Native Bunchgrass Response to Prescribed Fire in Ungrazed Mountain Big Sagebrush Ecosystems

Total Page:16

File Type:pdf, Size:1020Kb

Native Bunchgrass Response to Prescribed Fire in Ungrazed Mountain Big Sagebrush Ecosystems Fire Ecology Volume 6, Issue 3, 2010 Ellsworth and Kauffman: Native Bunchgrass Response to Prescribed Fire doi: 10.4996/fireecology.0603086 Page 86 RESEARCH ARTICLE NATIVE BUNCHGRASS RESPONSE TO PRESCRIBED FIRE IN UNGRAZED MOUNTAIN BIG SAGEBRUSH ECOSYSTEMS Lisa M. Ellsworth1* and J. Boone Kauffman2 1Natural Resources and Environmental Management, University of Hawaii at Manoa, 1910 East West Road, Honolulu, Hawaii 96822, USA 2Northern Research Station, USDA Forest Service, 271 Mast Road, Durham, New Hampshire 03824, USA *Corresponding author: Tel.: 001-808-956-6875; e-mail: [email protected] ABSTRACT Fire was historically a dominant ecological process throughout mountain big sagebrush (Artemisia tridentata Nutt. ssp. vaseyana [Rydb.] Beetle) ecosystems of western North America, and the native biota have developed many adaptations to persist in a regime typified by frequent fires. Following spring and fall prescribed fires conducted in sites of different ecological conditions at the Lava Beds National Monument, California, USA, we examined the reproductive, density, and cover responses of four native bunchgrasses: bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Löve), Thurber’s needlegrass (Achnatherum thurberianum [Piper] Barkworth), squirreltail (Elymus elymoides [Raf.] Swezey), and Sandberg bluegrass (Poa secunda J. Presl). High rates of survival and fire- enhanced flowering were measured following fires. Thurber’s needlegrass density de- creased following spring burns in sites dominated by cheatgrass (Bromus tectorum L.) (from 3.3 plants m-2 to 0.8 plants m-2; P < 0.05). Density of bluebunch wheatgrass de- creased following spring fires (from 3.7 plants m-2 to 1.9 plants m-2; P = 0.02) and cover was reduced in both spring and fall burn treatments (P = 0.04) in native dominated sites. Fire-enhanced flowering (increases in reproductive efforts) occurred in bluebunch wheat- grass in cheatgrass dominated sites (244 % increase in reproductive culms following fire), native dominated sites (350 % increase), and woody encroachment sites (500 % increase) sites following fall fires. These results show that these native bunchgrasses positively re- spond to prescribed fire through increases in reproductive efforts and high rates of surviv- al following fires. This suggests that fire can be an important tool for the restoration and conservation of these fire adapted bunchgrasses. Keywords: Artemisia tridentata, Bromus tectorum, bunchgrass, cheatgrass, fire return interval, mountain big sagebrush, prescribed fire,Pseudoroegneria spicata, rangeland restoration Citation: Ellsworth, L.M., and J.B. Kauffman. 2010. Native bunchgrass response to prescribed fire in ungrazed mountain big sagebrush ecosystems. Fire Ecology 6(3): 86-96. doi: 10.4996/ fireecology.0603086 Fire Ecology Volume 6, Issue 3, 2010 Ellsworth and Kauffman: Native Bunchgrass Response to Prescribed Fire doi: 10.4996/fireecology.0603086 Page 87 INTRODUCTION Plant communities in the Great Basin de- veloped in response to a natural fire regime, Dramatic changes in vegetation structure and the biota evolved adaptations to persist and composition have occurred in the Great within its natural range of fire return (Kauff- Basin of North America due to human activi- man et al. 1997, Pendergrass et al. 1999, ties including fire suppression, livestock graz- Wroblesky and Kauffman 2002). Individual ing, increased ignitions by Native Americans, survival as well as increased reproductive ef- and the introduction of non-native plant and fort through fire-enhanced flowering may fa- animal species. Prior to Euro-American settle- cilitate recovery of these plant communities ment, stand replacing fires were frequent, oc- following fire (Kauffman 1990). Increased curring at intervals of less than 30 years in flowering has been observed following fire in mountain big sagebrush (Artemisia tridentata grasses of high deserts east of the Oregon Cas- Nutt. ssp. vaseyana [Rydb.] Beetle) ecosys- cades (Sapsis 1990). Uresk et al. (1976) re- tems (Young and Evans 1981, Miller and Rose ported increased vegetative