk assessments, the auditor considers internal control relevant to the entity's preparation and fair presentation of the financial statements in order to design audit procedures that are appropriate in the circumstances, but not for the purpose of expressing an opinion on the effectiveness of the entity's internal control. Accordingly, we express no such opinion. An audit also includes evaluating the appropriateness of accounting policies used and the reasonableness of significant accounting estimates made by management, as well as evaluating the overall presentation of the financial statements. We believe that the audit evidence we have obtained is sufficient and appropriate to provide a basis for our audit opinion. Opinion In our opinion, the financial statements referred to above present fairly in all material respects, the financial position of eLife Sciences Publications Ltd as of December 31, 2012, and the results of its operations and its cash flows for the year then ended in accordance with U.S. generally accepted accounting principles. Justin Shakespeare, Certified Public Accountant, licensed auditor State of California for and on behalf of KPMG LLP Cambridge, United Kingdom July 12, 2013 eLife Sciences Publications, Ltd Balance Sheet December 31, 2012 (In thousands) Assets 2012 Current assets: Cash and cash equivalents £ 1,874 Other current assets 202 Total current assets 2,076 Property, plant, and equipment: Machinery and equipment 22 Leasehold improvements nil 22 Less accumulated depreciation and amortization (4) Net property, plant, and equipment 18 Total assets £ 2,094 Liabilities and Net Assets Current liabilities: Trade accounts payable £ 117 Accrued expenses 431 Deferred income 549 Other liabilities 15 Total current liabilities 1,112 Net assets: Unrestricted net assets 982 Total net assets 982 Total liabilities and net assets £ 982 None of the net assets of the Company are either temporarily or permanently restricted. 2 (Continued) eLife Sciences Publications, Ltd Statement of Activities Year ended December 31, 2012 (In thousands) 2012 Revenues: Contributions £ 3,231 Other Income 1 Total revenues 3,232 Expenses: Program services: Journal expenses 1,721 Supporting services: Management and general 529 Total services expenses 2,250 Change in net assets 982 Net assets, beginning of year nil Net assets, end of year 982 All activities relate to changes in unrestricted net assets. 3 (Continued) eLife Sciences Publications, Ltd Statement of Functional Expenses Year ended December 31, 2012 (In thousands) Program services Supporting Total functional services expenses Journal expenses Management and general Salaries £ 397 89 486 Payroll taxes 36 10 46 Employee benefits 21 6 27 Occupancy 55 17 72 Editorial costs
Recommended publications
  • PLK-1 Promotes the Merger of the Parental Genome Into A
    RESEARCH ARTICLE PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly Griselda Velez-Aguilera1, Sylvia Nkombo Nkoula1, Batool Ossareh-Nazari1, Jana Link2, Dimitra Paouneskou2, Lucie Van Hove1, Nicolas Joly1, Nicolas Tavernier1, Jean-Marc Verbavatz3, Verena Jantsch2, Lionel Pintard1* 1Programme Equipe Labe´llise´e Ligue Contre le Cancer - Team Cell Cycle & Development - Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France; 2Department of Chromosome Biology, Max Perutz Laboratories, University of Vienna, Vienna Biocenter, Vienna, Austria; 3Universite´ de Paris, CNRS, Institut Jacques Monod, Paris, France Abstract Life of sexually reproducing organisms starts with the fusion of the haploid egg and sperm gametes to form the genome of a new diploid organism. Using the newly fertilized Caenorhabditis elegans zygote, we show that the mitotic Polo-like kinase PLK-1 phosphorylates the lamin LMN-1 to promote timely lamina disassembly and subsequent merging of the parental genomes into a single nucleus after mitosis. Expression of non-phosphorylatable versions of LMN- 1, which affect lamina depolymerization during mitosis, is sufficient to prevent the mixing of the parental chromosomes into a single nucleus in daughter cells. Finally, we recapitulate lamina depolymerization by PLK-1 in vitro demonstrating that LMN-1 is a direct PLK-1 target. Our findings indicate that the timely removal of lamin is essential for the merging of parental chromosomes at the beginning of life in C. elegans and possibly also in humans, where a defect in this process might be fatal for embryo development. *For correspondence: [email protected] Introduction Competing interests: The After fertilization, the haploid gametes of the egg and sperm have to come together to form the authors declare that no genome of a new diploid organism.
