The Visualization of Uncertainty

Total Page:16

File Type:pdf, Size:1020Kb

The Visualization of Uncertainty THE VISUALIZATION OF UNCERTAINTY by Kristin Potter A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Computer Science School of Computing The University of Utah August 2010 Copyright c Kristin Potter 2010 All Rights Reserved THE UNIVERSITY OF UTAH GRADUATE SCHOOL SUPERVISORY COMMITTEE APPROVAL of a dissertation submitted by Kristin Potter This dissertation has been read by each member of the following supervisory committee and by majority vote has been found to be satisfactory. Chair: Richard F. Riesenfeld Chrisopher R. Johnson Elaine Cohen Robert M. Kirby Bruce Gooch ABSTRACT The graphical depiction of uncertainty information is emerging as a problem of great importance in the field of visualization. Scientific data sets are not considered complete without indications of error, accuracy, or levels of confidence, and this information is often presented as charts and tables alongside visual representations of the data. Uncer- tainty measures are often excluded from explicit representation within data visualizations because the increased visual complexity incurred can cause clutter, obscure the data display, and may lead to erroneous conclusions or false predictions. However, uncertainty is an essential component of the data, and its display must be integrated in order for a visualization to be considered a true representation of the data. The growing need for the addition of qualitative information into the visual representation of data, and the challenges associated with that need, command fundamental research on the visualization of uncertainty. This dissertation seeks to advance approaches for uncertainty visualization by explor- ing techniques from scientific and information visualization, creating new visual devices to handle the complexities of uncertainty data, and combining the most effective display methods into the Ensemble-Vis framework for visual data analysis. Many techniques exist for graphical data display. However, their usage on data with uncertainty information is not straightforward. This work begins by first exploring existing methods for data visu- alization and assessing their application to uncertainty. New visual metaphors are then presented for the depiction of salient features of data distributions, including indications of uncertainty. These new methods are inspired by proven visual data analysis techniques, but account for the requirements of large, complex data sets. Finally, Ensemble-Vis is presented, which combines effective uncertainty visualization techniques with interactive selection, linking, and querying to provide a user-driven, component-based framework for data investigation, exploration, and analysis. To Mom and Dad CONTENTS ABSTRACT ................................................... ... iii LIST OF FIGURES ............................................... viii ACKNOWLEDGEMENTS ......................................... xi CHAPTERS 1. INTRODUCTION ............................................. 1 1.1 TypesofUncertainty.............................. ............ 2 1.1.1 Experimental Uncertainty....................... ........... 3 1.1.2 Geometric Uncertainty .......................... .......... 3 1.1.3 Simulation Uncertainty......................... ........... 4 1.1.4 Visualization Uncertainty ...................... ............ 5 1.2 The Need for Uncertainty Visualization . ............. 5 1.3 Contributions ................................... ............ 10 1.4 Overview........................................ ........... 11 2. TECHNICAL BACKGROUND ................................. 13 2.1 EnsembleData .................................... .......... 13 2.2 Probability Density Functions..................... .............. 14 2.3 Descriptive Statistics........................... ............... 15 2.4 Uncertainty ..................................... ............ 17 3. VISUALIZATION OF SUMMARY STATISTICS ................. 19 3.1 Introduction .................................... ............ 19 3.2 RelatedWork ..................................... .......... 20 3.2.1 Statistical Plotting Techniques . ............. 21 3.2.1.1 TheBoxplot .................................. ...... 21 3.2.1.1.1 Origins. .................................. ...... 22 3.2.1.2 Modifications to the Boxplot .................... ....... 23 3.2.1.2.2 Density information. ....................... ....... 24 3.2.1.2.3 Additional descriptive statistics. ........... 26 3.2.1.3 Bivariate Extensions......................... ......... 29 3.3 TheSummaryPlot .................................. ......... 32 3.3.1 The Abbreviated Boxplot ......................... ......... 32 3.3.2 Quartiles and the Histogram...................... .......... 