growth in blue- 1999, Miller et al. 2000). The Great Basin has bunch wheatgrass (Pseudoroegneria spicata experienced two general shifts in structure re- [Pursh] A. Löve) following wildfire, but no lated to changes in fire regimes. Low-eleva- difference in number of reproductive culms. tion areas subject to frequent human distur- In this study, we examined the effects of bances became susceptible to increased fire prescribed fire on ungrazed mountain big sage- frequency and invasion and dominance by ex- brush ecosystems in three different ecological otic grasses (D’Antonio and Vitousek 1996, conditions (cheatgrass [Bromus tectorum L.] Brooks and Pyke 2001). During the 1900s, dominated, native dominated, and juniper fire frequency decreased in wetter or higher el- dominated) at Lava Beds National Monument, evation areas due to fire exclusion and live- California, USA. We sought to answer the fol- stock grazing (Miller and Tausch 2001), result- lowing research questions: 1) Is there a change ing in expansion of western juniper (Juniperus in reproductive effort, cover, or density of na- occidentalis Hook.) and a reduction of native tive bunchgrass species following prescribed bunchgrasses and forbs (Miller and Rose fire in ungrazed mountain big sagebrush plant 1999). Prior to Euro-American settlement, ex- communities? 2) Is there a differential effect pansion of western juniper was believed to of prescribed fire on native bunchgrass species have been limited by fire, drought, and compe- due to the season of burn? 3) Is the response tition with grasses (Kilgore 1981). The intro- of these species to fire different in sites with a duction of domestic grazing animals in these different current plant composition (native, areas decreased the amount of fine fuels neces- cheatgrass, juniper)? We hypothesized that: sary for fire spread (Kauffman and Sapsis 1) reproductive effort would increase in bunch- 1989), and western juniper increased in range grass species in the year following prescribed under the longer fire-return interval (Miller et fire, and that bunchgrass densities would not al. 1994). The current rate and extent of west- change significantly following fire, but cover ern juniper encroachment onto sites formerly would be decreased in the first post-fire year; occupied by bunchgrasses and sagebrush has 2) plants burned in the fall would have fewer exceeded rates of expansion from the preced- reductions in cover and density than those ing 5000 years (Miller and Wigand 1994). burned in the spring due to lower intensity Restoration and maintenance of native plant burns that occurred after the active growing communities in mountain big sagebrush sys- season had passed; and 3) bunchgrasses in tems may require a reintroduction of fires that sites dominated by native plants with an intact have shaped its development. fire return interval would demonstrate a greater Fire Ecology Volume 6, Issue 3, 2010 Ellsworth and Kauffman: Native Bunchgrass Response to Prescribed Fire doi: 10.4996/fireecology.0603086 Page 88 reproductive effort and no reduction in cover 20 ºC in July (Erhard 1979). Most naturally and density as compared to bunchgrasses in ignited fires occur from July to September, sites where the plant communities have been when dry thunderstorms often coincide with altered by fire suppression and invasion of ex- high temperatures and low fuel moisture con- otic plants. tents. Soils are of volcanic origin, and shallow with basaltic outcrops (Erhard 1979). Lava METHODS Beds National Monument was chosen for this study due to an existing plant community gra- Study Area dient from cheatgrass dominated in the lowest elevation site, native dominated at mid-eleva- The study was conducted at Lava Beds Na- tion where access is difficult, and juniper dom- tional Monument, 77 km southeast of Klamath inated at the highest elevation near the monu- Falls, Oregon, USA (Figure 1). This area ment headquarters, where fire has been sup- ranges in elevation from 1228 m along the pressed. We chose three sites that are classi- shore of Tule Lake to 1725 m at its highest fied as mountain big sagebrush-bluebunch point (Erhard 1979). The climate is cool and wheatgrass-Thurber’s needlegrass (Achnather- semi-arid; the average annual precipitation is um thurberianum [Piper] Barkworth) habitat 39 