    [Show full text]
  • Learning Protein Constitutive Motifs from Sequence Data Je´ Roˆ Me Tubiana, Simona Cocco, Re´ Mi Monasson*
    TOOLS AND RESOURCES Learning protein constitutive motifs from sequence data Je´ roˆ me Tubiana, Simona Cocco, Re´ mi Monasson* Laboratory of Physics of the Ecole Normale Supe´rieure, CNRS UMR 8023 & PSL Research, Paris, France Abstract Statistical analysis of evolutionary-related protein sequences provides information about their structure, function, and history. We show that Restricted Boltzmann Machines (RBM), designed to learn complex high-dimensional data and their statistical features, can efficiently model protein families from sequence information. We here apply RBM to 20 protein families, and present detailed results for two short protein domains (Kunitz and WW), one long chaperone protein (Hsp70), and synthetic lattice proteins for benchmarking. The features inferred by the RBM are biologically interpretable: they are related to structure (residue-residue tertiary contacts, extended secondary motifs (a-helixes and b-sheets) and intrinsically disordered regions), to function (activity and ligand specificity), or to phylogenetic identity. In addition, we use RBM to design new protein sequences with putative properties by composing and ’turning up’ or ’turning down’ the different modes at will. Our work therefore shows that RBM are versatile and practical tools that can be used to unveil and exploit the genotype–phenotype relationship for protein families. DOI: https://doi.org/10.7554/eLife.39397.001 Introduction In recent years, the sequencing of many organisms’ genomes has led to the collection of a huge number of protein sequences, which are catalogued in databases such as UniProt or PFAM Finn et al., 2014). Sequences that share a common ancestral origin, defining a family (Figure 1A), *For correspondence: are likely to code for proteins with similar functions and structures, providing a unique window into [email protected] the relationship between genotype (sequence content) and phenotype (biological features).
    [Show full text]
  • TOOLS and RESOURCES: a Mammalian Enhancer Trap
    1 TOOLS AND RESOURCES: 2 3 A Mammalian Enhancer trap Resource for Discovering and Manipulating Neuronal Cell Types. 4 Running title 5 Cell Type Specific Enhancer Trap in Mouse Brain 6 7 Yasuyuki Shima1, Ken Sugino2, Chris Hempel1,3, Masami Shima1, Praveen Taneja1, James B. 8 Bullis1, Sonam Mehta1,, Carlos Lois4, and Sacha B. Nelson1,5 9 10 1. Department of Biology and National Center for Behavioral Genomics, Brandeis 11 University, Waltham, MA 02454-9110 12 2. Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive 13 Ashburn, VA 20147 14 3. Current address: Galenea Corporation, 50-C Audubon Rd. Wakefield, MA 01880 15 4. California Institute of Technology, Division of Biology and Biological 16 Engineering Beckman Institute MC 139-74 1200 East California Blvd Pasadena CA 17 91125 18 5. Corresponding author 19 1 20 ABSTRACT 21 There is a continuing need for driver strains to enable cell type-specific manipulation in the 22 nervous system. Each cell type expresses a unique set of genes, and recapitulating expression of 23 marker genes by BAC transgenesis or knock-in has generated useful transgenic mouse lines. 24 However since genes are often expressed in many cell types, many of these lines have relatively 25 broad expression patterns. We report an alternative transgenic approach capturing distal 26 enhancers for more focused expression. We identified an enhancer trap probe often producing 27 restricted reporter expression and developed efficient enhancer trap screening with the PiggyBac 28 transposon. We established more than 200 lines and found many lines that label small subsets of 29 neurons in brain substructures, including known and novel cell types.