34 3.3.3 Moments....................................... ........ 35 3.3.3.1 Mean and Standard Deviation .................... ...... 36 3.3.3.2 Skew ........................................ ...... 37 3.3.3.3 Kurtosis .................................... ....... 37 3.3.3.4 Tail........................................ ....... 38 3.3.3.5 Moments, Sample Size, and Outliers . ....... 38 3.3.4 DistributionFitting ........................... ........... 39 3.3.5 User Interface for Reduction of Visual Clutter . ............ 40 3.3.6 Comparison of the Box and Summary Plots. ....... 40 3.4 Joint2DSummaries ................................ .......... 50 3.4.1 Joint Mean and Standard Deviation................. ......... 50 3.4.2 JointDensity.................................. .......... 50 3.4.3 Covariance and Skew Variance ..................... ......... 54 3.4.4 Correlation ................................... .......... 56 3.5 Discussion ...................................... ............ 57 3.6 Conclusion...................................... ............ 59 4. THE VISUALIZATION OF MULTIDIMENSIONAL UNCERTAINTY DATA ........................................ 60 4.1 Introduction .................................... ............ 60 4.2 ApplicationData................................. ............ 61 4.3 RelatedWork ..................................... .......... 64 4.4 Two-Dimensional Techniques ....................... ............ 65 4.4.1 Colormapping .................................. ......... 65 4.4.2 BivariateColormaps ............................ .......... 69 4.4.3 Perceptual Considerations...................... ............ 73 4.5 Three-Dimensional Techniques ..................... ............. 75 4.5.1 Displacement Mapping ........................... ......... 75 4.5.2 Volume Rendering and Isosurfacing . .......... 78 4.5.3 Streamlines and Particle Tracing ................. ........... 80 4.6 Conclusion...................................... ............ 82 5. ENSEMBLE-VIS .............................................. 84 5.1 Introduction .................................... ............ 84 5.1.1 Motivation.................................... .......... 85 5.1.2 DrivingProblems ............................... ......... 85 5.1.2.1 Weather Forecasting .......................... ........ 85 5.1.2.2 ClimateModeling ............................. ....... 86 5.1.3 EnsembleDataSets .............................. ........ 86 5.1.3.1 Ensembles and Uncertainty ..................... ....... 87 5.1.3.2 Challenges for Analysis....................... ......... 87 5.2 RelatedWork ..................................... .......... 88 5.2.1 Visualization of Climate and Weather Data . .......... 88 5.2.1.1 Multidimensional Data Visualization . .......... 89 5.2.2 Uncertainty Visualization ...................... ............ 91 5.2.2.1 Comparison Techniques ........................ ....... 91 5.2.2.2 Attribute Modification ........................ ........ 93 5.2.2.3 Glyphs ...................................... ...... 94 5.2.2.4 Image Discontinuity .......................... ........ 95 5.3 The Ensemble-Vis Framework........................ ........... 95 5.3.1 WorkFlow ...................................... ....... 96 5.3.2 DataSources................................... ......... 96 vi 5.3.3 EnsembleOverviews ............................. ......... 97 5.3.3.1 Spatial-Domain Summary Views .................. ...... 97 5.3.3.2 Time Navigation Summary Views .................. ..... 99 5.3.4 TrendCharts................................... ......... 103 5.3.4.1 QuartileCharts.............................. ........ 103 5.3.4.2 PlumeCharts ................................. 103 5.3.5 ConditionQueries.............................. .......... 104 5.3.6 Multivariate Layer Views ........................ .......... 105 5.3.7 SpaghettiPlots ................................ .......... 107 5.3.8 Coordination Between Views ...................... ......... 107 5.3.9 Clustering .................................... .......... 108 5.4 Implementation Details........................... ............. 110 5.4.1 SREFWeatherExplorer........................... ........ 110 5.4.2 ViSUS/CDAT .................................... ....... 113 5.5 Discussion ...................................... ............ 113 5.5.1 DataChallenges ................................ ......... 113 5.5.2 Where Summary Statistics Break Down. ........ 115 5.5.3 Glyphs for Standard Deviation .................... .......... 116 5.6 Conclusion...................................... ............ 116 6. CONCLUSIONS AND FUTURE WORK ........................ 117 6.1 FutureWork ...................................... .......... 117 REFERENCES ..................................................
