Intersection Graph in Traffic Control Problems

Total Page:16

File Type:pdf, Size:1020Kb

Intersection Graph in Traffic Control Problems International Journal of Mathematics and Computer Applications Research (IJMCAR) ISSN 2249-6955 Vol. 3, Issue 1, Mar 2013, 265-270 © TJPRC Pvt. Ltd. INTERSECTION GRAPH IN TRAFFIC CONTROL PROBLEMS ARUN KUMAR BARUAH & NIKY BARUAH Department of Mathematics, Dibrugarh University, Dibrugarh, Assam, India ABSTRACT A traffic control problem is studied with the help of intersection graph. The compatible streams of traffic are allowed to get overlapping arcs; which is also an intersection graph. The solution of the traffic control problem at an intersection is obtained by dividing the cliques of the intersection graph and phasing of traffic lights is done by representing the cliques of the intersection graph as signal groups. KEYWORDS: Circular Arc Graph, Intersection Graph, Interval Graph, Signal Group, Traffic Control INTRODUCTION The increase in urbanization and traffic congestion creates an urgent need to operate our transportation system with maximum efficiency [3], [8]. As traffic volumes continues to increase, the streets become more and more congested. One of the most cost effective measures for dealing with this problem is traffic signal control. Traffic signal retiming and co-ordination of existing signal have been proven to bring about substantial reductions in traffic delay, considerable energy saving and consequently huge reduction in travel time and increased safety for the public. The control measures introduced to improve traffic performance in road traffic include speed limit control, ramp metering, user information aiming at minimizing the number and the severity of accidents. On the other hand, introduction of electronics and computer systems in vehicle technologies have significantly contributed to safety and comfort. Historically, road authorities responded to the increasing demand by adding capacity, building new roads or expanding the existing ones [10]. With the high cost and constraints on building conventional infrastructure, maximising the effectiveness of the existing system including capitalising on new technologies such as Intelligent Transportation System (ITS) has become a new focus for traffic control at an intersection [9]. Given demographic trends and the growing demands for improved system performance, road authorities are changing the way they plan and operate their transport systems and are focusing more intensely on road network operations. More importantly, the transportation world has become increasingly user-driven. Traffic users are concerned with mobility and accessibility. They want transportation choices and real time information in order to make informed decisions. Improved travel time and congestion relief are desired. Greater reliability of the transportation system and the minimisation of unpredictable delays, greater safety and security are also highly expected by the traffic users or the participants. Control of traffic signals for efficient movement of traffic on urban streets constitutes a challenging part of an urban traffic control system. Traffic signal control varies in complexity, from simple systems that use historic data to determine fixed timing plans, to adaptive signal control, which optimizes timing plans for a network of signals according to traffic conditions in real time. Some of the common traffic signal operations for controlling the traffic flow are cycle time adjustment, split adjustment, where split is defined as the fraction of cycle time that is allocated to each phase for a set of traffic movements. 266 Arun Kumar Baruah & Niky Baruah Traffic control at an intersection or network is thus much more than keeping the system running. It is about optimising the system performance measures that is to adopt performance measures that will evaluate the efficiency and effectiveness of the road network thus improving the transportation system performance [6]. INTERSECTION GRAPH Let F be a family of non empty sets. The intersection graph of F is obtained by representing each set in F by a vertex and connecting two vertices by an edge if and only if their corresponding set intersects [4]. Formally an intersection graph is defined as: An undirected graph G= (V, E) formed from a family of sets, ; i = 0,1,2,... by creating one vertex for each set and connecting two vertices and by an edge whenever the corresponding two sets have a non empty intersection, that is E(G) = } For example, a family of sets = { a, b, c, d } = { c, e, h } = { e, f, g } = { h} and its corresponding intersection graph (Figure 1), Figure 1: An Intersection Graph where , , and are the sets defined above. Any undirected graph can be represented as an intersection graph: for each vertex of G form a set consisting of the edges incident to ; then two such sets have a non empty intersection if and only if the corresponding vertices share an edge. Hence the following theorem can be stated as: Theorem Every graph is isomorphic to the