cm (Miller et al. 2003), and the average type (Erhard 1979), but with variation in plant temperature ranges from −1 ºC in January to composition, land use history, soils, and mi- crotopography (Figure 2). Historically, fire re- turn intervals were likely about 50 yr (±20 yr) (Miller et al. 2003), and were of moderate to high severity, limiting encroachment of west- ern juniper. At the lowest elevation site (Gillems Camp; elevation: 1234 m to 1244 m), the plant communities were dominated by a continuous cover of cheatgrass, with rubber rabbitbrush (Ericameria nauseosa [Pall. ex Pursh] G.L. Nesom & Baird), Thurber’s needlegrass, and squirreltail (Elymus elymoides [Raf.] Swezey) also common. Because of the close proximity to water, these areas were likely heavily grazed by domestic livestock prior to monument es- tablishment. Soils are classified in the Bake- oven family (Luckow and Ahuja 2001), which are well-drained very cobbly fine sandy loams. The Fleener Chimneys site (elevation: 1341 m to 1362 m) is presumed to have been grazed less intensively than the Gillems Camp site due to its distance from water and difficul-
Recommended publications
  • Predicting Foundation Bunchgrass Species Abundances: Model-Assisted Decision-Making in Protected-Area Sagebrush Steppe 1, 2 3 3 4 THOMAS J
    #825 Predicting foundation bunchgrass species abundances: model-assisted decision-making in protected-area sagebrush steppe 1, 2 3 3 4 THOMAS J. RODHOUSE, KATHRYN M. IRVINE, ROGER L. SHELEY, BRENDA S. SMITH, SHIRLEY HOH, 5 5 DANIEL M. ESPOSITO, AND RICARDO MATA-GONZALEZ 1Upper Columbia Basin Network, National Park Service, 63095 Deschutes Market Road, Bend, Oregon 97701 USA 2Northern Rocky Mountain Science Center, United States Geological Survey, 2327 University Way, Suite 2, Bozeman, Montana 59715 USA 3Agricultural Research Service, United States Department of Agriculture, 67826-A, Highway 205, Burns, Oregon 97720 USA 4John Day Fossil Beds National Monument, National Park Service, 32651 Highway 19, Kimberly, Oregon 97848 USA 5Department of Animal and Rangeland Sciences, Oregon State University, Corvallis, Oregon 97331 USA Citation: Rodhouse, T. J., K. M. Irvine, R. L. Sheley, B. S. Smith, S. Hoh, D. M. Esposito, and R. Mata-Gonzalez. 2014. Predicting foundation bunchgrass species abundances: model-assisted decision-making in protected-area sagebrush steppe. Ecosphere 5(9):108. http://dx.doi.org/10.1890/ES14-00169.1 Abstract. Foundation species are structurally dominant members of ecological communities that can stabilize ecological processes and influence resilience to disturbance and resistance to invasion. Being common, they are often overlooked for conservation but are increasingly threatened from land use change, biological invasions, and over-exploitation. The pattern of foundation species abundances over space and time may be used to guide decision-making, particularly in protected areas for which they are iconic. We used ordinal logistic regression to identify the important environmental influences on the abundance patterns of bluebunch wheatgrass (Pseudoroegneria spicata), Thurber’s needlegrass (Achnatherum thurber- ianum), and Sandberg bluegrass (Poa secunda) in protected-area sagebrush steppe.
    [Show full text]
  • For the Love of Grass IX
    For the Love of Grass IX Botanizing the Snake River Plains and Bonneville Lakebeds and Shorelines Jack Carlson, Wendall Oaks, Larry Holzworth, Dan Ogle, and Wendell Hassell May 10-15, 2016 Table of Contents Introduction ......................................................................................................................... 3 Day 1 – Monday, May 10 .................................................................................................... 5 Inventory Site 1 – Forage and Range Reseach Laboratory, Agricultural Research Service (ARS), Logan, Logan County, Utah ............................................................................. 5 Inventory Site 2 – Curlew National Grassland, Oneida County, Idaho ................................ 8 Day 2 – Tuesday, May 11 .................................................................................................. 13 Inventory Site 3 – Aberdeen Plant Materials Center (PMC), Natural Resources Conservation Service (NRCS), Bingham County, Idaho ...................................................... 13 Inventory Site 4 – Coffee Point, Bingham County, Idaho .................................................... 17 Day 3 – Wednesday, May 12 ............................................................................................ 21 Inventory Site 4A – Big Lost River Rest Area, Butte County, Idaho .................................. 21 Inventory Site 4B – Craters of the Moon National Monument, Butte County, Idaho ....... 22 Inventory Site 5 – Camas Prairie Centennial Marsh Wildlife