Recommended publications
  • Thebault Dagher Fanny 2020
    Université de Montréal Le stress chez les enfants avec convulsions fébriles : mécanismes et contribution au pronostic par Fanny Thébault-Dagher Département de psychologie Faculté des arts et des sciences Thèse présentée en vue de l’obtention du grade de Philosophae Doctor (Ph.D) en Psychologie – Recherche et Intervention option Neuropsychologie clinique Décembre 2019 © Fanny Thébault-Dagher, 2019 Université de Montréal Département de psychologie, Faculté des arts et des sciences Cette thèse intitulée Le stress chez les enfants avec convulsions fébriles : mécanismes et contribution au pronostic Présentée par Fanny Thébault-Dagher A été évaluée par un jury composé des personnes suivantes Annie Bernier Président-rapporteur Sarah Lippé Directrice de recherche Dave Saint-Amour Membre du jury Linda Booij Examinatrice externe Résumé Le stress est continuellement associé à la genèse, la fréquence et la sévérité des convulsions en épilepsie. De nombreux modèles animaux suggèrent qu’une relation entre le stress et les convulsions soit mise en place en début de vie, voire dès la période prénatale. Or, il existe peu de preuves de cette hypothèse chez l’humain. Ainsi, l’objectif général de cette thèse était d’examiner le lien entre le stress en début de vie, dès la conception, et les convulsions chez les humains. Pour ce faire, cette thèse avait comme intérêt principal les convulsions fébriles (CF). Il s’agit de convulsions pédiatriques communes et somme toute bénignes, bien qu’elles soient associées à de légères particularités neurologiques et cognitives. En ce sens, les CF représentent un syndrome de choix pour notre étude, considérant leur incidence fréquente en très bas âge et l’absence de conséquences majeures à long terme.
    [Show full text]
  • The Lasagna Plot
    PhUSE EU Connect 2018 Paper CT03 The Lasagna Plot Soujanya Konda, GlaxoSmithKline, Bangalore, India ABSTRACT Data interpretation becomes complex when the data contains thousands of digits, pages, and variables. Generally, such data is represented in a graphical format. Graphs can be tedious to interpret because of voluminous data, which may include various parameters and/or subjects. Trend analysis is most sought after, to maximize the benefits from a product and minimize the background research such as selection of subjects and so on. Additionally, dynamic representation and sorting of visual data will be used for exploratory data analysis. The Lasagna plot makes the job easier and represents the data in a pleasant way. This paper explains the basics of the Lasagna plot. INTRODUCTION In longitudinal studies, representation of trends using parameters/variables in the fields like pharma, hospitals, companies, states and countries is a little messy. Usually, the spaghetti plot is used to present such trends as individual lines. Such data is hard to analyze because these lines can get tangled like noodles. The other way to present data is HEATMAP instead of spaghetti plot. Swihart et al. (2010) proposed the name “Lasagna Plot” that helps to plot the longitudinal data in a more clear and meaningful way. This graph plots the data as horizontal layers, one on top of the other. Each layer represents a subject or parameter and each column represents a timepoint. Lasagna Plot is useful when data is recorded for every individual subject or parameter at the same set of uniformly spaced time intervals, such as daily, monthly, or yearly.
    [Show full text]
  • Fundamental Statistical Concepts in Presenting Data Principles For
    Fundamental Statistical Concepts in Presenting Data Principles for Constructing Better Graphics Rafe M. J. Donahue, Ph.D. Director of Statistics Biomimetic Therapeutics, Inc. Franklin, TN Adjunct Associate Professor Vanderbilt University Medical Center Department of Biostatistics Nashville, TN Version 2.11 July 2011 2 FUNDAMENTAL STATI S TIC S CONCEPT S IN PRE S ENTING DATA This text was developed as the course notes for the course Fundamental Statistical Concepts in Presenting Data; Principles for Constructing Better Graphics, as presented by Rafe Donahue at the Joint Statistical Meetings (JSM) in Denver, Colorado in August 2008 and for a follow-up course as part of the American Statistical Association’s LearnStat program in April 2009. It was also used as the course notes for the same course at the JSM in Vancouver, British Columbia in August 2010 and will be used for the JSM course in Miami in July 2011. This document was prepared in color in Portable Document Format (pdf) with page sizes of 8.5in by 11in, in a deliberate spread format. As such, there are “left” pages and “right” pages. Odd pages are on the right; even pages are on the left. Some elements of certain figures span opposing pages of a spread. Therefore, when printing, as printers have difficulty printing to the physical edge of the page, care must be taken to ensure that all the content makes it onto the printed page. The easiest way to do this, outside of taking this to a printing house and having them print on larger sheets and trim down to 8.5-by-11, is to print using the “Fit to Printable Area” option under Page Scaling, when printing from Adobe Acrobat.