    [Show full text]
  • A Unicellular Relative of Animals Generates a Layer of Polarized Cells
    RESEARCH ARTICLE A unicellular relative of animals generates a layer of polarized cells by actomyosin- dependent cellularization Omaya Dudin1†*, Andrej Ondracka1†, Xavier Grau-Bove´ 1,2, Arthur AB Haraldsen3, Atsushi Toyoda4, Hiroshi Suga5, Jon Bra˚ te3, In˜ aki Ruiz-Trillo1,6,7* 1Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Barcelona, Spain; 2Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom; 3Section for Genetics and Evolutionary Biology (EVOGENE), Department of Biosciences, University of Oslo, Oslo, Norway; 4Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Japan; 5Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Hiroshima, Japan; 6Departament de Gene`tica, Microbiologia i Estadı´stica, Universitat de Barcelona, Barcelona, Spain; 7ICREA, Barcelona, Spain Abstract In animals, cellularization of a coenocyte is a specialized form of cytokinesis that results in the formation of a polarized epithelium during early embryonic development. It is characterized by coordinated assembly of an actomyosin network, which drives inward membrane invaginations. However, whether coordinated cellularization driven by membrane invagination exists outside animals is not known. To that end, we investigate cellularization in the ichthyosporean Sphaeroforma arctica, a close unicellular relative of animals. We show that the process of cellularization involves coordinated inward plasma membrane invaginations dependent on an *For correspondence: actomyosin network and reveal the temporal order of its assembly. This leads to the formation of a [email protected] (OD); polarized layer of cells resembling an epithelium. We show that this stage is associated with tightly [email protected] (IR-T) regulated transcriptional activation of genes involved in cell adhesion.
    [Show full text]
  • Evolution of Gene Dosage on the Z-Chromosome of Schistosome
    RESEARCH ARTICLE Evolution of gene dosage on the Z-chromosome of schistosome parasites Marion A L Picard1, Celine Cosseau2, Sabrina Ferre´ 3, Thomas Quack4, Christoph G Grevelding4, Yohann Coute´ 3, Beatriz Vicoso1* 1Institute of Science and Technology Austria, Klosterneuburg, Austria; 2University of Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, University Montpellier, Perpignan, France; 3Universite´ Grenoble Alpes, CEA, Inserm, BIG-BGE, Grenoble, France; 4Institute for Parasitology, Biomedical Research Center Seltersberg, Justus- Liebig-University, Giessen, Germany Abstract XY systems usually show chromosome-wide compensation of X-linked genes, while in many ZW systems, compensation is restricted to a minority of dosage-sensitive genes. Why such differences arose is still unclear. Here, we combine comparative genomics, transcriptomics and proteomics to obtain a complete overview of the evolution of gene dosage on the Z-chromosome of Schistosoma parasites. We compare the Z-chromosome gene content of African (Schistosoma mansoni and S. haematobium) and Asian (S. japonicum) schistosomes and describe lineage-specific evolutionary strata. We use these to assess gene expression evolution following sex-linkage. The resulting patterns suggest a reduction in expression of Z-linked genes in females, combined with upregulation of the Z in both sexes, in line with the first step of Ohno’s classic model of dosage compensation evolution. Quantitative proteomics suggest that post-transcriptional mechanisms do not play a major role in balancing the expression of Z-linked genes. DOI: https://doi.org/10.7554/eLife.35684.001 *For correspondence: [email protected] Introduction In species with separate sexes, genetic sex determination is often present in the form of differenti- Competing interests: The ated sex chromosomes (Bachtrog et al., 2014).