    [Show full text]
  • International Ecological Classification Standard
    INTERNATIONAL ECOLOGICAL CLASSIFICATION STANDARD: TERRESTRIAL ECOLOGICAL CLASSIFICATIONS Groups and Macrogroups of Washington June 26, 2015 by NatureServe (modified by Washington Natural Heritage Program on January 16, 2016) 600 North Fairfax Drive, 7th Floor Arlington, VA 22203 2108 55th Street, Suite 220 Boulder, CO 80301 This subset of the International Ecological Classification Standard covers vegetation groups and macrogroups attributed to Washington. This classification has been developed in consultation with many individuals and agencies and incorporates information from a variety of publications and other classifications. Comments and suggestions regarding the contents of this subset should be directed to Mary J. Russo, Central Ecology Data Manager, NC <[email protected]> and Marion Reid, Senior Regional Ecologist, Boulder, CO <[email protected]>. Copyright © 2015 NatureServe, 4600 North Fairfax Drive, 7th floor Arlington, VA 22203, U.S.A. All Rights Reserved. Citations: The following citation should be used in any published materials which reference ecological system and/or International Vegetation Classification (IVC hierarchy) and association data: NatureServe. 2015. International Ecological Classification Standard: Terrestrial Ecological Classifications. NatureServe Central Databases. Arlington, VA. U.S.A. Data current as of 26 June 2015. Restrictions on Use: Permission to use, copy and distribute these data is hereby granted under the following conditions: 1. The above copyright notice must appear in all documents and reports; 2. Any use must be for informational purposes only and in no instance for commercial purposes; 3. Some data may be altered in format for analytical purposes, however the data should still be referenced using the citation above. Any rights not expressly granted herein are reserved by NatureServe.
    [Show full text]
  • Final Report USDA Ecological Site Description State-And-Transition Models Major Land Resource Area 28A and 28B Nevada February 2015
    Final Report USDA Ecological Site Description State-and-Transition Models Major Land Resource Area 28A and 28B Nevada February 2015 Tamzen K. Stringham1 Patti Novak-Echenique2 Paul Blackburn3 Cody Coombs4 Devon Snyder5 Amanda Wartgow6 Authors are 1Professor, 5,6Rangeland Ecologists, Dept. of Agriculture, Nutrition and Veterinary Sciences University of Nevada, Reno, NV, 2State Rangeland Management Specialist, USDA-NRCS Reno, NV, 3MLRA Soil Survey Leader, USDA-NRCS Elko, NV, and 4Hazardous Fuels Program Manager, BLM, Ely, NV Cite as: Stringham, T.K., P. Novak-Echenique, P. Blackburn, C. Coombs, D. Snyder, and A. Wartgow. 2015. Final Report for USDA Ecological Site Description State-and-Transition Models, Major Land Resource Area 28A and 28B Nevada. University of Nevada Reno, Nevada Agricultural džƉĞƌŝŵĞŶƚ^ƚĂƚŝŽŶ Research Report 2015-01. p. 1524. Cooperators: USDA Natural Resource Conservation Service, USDA Agricultural Research Service, USDI Bureau of Land Management and Eureka County, NV. Final Report submitted to USDA Agricultural Research Service as fulfillment of Agreement # 58-5370-2-211 Disturbance Response Group 4B Contents Page DRG 4B – Modal Site Claypan 12-14” 028BY037NV Ecological sites within DRG 4 Ϯϲϰ Narrative Ϯϲϱ Modal State-and-Transition model Ϯϴϭ References Ϯϴϯ Additional STMs within DRG 4 Ϯϴϲ 263 Ecological Sites within Disturbance Response Group 4B: Modal Site: Claypan 12-14” 028BY037NV Group Name Site ID Claypan 12-14"P.Z. 028BY037NV Claypan 14+" P.Z. 028BY036NV 4B Calcareous Claypan 14-16" P.Z. 028BY092NV Gravelly Claypan 14+" P.Z. 028BY035NV Cobbly Claypan 12-14" P.Z. 028BY039NV 264 MLRA 28B Group 4B Disturbance Response Group (DRG) 4B consists of five ecological sites.