intersection graph of some family of sets [4]. Intersection Graph in Traffic Control Problems 267 The problem of characterizing the intersection graphs of families of sets having some specific topological or other pattern is often very interesting and frequently have applications to the real world. The intersection graph of a family of intervals on a linearly ordered set (like the real line) is called an interval graph. If these intervals are required to have unit length, then we have a unit interval graph; a proper interval graph is constructed from a family of intervals on a line such that no interval properly contains another. If the two ends of the line are joined thus forming a circle, the intervals will becomes arcs on the circle. Allowing arcs to slip over and include the points of connection, we obtain a class of intersection graphs called the circular arc graph which properly contains the interval graph [5] In graph theory, an intersection graph is a graph that represents the pattern of intersections of a family of sets. Any graph may be represented as an intersection graph, but some important special classes of graphs may be defined by the types of sets that are used to form an intersection representation of them. FORMULATION OF THE PROBLEM Let us consider a traffic intersection with traffic streams a, b, c, d, e, f, g as shown in the Figure 2. Certain streams are judged to be compatible with each other in the sense that they can move through the intersection at the same time without dangerous consequences. The decision about the compatibility is made before time, by a traffic engineer and may be based on estimated volume of traffic in a steam as well as the traffic pattern. The compatibility information can be summarized in a graph called the compatibility graph [7]. The vertices of the graph are the traffic streams and two streams are joined by an edge if and only if they are compatible i.e. can be allowed to move simultaneously without any conflict. Here in this paper we shall use intersection graph for phasing of traffic lights at an intersection and show that it can be efficiently used to model a traffic control problem. As cliques of a compatibility graph represent a solution to the control problem, here we shall consider the cliques of the intersection graph as a solution and phasing of traffic lights is done by dividing the cliques as signal groups [1]. Figure 2: A Traffic Intersection with Seven Streams The above intersection can be represented by a compatibility graph G, where the traffic streams which can simultaneously move together will be joined by an edge and the streams represents the vertices of the compatibility graph as shown in the Figure 3. 268 Arun Kumar Baruah & Niky Baruah Figure 3: Compatibility Graph G of the above Intersection The above compatibility graph G can be represented as assignment of an arc of a circle to each traffic stream so that only compatible traffic streams get overlapping arcs. In traffic light phasing, we wish to assign a period of time to each stream during which it receives green light and do it such a way that only compatible streams can get green light at the same time. Figure 4: A Feasible Green Light Assignment The intersection graph corresponding to any feasible green light assignment (Figure 4), is a subgraph of the compatibility graph. It is not necessarily a generated subgraph, but it corresponds to a subgraph with same vertex set as the compatibility graph, but one with perhaps some of the edges deleted, so called a spanning subgraph. The above diagram of feasible green light assignment can be represented by intersection graph H (Figure 5) which corresponds to the arcs of the circle. Figure 5: Intersection Graph H Corresponding to the Feasible Green Light Assignment Intersection Graph in Traffic Control Problems 269 SOLUTION AND PHASING OF TRAFFIC LIGHTS The cliques of the above intersection graph are: = { a, b, e} = { b, d, e} = { c, g} = { f, g} The cliques of the intersection graph H corresponds to the phase i.e. there are four phases and if we consider the cycle time to be 60 seconds each can be allowed to move once in the cycle which is the trivial solution [2]. But a better solution can be obtained if we wish to minimise the total amount of waiting time. Let us consider the cliques of the intersection graph H as the vertices of the graph and an edge joining the vertices if there exist a non empty intersection. Thus the cliques set correspond to the family of sets. i.e. F = { , , , } where ; i = 1,2,3,4 and we associate a graph with F called the intersection graph (Figure 6). Figure 6: Intersection Graph of the Cliques Now if we want to phase these set of cliques we can put and in a set and and in another set i.e. = { , } = { , } ; where , , and are as defined earlier. Again considering the cycle time to be 60 seconds; each of the signal groups can be allowed to move for 30 seconds each which is a better solution as compared to the earlier one as most of the traffic streams are moving which reduces the waiting time.