    [Show full text]
  • Global Cellular Response to Chemotherapy- Induced
    RESEARCH ARTICLE elife.elifesciences.org Global cellular response to chemotherapy- induced apoptosis Arun P Wiita1,2, Etay Ziv3,4, Paul J Wiita5, Anatoly Urisman1,6, Olivier Julien1, Alma L Burlingame1, Jonathan S Weissman3,7, James A Wells1,3* 1Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States; 2Department of Laboratory Medicine, University of California, San Francisco, San Francisco, United States; 3Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States; 4Department of Radiology, University of California, San Francisco, San Francisco, United States; 5Department of Physics, The College of New Jersey, Ewing, United States; 6Department of Pathology, University of California, San Francisco, San Francisco, United States; 7Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, United States Abstract How cancer cells globally struggle with a chemotherapeutic insult before succumbing to apoptosis is largely unknown. Here we use an integrated systems-level examination of transcription, translation, and proteolysis to understand these events central to cancer treatment. As a model we study myeloma cells exposed to the proteasome inhibitor bortezomib, a first-line therapy. Despite robust transcriptional changes, unbiased quantitative proteomics detects production of only a few critical anti-apoptotic proteins against a background of general translation inhibition. Simultaneous ribosome profiling further reveals potential translational regulation of stress response genes. Once the apoptotic machinery is engaged, degradation by caspases is largely independent of upstream bortezomib effects. Moreover, previously uncharacterized non-caspase proteolytic events also participate in cellular deconstruction. Our systems-level data also support co-targeting the anti-apoptotic regulator HSF1 to promote cell death by bortezomib.
    [Show full text]
  • Diversification of the Caenorhabditis Heat Shock Response by Helitron Transposable Elements Jacob M Garrigues, Brian V Tsu, Matthew D Daugherty, Amy E Pasquinelli*
    RESEARCH ARTICLE Diversification of the Caenorhabditis heat shock response by Helitron transposable elements Jacob M Garrigues, Brian V Tsu, Matthew D Daugherty, Amy E Pasquinelli* Division of Biology, University of California, San Diego, San Diego, United States Abstract Heat Shock Factor 1 (HSF-1) is a key regulator of the heat shock response (HSR). Upon heat shock, HSF-1 binds well-conserved motifs, called Heat Shock Elements (HSEs), and drives expression of genes important for cellular protection during this stress. Remarkably, we found that substantial numbers of HSEs in multiple Caenorhabditis species reside within Helitrons, a type of DNA transposon. Consistent with Helitron-embedded HSEs being functional, upon heat shock they display increased HSF-1 and RNA polymerase II occupancy and up-regulation of nearby genes in C. elegans. Interestingly, we found that different genes appear to be incorporated into the HSR by species-specific Helitron insertions in C. elegans and C. briggsae and by strain-specific insertions among different wild isolates of C. elegans. Our studies uncover previously unidentified targets of HSF-1 and show that Helitron insertions are responsible for rewiring and diversifying the Caenorhabditis HSR. Introduction Heat Shock Factor 1 (HSF-1) is a highly conserved transcription factor that serves as a key regulator of the heat shock response (HSR) (Vihervaara et al., 2018). In response to elevated temperatures, HSF-1 binds well-conserved motifs, termed heat shock elements (HSEs), and drives the transcription *For correspondence: of genes important for mitigating the proteotoxic effects of heat stress. For example, HSF-1 pro- [email protected] motes the expression of heat-shock proteins (HSPs) that act as chaperones to prevent HS-induced misfolding and aggregation of proteins (Vihervaara et al., 2018).