    [Show full text]
  • Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass After 13 Years, Author(S): Aleta M
    #843 Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass after 13 Years, Author(s): Aleta M. Nafus, Tony J. Svejcar, David C. Ganskopp and Kirk W. Davies Source: Rangeland Ecology & Management, 68(2):211-214. Published By: Society for Range Management URL: http://www.bioone.org/doi/full/10.1016/j.rama.2015.01.011 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. #843 Rangeland Ecology & Management 68 (2015) 211–214 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: http://www.elsevier.com/locate/rama Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass after 13 Years☆,☆☆ Aleta M. Nafus a,⁎, Tony J. Svejcar b,DavidC.Ganskoppc,KirkW.Daviesd a Graduate Student, Oregon State University, Corvallis, OR 97330, USA b Research Leader, U.S. Department of Agriculture, Agricultural Research Service, Burns, OR 97720, USA c Emeritus Rangeland Scientist, U.S.
    [Show full text]
  • Influence of Water Temperature and Beaver Ponds on Lahontan Cutthroat Trout in a High-Desert Stream, Southeastern Oregon
    AN ABSTRACT OF THE THESIS OF Andrew G. Talabere for the degree of Master of Science in Fisheries Science presented on November 21. 2002. Title: Influence of Water Temperature and Beaver Ponds on Lahontan Cutthroat Trout in a High-Desert Stream, Southeastern Oregon Abstract approved Redacted for Privacy Redacted for Privacy The distribution of Lahontan cutthroat trout Oncorhynchus clarki henshawi was assessed in a high-desert stream in southeastern Oregon where beaver Castor canadensis are abundant. Longitudinal patterns of beaver ponds, habitat, temperature, and Lahontan cutthroat trout age group distribution were identified throughout Willow Creek. Three distinct stream segments were classified based on geomorphological characteristics. Four beaver-pond and four free-flowing sample sections were randomly located in each of the three stream segments. Beavers substantially altered the physical habitat of Willow Creek increasing the depth and width of available habitat. In contrast, there was no measurable effect on water temperature. The total number of Lahontan cutthroat trout per meter was significantly higher in beaver ponds than free-flowing sections. Although density (fish! m2) showed no statistically significant (P < 0.05) increase, values in beaver pondswere two-fold those of free-flowing sections. Age- 1 and young-of-the-year trout were absent or in very low numbers in lower Willow Creek because of elevated temperatures, but high numbers of age-2 and 3 (adults) Lahontan cutthroat trout were found in beaver ponds where water temperatures reached lethal levels (>24°C). Apparently survival is greater in beaver ponds than free-flowing sections as temperatures approach lethal limits. Influence of Water Temperature and Beaver Ponds on Lahontan Cutthroat Trout in a High- Desert Stream, Southeastern Oregon by Andrew G.
    [Show full text]
  • Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass After 13 Years☆,☆☆
    Rangeland Ecology & Management 68 (2015) 211–214 Contents lists available at ScienceDirect Rangeland Ecology & Management journal homepage: http://www.elsevier.com/locate/rama Abundances of Coplanted Native Bunchgrasses and Crested Wheatgrass after 13 Years☆,☆☆ Aleta M. Nafus a,⁎, Tony J. Svejcar b,DavidC.Ganskoppc,KirkW.Daviesd a Graduate Student, Oregon State University, Corvallis, OR 97330, USA b Research Leader, U.S. Department of Agriculture, Agricultural Research Service, Burns, OR 97720, USA c Emeritus Rangeland Scientist, U.S. Department of Agriculture, Agricultural Research Service, Burns, OR 97720, USA d Rangeland Scientist, U.S. Department of Agriculture, Agricultural Research Service, Burns, OR 97720, USA article info abstract Keywords: Crested wheatgrass (Agropyron cristatum [L] Gaertm) has been seeded on more than 5 million hectares in Agropyron cristatum western North America because it establishes more readily than native bunchgrasses. Currently, there is restoration substantial interest in reestablishing native species in sagebrush steppe, but efforts to reintroduce native revegetation grasses into crested wheatgrass stands have been largely unsuccessful, and little is known about the sagebrush steppe long-term dynamics of crested wheatgrass/native species mixes. We examined the abundance of crested wheatgrass and seven native sagebrush steppe bunchgrasses planted concurrently at equal low densities in nongrazed and unburned plots. Thirteen years post establishment, crested wheatgrass was the dominant bunchgrass, with a 10-fold increase in density. Idaho fescue (Festuca idahoensis Elmer), Thurber’s needlegrass (Achnatherum thurberianum (Piper) Barkworth), basin wildrye (Leymus cinereus [Scribn. & Merr.] A. Löve), and Sandberg bluegrass (Poa secunda J. Presl) maintained their low planting density, whereas bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A.