Recommended publications
  • Mutant Knots and Intersection Graphs 1 Introduction
    Mutant knots and intersection graphs S. V. CHMUTOV S. K. LANDO We prove that if a finite order knot invariant does not distinguish mutant knots, then the corresponding weight system depends on the intersection graph of a chord diagram rather than on the diagram itself. Conversely, if we have a weight system depending only on the intersection graphs of chord diagrams, then the composition of such a weight system with the Kontsevich invariant determines a knot invariant that does not distinguish mutant knots. Thus, an equivalence between finite order invariants not distinguishing mutants and weight systems depending on intersections graphs only is established. We discuss relationship between our results and certain Lie algebra weight systems. 57M15; 57M25 1 Introduction Below, we use standard notions of the theory of finite order, or Vassiliev, invariants of knots in 3-space; their definitions can be found, for example, in [6] or [14], and we recall them briefly in Section 2. All knots are assumed to be oriented. Two knots are said to be mutant if they differ by a rotation of a tangle with four endpoints about either a vertical axis, or a horizontal axis, or an axis perpendicular to the paper. If necessary, the orientation inside the tangle may be replaced by the opposite one. Here is a famous example of mutant knots, the Conway (11n34) knot C of genus 3, and Kinoshita–Terasaka (11n42) knot KT of genus 2 (see [1]). C = KT = Note that the change of the orientation of a knot can be achieved by a mutation in the complement to a trivial tangle.
    [Show full text]
  • Representations of Edge Intersection Graphs of Paths in a Tree Martin Charles Golumbic, Marina Lipshteyn, Michal Stern
    Representations of Edge Intersection Graphs of Paths in a Tree Martin Charles Golumbic, Marina Lipshteyn, Michal Stern To cite this version: Martin Charles Golumbic, Marina Lipshteyn, Michal Stern. Representations of Edge Intersection Graphs of Paths in a Tree. 2005 European Conference on Combinatorics, Graph Theory and Appli- cations (EuroComb ’05), 2005, Berlin, Germany. pp.87-92. hal-01184396 HAL Id: hal-01184396 https://hal.inria.fr/hal-01184396 Submitted on 14 Aug 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. EuroComb 2005 DMTCS proc. AE, 2005, 87–92 Representations of Edge Intersection Graphs of Paths in a Tree Martin Charles Golumbic1,† Marina Lipshteyn1 and Michal Stern1 1Caesarea Rothschild Institute, University of Haifa, Haifa, Israel Let P be a collection of nontrivial simple paths in a tree T . The edge intersection graph of P, denoted by EP T (P), has vertex set that corresponds to the members of P, and two vertices are joined by an edge if the corresponding members of P share a common edge in T . An undirected graph G is called an edge intersection graph of paths in a tree, if G = EP T (P) for some P and T .
    [Show full text]
  • NP-Complete and Cliques
    CSC373— Algorithm Design, Analysis, and Complexity — Spring 2018 Tutorial Exercise 10: Cliques and Intersection Graphs for Intervals 1. Clique. Given an undirected graph G = (V,E) a clique (pronounced “cleek” in Canadian, heh?) is a subset of vertices K ⊆ V such that, for every pair of distinct vertices u,v ∈ K, the edge (u,v) is in E. See Clique, Graph Theory, Wikipedia. A second concept that will be useful is the notion of a complement graph Gc. We say Gc is the complement (graph) of G = (V,E) iff Gc = (V,Ec), where Ec = {(u,v) | u,v ∈ V,u 6= v, and (u,v) ∈/ E} (see Complement Graph, Wikipedia). That is, the complement graph Gc is the graph over the same set of vertices, but it contains all (and only) the edges that are not in E. Finally, a clique K ⊂ V of G =(V,E) is said to be a maximal clique iff there is no superset W such that K ⊂ W ⊆ V and W is a clique of G. Consider the decision problem: Clique: Given an undirected graph and an integer k, does there exist a clique K of G with |K|≥ k? Clearly, Clique is in NP. We wish to show that Clique is NP-complete. To do this, it is convenient to first note that the independent set problem IndepSet(G, k) is very closely related to the Clique problem for the complement graph, i.e., Clique(Gc,k). Use this strategy to show: IndepSet ≡p Clique. (1) 2. Consider the interval scheduling problem we started this course with (which is also revisited in Assignment 3, Question 1).