    [Show full text]
  • Master Thesis
    Pelvis Runner Vergleichende Visualisierung Anatomischer Änderungen DIPLOMARBEIT zur Erlangung des akademischen Grades Diplom-Ingenieur im Rahmen des Studiums Visual Computing eingereicht von Nicolas Grossmann, BSc Matrikelnummer 01325103 an der Fakultät für Informatik der Technischen Universität Wien Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller Mitwirkung: Univ.Ass. Renata Raidou, MSc PhD Wien, 5. August 2019 Nicolas Grossmann Eduard Gröller Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Pelvis Runner Comparative Visualization of Anatomical Changes DIPLOMA THESIS submitted in partial fulfillment of the requirements for the degree of Diplom-Ingenieur in Visual Computing by Nicolas Grossmann, BSc Registration Number 01325103 to the Faculty of Informatics at the TU Wien Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Eduard Gröller Assistance: Univ.Ass. Renata Raidou, MSc PhD Vienna, 5th August, 2019 Nicolas Grossmann Eduard Gröller Technische Universität Wien A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at Erklärung zur Verfassung der Arbeit Nicolas Grossmann, BSc Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen- deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe. Wien, 5. August 2019 Nicolas Grossmann v Acknowledgements More than anyone else, I want to thank my supervisor Renata Raidou for her constructive feedback and her seemingly endless stream of ideas. It was because of her continuous encouragement that I was able to take my first steps towards a scientific career.
    [Show full text]
  • Standard Indicators for the Social Appropriation of Science Persist Eu
    STANDARD INDICATORS FOR THE SOCIAL APPROPRIATION OF SCIENCE PERSIST_EU ERASMUS+ PROJECT Lessons learned Standard indicators for the social appropriation of science. Lessons learned First published: March 2021 ScienceFlows Research Data Collection © Book: Coordinators, authors and contributors © Images: Coordinators, authors and contributors © Edition: ScienceFlows and FyG consultores The Research Institute on Social Welfare Policy (Polibienestar) Campus de Tarongers C/ Serpis, 29. 46009. Valencia [email protected] How to cite: PERSIST_EU (2021). Standard indicators for the social appropriation of science: Lessons learned. Valencia (Spain): ScienceFlows & Science Culture and Innovation Unit of University of Valencia ISBN: 978-84-09-30199-7 This project has been funded with support from the European Commission under agreements 2018-1-ES01-KA0203-050827. This publication reflects the views only of the author, and the Commission cannot be held responsible for any use which may be made of the information contained therein. PERSIST_EU PROJECT Project number: 2018-1-ESO1-KA0203-050827 Project coordinator: Carolina Moreno-Castro (University of Valencia) COORDINATING PARTNER ScienceFlows- Universitat de València. Spain Carolina Moreno-Castro Empar Vengut-Climent Isabel Mendoza-Poudereux Ana Serra-Perales Amaia Crespo-Costa PARTICIPATING PARTNERS Instituto de Ciências Sociais da Universidade de Lisboa (ICS) Trnavská univerzita v Trnave Portugal Slovakia Ana Delicado Martin Fero Helena Vicente Lenka Diener João Estevens Peter Guran Jussara Rowland Karlsruher Institut Fuer Technology Danmar Computers (KIT) Poland Germany Margaret Miklosz Annette Leßmöllmann Chris Ciapala André Weiß Łukasz Kłapa Observa Science in Society FyG Consultores Italy Spain Giuseppe Pellegrini Fabián Gómez Andrea Rubin Aleksandra Staszynka Nieves Verdejo INDEX About the project and the book• 6 1.
    [Show full text]
  • If I Were Doing a Quick ANOVA Analysis
    ANOVA Note: If I were doing a quick ANOVA analysis (without the diagnostic checks, etc.), I’d do the following: 1) load the packages (#1); 2) do the prep work (#2); and 3) run the ggstatsplot::ggbetweenstats analysis (in the #6 section). 1. Packages needed. Here are the recommended packages to load prior to working. library(ggplot2) # for graphing library(ggstatsplot) # for graphing and statistical analyses (one-stop shop) library(GGally) # This package offers the ggpairs() function. library(moments) # This package allows for skewness and kurtosis functions library(Rmisc) # Package for calculating stats and bar graphs of means library(ggpubr) # normality related commands 2. Prep Work Declare factor variables as such. class(mydata$catvar) # this tells you how R currently sees the variable (e.g., double, factor) mydata$catvar <- factor(mydata$catvar) #Will declare the specified variable as a factor variable 3. Checking data for violations of assumptions: a) relatively equal group sizes; b) equal variances; and c) normal distribution. a. Group Sizes Group counts (to check group frequencies): table(mydata$catvar) b. Checking Equal Variances Group means and standard deviations (Note: the aggregate and by commands give you the same results): aggregate(mydata$intvar, by = list(mydata$catvar), FUN = mean, na.rm = TRUE) aggregate(mydata$intvar, by = list(mydata$catvar), FUN = sd, na.rm = TRUE) by(mydata$intvar, mydata$catvar, mean, na.rm = TRUE) by(mydata$intvar, mydata$catvar, sd, na.rm = TRUE) A simple bar graph of group means and CIs (using Rmisc package). This command is repeated further below in the graphing section. The ggplot command will vary depending on the number of categories in the grouping variable.