    [Show full text]
  • A Field Guide for Collecting Native Seeds in Nevada
    A Field Guide for Collecting Native Seeds in Nevada Jay Davison University of Nevada Cooperative Extension This field guide was made possible by a grant from the Nevada State office of The Bureau of Land Management The University of Nevada, Reno is an Equal Opportunity/Affirmative Action employer and does not discriminate on the basis of race, color, religion, sex, age, creed, national origin, veteran status, physical or mental disability, or sexual orientation, in any program or activity it operates. The University of Nevada, Reno employs only United States citizens and aliens lawfully authorized to work in the United States. A Field Guide For Collecting Native Seeds In Nevada Table of Contents Chapter 1: Dominant Vegetation in the Great Basin (graphic) Introduction Chapter 2: Priority Plant List for Nevada Native Seed Collections and Production (graphic) List of Priority Species for Collecting in Nevada Chapter 3: Graphic Identification Guides for Priority Species Chapter 4: Graphic Recommended Collection Sites by BLM Field Offices in Nevada Chapter 5: Graphic BLM Permit Fees, and Regulations for Native Seed Collections Chapter 6: Graphic Nevada State Regulations for Native Seed Collections Chapter 7: Graphic Native Seed Source Identification/Certification Procedures Chapter 8: Graphic Collecting and Preserving Voucher Plant Specimens Chapter 9: Graphic Native Seed Collecting, Handling and Storage Tips Chapter 10: Graphic Native Seed Marketing Possibilities Chapter 11: Appendix A: BLM Form 5450-1 Contract for the Sale of Vegetative
    [Show full text]
  • Thurber's Needlegrass
    Plant Guide Wildlife- It is preferred forage for elk in spring and THURBER’S considered desirable forage for elk the rest of the year. It is desirable forage for deer and antelope in NEEDLEGRASS spring. Achnatherum thurberianum Erosion Control/Reclamation- It is an effective grass (Piper) Barkworth in preventing wind and water erosion on sandy to Plant Symbol = ACTH7 loamy soils. It can be used in seeding mixtures for revegetation of sites disturbed by mining activities. Contributed by: USDA NRCS Idaho State Office Status Consult the PLANTS Web site and your State Department of Natural Resources for this plant’s current status (e.g. threatened or endangered species). Description General: Thurber’s needlegrass is a native, cool- season grass common to the semiarid regions of the Intermountain West. It is a perennial bunchgrass, 1- 2 feet tall with fine, narrow in rolled leaves about 6-10 inches long. The inflorescence is 3- 4 inches long, narrow and somewhat purplish in color. The seed is about ¼- inch long, sharp pointed with a twice bent, 2- inch long awn. Tiny hairs cover the seed and lower segments of the awn. Range Plant Leaflet 69. Oregon State University. Cooperative Extension Service. Prepared by: J. Powell. Alternate Names Stipa thurberiana; Stipa occidentalis Uses Grazing/Livestock- Thurber’s needlegrass begins growth early in the spring, goes dormant in early summer and may green-up in fall if soil moisture is adequate. It is considered preferred forage in spring prior to seed-awn development for cattle and horses. It is considered acceptable forage for all classes of Intermountain Flora - drawn by Jeanne R.
    [Show full text]
  • 51-100 Guano and Thousand Virgin-2.Pdf
    Watershed Assessment Fish and Fish Habitat The Guano and Thousand-Virgin Sub-basins are very dry and contain only about 76 miles of perennial streams in their combined area of 1,810,600 acres. Within the two sub-basins, there is also an unmeasured length of intermittent streams, and numerous springs, ponds and reservoirs, which at least periodically, if not continually, contain fish. There are two native fish species in the two sub-basins: Redband trout and tui chub. In addition, there have been several species of fish introduced into the area. The current dry conditions and dramatic history of the sub-basins and surrounding areas have required significant adaptations by the native fish. Similarly, the introduced fish are subject to stress brought by commonly changing water temperatures and varying water amounts. These changing conditions not only pose problems to the fish, but they also pose challenges to the fish biologists, landowners and land managers who have responsibilities to manage the fish. Special Status Fish Species Great Basin Redband Trout Great Basin redband trout (Figure 2-3) are an adfluvial1 species and relatives of rainbow trout including sea-going steelhead (Oncorhynchus mykiss). Great Basin redband trout are not recognized with an official subspecies designation; yet, it is common to see them referred to as Oncorhynchus mykiss newberrii Figure 2-3. Redband Trout (Behnke 2002, 2007). With drying of pluvial lakes, ancestors of today’s Great Basin redbands became isolated in basins and drainages. They adapted to selective pressures such as extreme differences in water temperature and intermittent stream flows. Great Basin redband trout can function well and survive in warm waters that would severely stress most other rainbow trout.