    [Show full text]
  • On Intersection Graphs of Graphs and Hypergraphs: a Survey
    Intersection Graphs of Graphs and Hypergraphs: A Survey Ranjan N. Naika aDepartment of Mathematics, Lincoln University, PA, USA [email protected] Abstract The survey is devoted to the developmental milestones on the characterizations of intersection graphs of graphs and hypergraphs. The theory of intersection graphs of graphs and hypergraphs has been a classical topic in the theory of special graphs. To conclude, at the end, we have listed some open problems posed by various authors whose work has contributed to this survey and also the new trends coming out of intersection graphs of hyeprgraphs. Keywords: Hypergraphs, Intersection graphs, Line graphs, Representative graphs, Derived graphs, Algorithms (ALG),, Forbidden induced subgraphs (FIS), Krausz partitions, Eigen values Mathematics Subject Classification : 06C62, 05C65, 05C75, 05C85, 05C69 1. Introduction We follow the terminology of Berge, C. [3] and [4]. This survey does not address intersection graphs of other types of graphs such as interval graphs etc. An introduction of intersection graphs of interval graphs etc. are available in Pal [40]. A graph or a hypergraph is a pair (V, E), where V is the vertex set and E is the edge set a family of nonempty subsets of V. Two edges of a hypergraph are l -intersecting if they share at least l common vertices. This concept was studied in [6] and [18] by Bermond, Heydemann and Sotteau. A hypergraph H is called a k-uniform hypergraph if its edges have k number of vertices. A hypergraph is linear if any two edges have at most one common vertex. A 2-uniform linear hypergraph is called a graph or a linear graph.
    [Show full text]
  • An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling
    An Algorithmic Study of Fully Dynamic Independent Sets for Map Labeling Sujoy Bhore Algorithms and Complexity Group, TU Wien, Austria [email protected] Guangping Li Algorithms and Complexity Group, TU Wien, Austria [email protected] Martin Nöllenburg Algorithms and Complexity Group, TU Wien, Austria [email protected] Abstract Map labeling is a classical problem in cartography and geographic information systems (GIS) that asks to place labels for area, line, and point features, with the goal to select and place the maximum number of independent, i.e., overlap-free, labels. A practically interesting case is point labeling with axis-parallel rectangular labels of common size. In a fully dynamic setting, at each time step, either a new label appears or an existing label disappears. Then, the challenge is to maintain a maximum cardinality subset of pairwise independent labels with sub-linear update time. Motivated by this, we study the maximal independent set (MIS) and maximum independent set (Max-IS) problems on fully dynamic (insertion/deletion model) sets of axis-parallel rectangles of two types – (i) uniform height and width and (ii) uniform height and arbitrary width; both settings can be modeled as rectangle intersection graphs. We present the first deterministic algorithm for maintaining a MIS (and thus a 4-approximate Max-IS) of a dynamic set of uniform rectangles with amortized sub-logarithmic update time. This breaks the natural barrier of Ω(∆) update time (where ∆ is the maximum degree in the graph) for vertex updates presented by Assadi et al. (STOC 2018). We continue by investigating Max-IS and provide a series of deterministic dynamic approximation schemes.
    [Show full text]
  • Treewidth and Pathwidth of Permutation Graphs
    Treewidth and pathwidth of permutation graphs Citation for published version (APA): Bodlaender, H. L., Kloks, A. J. J., & Kratsch, D. (1992). Treewidth and pathwidth of permutation graphs. (Universiteit Utrecht. UU-CS, Department of Computer Science; Vol. 9230). Utrecht University. Document status and date: Published: 01/01/1992 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.
    [Show full text]
  • Recognizing Some Subclasses of Vertex Intersection Graphs of 0-Bend Paths in a Grid⋆
    Recognizing some subclasses of vertex intersection graphs of 0-bend paths in a grid⋆ Steven Chaplick1, Elad Cohen2, and Juraj Stacho2 1 Department of Computer Science, University of Toronto, 10 Kings College Road, Toronto, Ontario M5S 3G4, Canada, ([email protected]) 2 Caesarea Rothschild Institute, University of Haifa, Mt. Carmel, Haifa, Israel 31905 ([email protected] and [email protected]) Abstract. We investigate graphs that can be represented as vertex in- tersections of horizontal and vertical paths in a grid, known as B0-VPG graphs. Recognizing these graphs is an NP-hard problem. In light of this, we focus on their subclasses. In the paper, we describe polynomial time algorithms for recognizing chordal B0-VPG graphs, and for recognizing B0-VPG graphs that have a representation on a grid with 2 rows. 1 Introduction A VPG representation† of a graph G is a collection of paths of the two-dimensional grid where the paths represent the vertices of G in such a way that two vertices of G are adjacent if and only if the corresponding paths share at least one vertex. We focus on a special subclass of VPG representations. A B0-VPG representation of G is a VPG representation in which all paths in the collection have no bends. In other words, it is a representation of G by the intersections of orthogonal segments of the plane. Here, we emphasize the grid-based definition in order to focus on some properties of the underlying grid (e.g. size). A graph is a B0-VPG graph if it has a B0-VPG representation.