    [Show full text]
  • Eappendix 1: Lasagna Plots: a Saucy Alternative to Spaghetti Plots
    eAppendix 1: Lasagna plots: A saucy alternative to spaghetti plots Bruce J. Swihart, Brian Caffo, Bryan D. James, Matthew Strand, Brian S. Schwartz, Naresh M. Punjabi Abstract Longitudinal repeated-measures data have often been visualized with spaghetti plots for continuous outcomes. For large datasets, the use of spaghetti plots often leads to the over-plotting and consequential obscuring of trends in the data. This obscuring of trends is primarily due to overlapping of trajectories. Here, we suggest a framework called lasagna plotting that constrains the subject-specific trajectories to prevent overlapping, and utilizes gradients of color to depict the outcome. Dynamic sorting and visualization is demonstrated as an exploratory data analysis tool. The following document serves as an online supplement to “Lasagna plots: A saucy alternative to spaghetti plots.” The ordering is as follows: Additional Examples, Code Snippets, and eFigures. Additional Examples We have used lasagna plots to aid the visualization of a number of unique disparate datasets, each presenting their own challenges to data exploration. Three examples from two epidemiologic studies are featured: the Sleep Heart Health Study (SHHS) and the Former Lead Workers Study (FLWS). The SHHS is a multicenter study on sleep-disordered breathing (SDB) and cardiovascular outcomes.1 Subjects for the SHHS were recruited from ongoing cohort studies on respiratory and cardiovascular disease. Several biosignals for each of 6,414 subjects were collected in-home during sleep. Two biosignals are displayed here-in: the δ-power in the electroencephalogram (EEG) during sleep and the hypnogram. Both the δ-power and the hypnogram are stochastic processes. The former is a discrete- time contiuous-outcome process representing the homeostatic drive for sleep and the latter a discrete-time discrete-outcome process depicting a subject’s trajectory through the rapid eye movement (REM), non-REM, and wake stages of sleep.
    [Show full text]
  • Healthy Volunteers (Retrospective Study) Urolithiasis Healthy Volunteers Group P-Value 5 (N = 110) (N = 157)
    Supplementary Table 1. The result of Gal3C-S-OPN between urolithiasis and healthy volunteers (retrospective study) Urolithiasis Healthy volunteers Group p-Value 5 (n = 110) (n = 157) median (IQR 1) median (IQR 1) Gal3C-S-OPN 2 515 1118 (810–1543) <0.001 (MFI 3) (292–786) uFL-OPN 4 14 56392 <0.001 (ng/mL/mg protein) (10–151) (30270-115516) Gal3C-S-OPN 2 52 0.007 /uFL-OPN 4 <0.001 (5.2–113.0) (0.003–0.020) (MFI 3/uFL-OPN 4) 1 IQR, Interquartile range; 2 Gal3C-S-OPN, Gal3C-S lectin reactive osteopontin; 3 MFI, mean fluorescence intensity; 4 uFL-OPN, Urinary full-length-osteopontin; 5 p-Value, Mann–Whitney U-test. Supplementary Table 2. Sex-related difference between Gal3C-S-OPN and Gal3C-S-OPN normalized to uFL- OPN (retrospective study) Group Urolithiasis Healthy volunteers p-Value 5 Male a Female b Male c Female d a vs. b c vs. d (n = 61) (n = 49) (n = 57) (n = 100) median (IQR 1) median (IQR 1) Gal3C-S-OPN 2 1216 972 518 516 0.15 0.28 (MFI 3) (888-1581) (604-1529) (301-854) (278-781) Gal3C-S-OPN 2 67 42 0.012 0.006 /uFL-OPN 4 0.62 0.56 (9-120) (4-103) (0.003-0.042) (0.002-0.014) (MFI 3/uFL-OPN 4) 1 IQR, Interquartile range; 2 Gal3C-S-OPN, Gal3C-S lectin reactive osteopontin; 3MFI, mean fluorescence intensity; 4 uFL-OPN, Urinary full-length-osteopontin; 5 p-Value, Mann–Whitney U-test.