    [Show full text]
  • Origin of a Folded Repeat Protein from an Intrinsically Disordered Ancestor
    RESEARCH ARTICLE Origin of a folded repeat protein from an intrinsically disordered ancestor Hongbo Zhu, Edgardo Sepulveda, Marcus D Hartmann, Manjunatha Kogenaru†, Astrid Ursinus, Eva Sulz, Reinhard Albrecht, Murray Coles, Jo¨ rg Martin, Andrei N Lupas* Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tu¨ bingen, Germany Abstract Repetitive proteins are thought to have arisen through the amplification of subdomain- sized peptides. Many of these originated in a non-repetitive context as cofactors of RNA-based replication and catalysis, and required the RNA to assume their active conformation. In search of the origins of one of the most widespread repeat protein families, the tetratricopeptide repeat (TPR), we identified several potential homologs of its repeated helical hairpin in non-repetitive proteins, including the putatively ancient ribosomal protein S20 (RPS20), which only becomes structured in the context of the ribosome. We evaluated the ability of the RPS20 hairpin to form a TPR fold by amplification and obtained structures identical to natural TPRs for variants with 2–5 point mutations per repeat. The mutations were neutral in the parent organism, suggesting that they could have been sampled in the course of evolution. TPRs could thus have plausibly arisen by amplification from an ancestral helical hairpin. DOI: 10.7554/eLife.16761.001 *For correspondence: andrei. [email protected] Introduction † Present address: Department Most present-day proteins arose through the combinatorial shuffling and differentiation of a set of of Life Sciences, Imperial College domain prototypes. In many cases, these prototypes can be traced back to the root of cellular life London, London, United and have since acted as the primary unit of protein evolution (Anantharaman et al., 2001; Kingdom Apic et al., 2001; Koonin, 2003; Kyrpides et al., 1999; Orengo and Thornton, 2005; Ponting and Competing interests: The Russell, 2002; Ranea et al., 2006).
    [Show full text]
  • Fncas9-Based CRISPR Diagnostic for Rapid and Accurate Detection
    TOOLS AND RESOURCES FnCas9-based CRISPR diagnostic for rapid and accurate detection of major SARS- CoV-2 variants on a paper strip Manoj Kumar1,2†, Sneha Gulati1,2†, Asgar H Ansari1,2, Rhythm Phutela1,2, Sundaram Acharya1,2, Mohd Azhar1,2, Jayaram Murthy1,2, Poorti Kathpalia1,2, Akshay Kanakan1, Ranjeet Maurya1,2, Janani Srinivasa Vasudevan1, Aparna S1, Rajesh Pandey1,2, Souvik Maiti1,2,3*, Debojyoti Chakraborty1,2* 1CSIR-Institute of Genomics & Integrative Biology, Mathura, India; 2Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India; 3CSIR-National Chemical Laboratory, Pune, India Abstract The COVID-19 pandemic originating in the Wuhan province of China in late 2019 has impacted global health, causing increased mortality among elderly patients and individuals with comorbid conditions. During the passage of the virus through affected populations, it has undergone mutations, some of which have recently been linked with increased viral load and prognostic complexities. Several of these variants are point mutations that are difficult to diagnose using the gold standard quantitative real-time PCR (qRT-PCR) method and necessitates widespread sequencing which is expensive, has long turn-around times, and requires high viral load for calling mutations accurately. Here, we repurpose the high specificity of Francisella novicida Cas9 (FnCas9) to identify mismatches in the target for developing a lateral flow assay that can be successfully adapted for the simultaneous detection of SARS-CoV-2 infection as well as for detecting point *For correspondence: mutations in the sequence of the virus obtained from patient samples. We report the detection of [email protected] (SM); the S gene mutation N501Y (present across multiple variant lineages of SARS-CoV-2) within an hour [email protected] using lateral flow paper strip chemistry.
    [Show full text]
  • HP1 Proteins Compact DNA Into Mechanically and Positionally Stable Phase Separated Domains
    RESEARCH ARTICLE HP1 proteins compact DNA into mechanically and positionally stable phase separated domains Madeline M Keenen1,2, David Brown3, Lucy D Brennan1, Roman Renger4,5, Harrison Khoo6, Christopher R Carlson2,7, Bo Huang1,3,8, Stephan W Grill4,9, Geeta J Narlikar1*, Sy Redding1,10* 1Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, United States; 2Tetrad Graduate Program, University of California, San Francisco, San Francisco, United States; 3Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States; 4Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; 5German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; 6Department of Mechanical Engineering, Johns Hopkins University, Baltimore, United States; 7Department of Physiology, University of California, San Francisco, San Francisco, United States; 8Chan Zuckerberg Biohub, San Francisco, United States; 9Cluster of Excellence Physics of Life, Technische Universita€t Dresden, Dresden, Germany; 10Marine Biological Laboratory, Woods Hole, United States Abstract In mammals, HP1-mediated heterochromatin forms positionally and mechanically stable genomic domains even though the component HP1 paralogs, HP1a, HP1b, and HP1g, display rapid on-off dynamics. Here, we investigate whether phase-separation by HP1 proteins can explain these biological observations. Using bulk and single-molecule methods, we show that, within phase-separated HP1a-DNA condensates, HP1a acts as a dynamic liquid, while compacted *For correspondence: DNA molecules are constrained in local territories. These condensates are resistant to large forces [email protected] (GJN); b [email protected] (SR) yet can be readily dissolved by HP1 . Finally, we find that differences in each HP1 paralog’s DNA compaction and phase-separation properties arise from their respective disordered regions.