    [Show full text]
  • Coloring K K-Free Intersection Graphs of Geometric Objects in the Plane
    Coloring Kk-free intersection graphs of geometric objects in the plane ¤ y Jacob Fox János Pach Department of Mathematics Dept. Computer Science Princeton University City College of New York Princeton, NJ 08544, USA New York, NY 10031, USA [email protected] [email protected] ABSTRACT size of the largest clique, and the chromatic number Â(G) The intersection graph of a collection C of sets is a graph of G is the minimum number of colors needed to properly color the vertices of G. To compute or to approximate these on the vertex set C, in which C1;C2 2 C are joined by an parameters is a notoriously di±cult problem [18, 35, 23]. In edge if and only if C1 \ C2 6= ;. Erd}os conjectured that the chromatic number of triangle-free intersection graphs of n this paper, we study some geometric versions of the question. segments in the plane is bounded from above by a constant. The intersection graph G(C) of a family C of sets has ver- Here we show that it is bounded by a polylogarithmic func- tex set C and two sets in C are adjacent if they have non- tion of n, which is the ¯rst nontrivial bound for this problem. empty intersection. The independence number of an inter- More generally, we prove that for any t and k, the chromatic section graph G(C) is often referred to in the literature as the packing number of C. It is well known that the problem number of every Kk-free intersection graph of n curves in the plane, every pair of which have at most t points in common, of computing this parameter, even for intersection graphs of log n c log k families of very simple geometric objects such as unit disks is at most (ct ) , where c is an absolute constant log k or axis-aligned unit squares, is NP-hard [17, 25].
    [Show full text]
  • Coloring Curves That Cross a Fixed Curve
    Discrete & Computational Geometry https://doi.org/10.1007/s00454-018-0031-z Coloring Curves that Cross a Fixed Curve Alexandre Rok1 · Bartosz Walczak2 Received: 4 October 2017 / Revised: 29 August 2018 / Accepted: 2 September 2018 © The Author(s) 2018 Abstract We prove that for every integer t 1, the class of intersection graphs of curves in the plane each of which crosses a fixed curve in at least one and at most t points is χ-bounded. This is essentially the strongest χ-boundedness result one can get for those kind of graph classes. As a corollary, we prove that for any fixed integers k 2 and t 1, every k-quasi-planar topological graph on n vertices with any two edges crossing at most t times has O(n log n) edges. Keywords String graphs · χ-Boundedness · k-Quasi-planar graphs Mathematics Subject Classification 05C62 · 05C15 1 Introduction Overview A curve is a homeomorphic image of the real interval [0, 1] in the plane. The inter- section graph of a family of curves has these curves as vertices and the intersecting Editor in Charge: Kenneth Clarkson Alexandre Rok was partially supported by the Israel Science Foundation Grant 1136/12. Bartosz Walczak was partially supported by the National Science Center of Poland Grant 2015/17/D/ST1/00585. A preliminary version of this paper appeared in: Aronov, B., Katz, M.J. (eds.) 33rd International Symposium on Computational Geometry (SoCG 2017). Leibniz Int. Proc. Inform. (LIPIcs), vol. 77, no. 56, pp. 1–15. Leibniz-Zentrum für Informatik, Dagstuhl (2017). Alexandre Rok [email protected] Bartosz Walczak [email protected] 1 Department of Mathematics, Ben-Gurion University of the Negev, 84105 Be’er Sheva, Israel 2 Department of Theoretical Computer Science, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland 123 Discrete & Computational Geometry pairs of curves as edges.
    [Show full text]
  • Geometric Intersection Patterns and the Theory of Topological Graphs
    Geometric Intersection Patterns and the Theory of Topological Graphs J´anosPach∗ Abstract. The intersection graph of a set system S is a graph on the vertex set S, in which two vertices are connected by an edge if and only if the corresponding sets have nonempty intersection. It was shown by Tietze (1905) that every finite graph is the intersection graph of 3-dimensional convex polytopes. The analogous statement is false in any fixed dimension if the polytopes are allowed to have only a bounded number of faces or are replaced by simple geometric objects that can be described in terms of a bounded number of real parameters. Intersection graphs of various classes of geometric objects, even in the plane, have interesting structural and extremal properties. We survey problems and results on geometric intersection graphs and, more gener- ally, intersection patterns. Many of the questions discussed were originally raised by Berge, Erd}os,Gr¨unbaum, Hadwiger, Tur´an,and others in the context of classical topol- ogy, graph theory, and combinatorics (related, e.g., to Helly's theorem, Ramsey theory, perfect graphs). The rapid development of computational geometry and graph drawing algorithms in the last couple of decades gave further impetus to research in this field. A topological graph is a graph drawn in the plane so that its vertices are represented by points and its edges by possibly intersecting simple continuous curves connecting the corresponding point pairs. We give applications of the results concerning intersection patterns in the theory of topological graphs. Mathematics Subject Classification (2010). Primary 05C35; Secondary 05C62, 52C10.