    [Show full text]
  • Violin Plots: a Box Plot-Density Trace Synergism Author(S): Jerry L
    Violin Plots: A Box Plot-Density Trace Synergism Author(s): Jerry L. Hintze and Ray D. Nelson Source: The American Statistician, Vol. 52, No. 2 (May, 1998), pp. 181-184 Published by: American Statistical Association Stable URL: http://www.jstor.org/stable/2685478 Accessed: 02/09/2010 11:01 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=astata. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. American Statistical Association is collaborating with JSTOR to digitize, preserve and extend access to The American Statistician. http://www.jstor.org StatisticalComputing and Graphics ViolinPlots: A Box Plot-DensityTrace Synergism JerryL.
    [Show full text]
  • Statistical Analysis in JASP
    Copyright © 2018 by Mark A Goss-Sampson. All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the author except for the purposes of research, education or private study. CONTENTS PREFACE .................................................................................................................................................. 1 USING THE JASP INTERFACE .................................................................................................................... 2 DESCRIPTIVE STATISTICS ......................................................................................................................... 8 EXPLORING DATA INTEGRITY ................................................................................................................ 15 ONE SAMPLE T-TEST ............................................................................................................................. 22 BINOMIAL TEST ..................................................................................................................................... 25 MULTINOMIAL TEST .............................................................................................................................. 28 CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST............................................................................................. 30 MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. ..........................................................................
    [Show full text]
  • Yonette F. Thomas · Leshawndra N. Price Editors Drug Use Trajectories Among Minority Youth Drug Use Trajectories Among Minority Youth
    Yonette F. Thomas · LeShawndra N. Price Editors Drug Use Trajectories Among Minority Youth Drug Use Trajectories Among Minority Youth Yonette F. Thomas • LeShawndra N. Price Editors Drug Use Trajectories Among Minority Youth Editors Yonette F. Thomas LeShawndra N. Price The New York Academy of Medicine and Health Inequities and Global Health Branch the American Association of Geographers National Heart Lung and Blood Institute, Glenn Dale , MD , USA National Institutes of Health Bethesda , MD , USA ISBN 978-94-017-7489-5 ISBN 978-94-017-7491-8 (eBook) DOI 10.1007/978-94-017-7491-8 Library of Congress Control Number: 2016946341 © Springer Science+Business Media Dordrecht 2016 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifi cally the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfi lms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specifi c statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made.
    [Show full text]
  • Beanplot: a Boxplot Alternative for Visual Comparison of Distributions
    Beanplot: A Boxplot Alternative for Visual Comparison of Distributions Peter Kampstra VU University Amsterdam Abstract This introduction to the R package beanplot is a (slightly) modified version of Kamp- stra(2008), published in the Journal of Statistical Software. Boxplots and variants thereof are frequently used to compare univariate data. Boxplots have the disadvantage that they are not easy to explain to non-mathematicians, and that some information is not visible. A beanplot is an alternative to the boxplot for visual comparison of univariate data between groups. In a beanplot, the individual observations are shown as small lines in a one-dimensional scatter plot. Next to that, the estimated density of the distributions is visible and the average is shown. It is easy to compare different groups of data in a beanplot and to see if a group contains enough observations to make the group interesting from a statistical point of view. Anomalies in the data, such as bimodal distributions and duplicate measurements, are easily spotted in a beanplot. For groups with two subgroups (e.g., male and female), there is a special asymmetric beanplot. For easy usage, an implementation was made in R. Keywords: exploratory data analysis, descriptive statistics, box plot, boxplot, violin plot, density plot, comparing univariate data, visualization, beanplot, R, graphical methods, visu- alization. 1. Introduction There are many known plots that are used to show distributions of univariate data. There are histograms, stem-and-leaf-plots, boxplots, density traces, and many more. Most of these plots are not handy when comparing multiple batches of univariate data. For example, com- paring multiple histograms or stem-and-leaf plots is difficult because of the space they take.
    [Show full text]