    [Show full text]
  • Structural Basis for Effector Transmembrane Domain Recognition
    RESEARCH ARTICLE Structural basis for effector transmembrane domain recognition by type VI secretion system chaperones Shehryar Ahmad1,2, Kara K Tsang1,2†, Kartik Sachar3†, Dennis Quentin4, Tahmid M Tashin1,2, Nathan P Bullen1,2, Stefan Raunser4, Andrew G McArthur1,2,5, Gerd Prehna3*, John C Whitney1,2,5* 1Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada; 2Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada; 3Department of Microbiology, University of Manitoba, Winnipeg, Canada; 4Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany; 5David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada Abstract Type VI secretion systems (T6SSs) deliver antibacterial effector proteins between neighboring bacteria. Many effectors harbor N-terminal transmembrane domains (TMDs) implicated in effector translocation across target cell membranes. However, the distribution of these TMD-containing effectors remains unknown. Here, we discover prePAAR, a conserved motif found in over 6000 putative TMD-containing effectors encoded predominantly by 15 genera of Proteobacteria. Based on differing numbers of TMDs, effectors group into two distinct classes that both require a member of the Eag family of T6SS chaperones for export. Co-crystal structures of *For correspondence: class I and class II effector TMD-chaperone complexes from Salmonella Typhimurium and [email protected] (GP); Pseudomonas aeruginosa, respectively, reveals that Eag chaperones mimic transmembrane helical [email protected] (JCW) packing to stabilize effector TMDs. In addition to participating in the chaperone-TMD interface, we †These authors contributed find that prePAAR residues mediate effector-VgrG spike interactions. Taken together, our findings equally to this work reveal mechanisms of chaperone-mediated stabilization and secretion of two distinct families of T6SS membrane protein effectors.
    [Show full text]
  • Letter from the Chairman
    Letter from the Chairman For our inaugural annual report, I am thrilled to describe the tremendous progress that eLife Sciences has achieved during its first year of operation. In June 2011, the Howard Hughes Medical Institute, the Max Planck Society, and the Wellcome Trust announced eLife Sciences – a disruptive, refreshing new model for the publishing and dissemination of cutting-edge scientific research. It is built on digital technologies, and driven by the needs of academic science, the research community, and the broader population interested in science. The mission of eLife Sciences is to establish a leading journal for the publication of advancements in the life and biomedical sciences, using active researchers to assess the science efficiently and quickly, and leveraging the power of digital media to bring the work to life and make it openly accessible in multiple dimensions to a global audience. The Board is very proud of the eLife Sciences team’s accomplishments in 2012, including the initial development and operation of the journal and the! warm and open reception from the research community. Critical to eLife Sciences’ success has been the driving force of our talented academic editorial team. Led by Editor-in-Chief Randy Schekman (University of California at Berkeley, USA), and Deputy Editors Fiona Watt (King’s College, London, UK) and Detlef Weigel (Max Planck Institute for Developmental Biology, Germany) the team has devised an open and transparent editorial process that has been welcomed by the scientific community. This process ensures that new submissions are assessed swiftly and fairly, and that the editorial feedback after peer review is focused on essential revision requests.
    [Show full text]