    [Show full text]
  • Graph Theory
    Graph Theory Perfect Graphs PLANARITY 2 PERFECT GRAPHS Perfect Graphs • A perfect graph is a graph in which the chromatic number of every induced subgraph equals the size of the largest clique of that subgraph (clique number). • An arbitrary graph 퐺 is perfect if and only if we have: ∀ 푆 ⊆ 푉 퐺 휒 퐺 푆 = 휔 퐺 푆 • Theorem 1 (Perfect Graph Theorem) A graph 퐺 is perfect if and only if its complement 퐺 is perfect • Theorem 2 (Strong Perfect Graph Theorem) Perfect graphs are the same as Berge graphs, which are graphs 퐺 where neither 퐺 nor 퐺 contain an induced cycle of odd length 5 or more. 3 PERFECT GRAPHS Perfect Graphs Perfect Comparability Chordal Bipartite Permutation Split Interval Chordal Cograph Bipartite Convex Quasi- Bipartite Thresshold Biconvex Thresshold Bipartite Bipartite 4 Permutation PERFECT GRAPHS Intersection Graphs • Let 퐹 be a family of nonempty sets. The intersection graph of 퐹 is obtained be representing each set in 퐹 by a vertex: 푥 → 푦 ⇔ 푆푋∩푆푌 ≠ ∅ • The intersection graph of a family of intervals on a linearly ordered set (like the real line) is called an Interval graph. • An induced subgraph of an interval graph is an interval graph. 5 PERFECT GRAPHS Intersection Graphs • Let 퐹 be a family of nonempty sets. The intersection graph of 퐹 is obtained be representing each set in 퐹 by a vertex: 푥 → 푦 ⇔ 푆푋∩푆푌 ≠ ∅ • Circular-arc graphs properly contain the internal graphs. 6 PERFECT GRAPHS Intersection Graphs • Let 퐹 be a family of nonempty sets. The intersection graph of 퐹 is obtained be representing each set in 퐹 by a vertex: 푥 → 푦 ⇔ 푆푋∩푆푌 ≠ ∅ • A permutation diagram consists of n points on each of two parallel lines and n straight line segments matching the points.
    [Show full text]
  • Coloring Intersection Graphs of Arc-Connected Sets in the Plane
    Discrete Comput Geom (2014) 52:399–415 DOI 10.1007/s00454-014-9614-5 Coloring Intersection Graphs of Arc-Connected Sets in the Plane Michał Laso´n · Piotr Micek · Arkadiusz Pawlik · Bartosz Walczak Received: 7 February 2014 / Revised: 21 May 2014 / Accepted: 5 July 2014 / Published online: 13 August 2014 © The Author(s) 2014. This article is published with open access at Springerlink.com Abstract A family of sets in the plane is simple if the intersection of any subfamily is arc-connected, and it is pierced by a line L if the intersection of any member with L is a nonempty segment. It is proved that the intersection graphs of simple families of compact arc-connected sets in the plane pierced by a common line have chromatic number bounded by a function of their clique number. Keywords Geometric intersection graphs · Chromatic number · χ-boundedness 1 Introduction A proper coloring of a graph is an assignment of colors to the vertices of the graph such that no two adjacent ones are assigned the same color. The minimum number of colors sufficient to color a graph G properly is called the chromatic number of G and M. Laso´n · P. Micek · A. Pawlik · B. Walczak Theoretical Computer Science Department, Faculty of Mathematics and Computer Science, Jagiellonian University, Kraków, Poland e-mail: [email protected] M. Laso´n e-mail: [email protected] P. Micek e-mail: [email protected] A. Pawlik e-mail: [email protected] M. Laso´n Institute of Mathematics of the Polish Academy of Sciences, Warsaw, Poland M.
    [Show full text]