    [Show full text]
  • Plant List – Mary’S Notes Database, September 2011
    CA Native Plant Society, Bristlecone Chapter Bodie Hills Plant List – Mary’s Notes Database, September 2011 A compilation of: 1) Messick TC. 1982. Dry Lakes Plateau plant community composition 2) Messick TC. 1982. Checklist of vascular plants of the Bodie Hills. The Flora and Phytogeography of the Bodie Hills of Mono County, CA, and Mineral County, NV. 3) DeDecker M. 1950’s-1990’s. Notecard database collection. Plant List Special Status Selaginellaceae Selaginella watsonii Watson's spikemoss Equisetaceae Equisetum laevigatum smooth scouringrush Dryopteridaceae Cystopteris fragilis fragile fern Ophioglossaceae Botrychium simplex Yosemite moonwort Pteridaceae Pellaea breweri Brewer's cliff-brake Ephedraceae Ephedra nevadensis Nevada ephedra Ephedra viridis green ephedra Cupressaceae Juniperus occidentalis var. australis western juniper Juniperus osteosperma Utah juniper Pinaceae Pinus contorta lodgepole pine Pinus flexilis limber pine Pinus jeffreyi Jeffrey pine Pinus monophylla singleleaf pinyon pine Amaranthaceae Amaranthus blitoides mat amaranth Apiaceae Angelica lineariloba poison angelica Cicuta douglasii western water hemlock Lomatium dissectum fernleaf biscuit-root Lomatium nevadense Nevada biscuitroot Osmorhiza occidentalis western sweetroot Sphenosciadium capitellatum ranger's buttons Apocynaceae Apocynum androsaemifolium bitter dogbane Asclepiadaceae Asclepias cryptoceras pallid milkweed Uncommon Asteraceae Achillea millefolium common yarrow Ageratina occidentalis western snakeroot Agoseris glauca pale agoseris Agoseris glauca
    [Show full text]
  • Livestock Forage Conditioning Among Six Northern Great Basin Grasses Dave Ganskopp,1 Lisa Aguilera,2 and Marty Vavra3
    Rangeland Ecol Manage 60:71–78 | January 2007 Livestock Forage Conditioning Among Six Northern Great Basin Grasses Dave Ganskopp,1 Lisa Aguilera,2 and Marty Vavra3 Authors are 1Rangeland Scientist, United States Department of Agriculture–Agricultural Research Service, Eastern Oregon Agriculture Research Center, 67826-A Highway 205, Burns, OR 97720; 2Research Assistant, College of Veterinary Medicine, Oregon State University, Corvallis, OR 97331; and 3Team Leader, Forestry and Range Science Laboratory, Pacific Northwest Research Station–Forest Service, 1401 Gekeler Lane, La Grande, OR 97850. Abstract Studies of Anderson and Scherzinger’s forage conditioning hypothesis have generated varied results. Our objectives were: 1) to evaluate late summer/early fall forage quality of crested wheatgrass (Agropyron desertorum [Fisch. ex Link] J. A. Schultes), bluebunch wheatgrass (Pseudoroegneria spicata [Pursh] A. Lo¨ ve), Idaho fescue (Festuca idahoensis Elmer), bottlebrush squirreltail (Elymus elymoides [Raf.] Swezey), Thurber’s needlegrass (Achnatherum thurberianum [Piper] Barkworth), and basin wildrye (Leymus cinereus [Scribn. & Merr.] A. Lo¨ve) from ungrazed paddocks and paddocks grazed at vegetative, boot, and anthesis; and 2) test hypotheses that postgrazing regrowth yields were correlated with soil moisture content when grazing occurred. Crop–year precipitation for 1997 and 1998 was 134% and 205% of average. Crude protein (CP) and in vitro dry matter digestibility (IVDMD) of ungrazed grasses displayed expected declines in quality. Among ungrazed grasses, late summer/ early fall CP was 5.7% in 1997 and 3.6% in 1998; IVDMD was 47% and 41%, respectively. Late summer/early fall forage quality was elevated by vegetative, boot stage, or anthesis grazing. The phenologically youngest regrowth always ranked highest in CP and IVDMD.
    [Show full text]