Swarm Intelligence in Architectural Design

Total Page:16

File Type:pdf, Size:1020Kb

Swarm Intelligence in Architectural Design Swarm Intelligence in Architectural Design Yuxing Chen Advisor: Ronald Rael Raveevarn Choksombatchai Content Chapter 1: Introduction of swarm 1.1 Thesis Statement 2 1.2 Swarm Behavior 3 1.3 Mathematical Models 6 1.4 Boids System 7 1.5 Swarm Intelligence 9 Chapter 2: Swarm algorithms and application 2.1 Swarm Intelligence in Stadium design 12 2.2 Swarm used at Design (by Tyler Julian Johnson) 14 2.3 Swarm Intelligence at Visualization (Robert Hodgin) 18 2.4 Complexity of Swarm at Arts 22 2.5 Object to Field 25 2.6 Swarm Tectonics 29 2.6 Swarm Urbanism (Neil Leach) 31 2.7 Swarm Modeling 33 2.8 Motion at Architecture Design 34 2.9 Particles at Architecture Design 35 Chapter 3: Swarm Tectonics 3.1 Swarm Testing 42 3.2 From Simulation to Application 44 3.3 Swarm Structure 51 3.4 Skin Attachment 60 3.5 Swarm Modular 63 3.6 Swarm Joint 68 3.7 Swarm Drawing 74 3.8 Data Swarm 90 3.9 Conclusion 97 Bibliography 98 Chapter1: Introduction 1 1.1 Thesis statement Swarm behavior is a collective behavior exhibited by animals of similar size which aggregate together. It can be applied to any other animal that exhibits swarm behavior. Swarm intelligence is the collective behavior of decentralized, self-organized systems, natural or artificial. The basic idea of swarm intelligence is a “popula- tion” of local interactions to the environment in a greater amount that creates a global system. At 1989, the swarm intelligence expression was first introduced at robotic sys- tems, which describe the emergent collective behavior. Nowadays this new ap- proach of collective behavior has diversely implemented in many perspective from biology, social structure, engineering, artificial, visualization and architec- ture. What’s more, a collection of people can also exhibit swarm behavior, such as pedestrians. From the book, “Emergence”, by Steven Johnson, he also wrote about creating a “form” of living on having emergence logic from the smallest scale as ants into a larger scale as cities. He tries to define how the swarm logic of ants’ behavior could give example of the way of living for human level. For architects, swarm intelligence examines the role of agency within gener- ative design processes. Digital parametric programs like processing are used to make high populations of self-organized elements into an emergent intelli- gence. The gold is to explore the dissolution of modernist tectonic hierarchies. The research about application of swarm principles at architecture ranges from visualization, self-organization of multi-agent system, architecture form de- sign, urbanism, etc. Based on the boids system at the digital animation tool, we can simulate the swarm activity, translate the animal particle system with architecture tecton- ic system and research about architecture form, structure and space. Swarm could be generated into an architecture design method. 2 1.2 Swarm Behavior (http://en.wikipedia.org/wiki/Swarm_behaviour) As a term, swarming is applied particularly to insects, but can also be applied to any other animal that exhibits swarm behaviour. The term flocking is usually used to refer specifically to swarm behaviour in birds, herding to refer to swarm behaviour in quadrupeds, shoaling or schooling to refer to swarm behaviour in fish. BY BRENDAN SEIBEL BIRD FLOCKING 3 BY OCTAVIO ABURTO FISH SCHOOLING 4 FROM MAASAI MARA KENYA NATIONAL RESERVE BUFFALO HERDING 5 SWARM INTELLIGENCE IN ARCHITECTURE DESIGN 1.3 Mathematical models (http://en.wikipedia.org/wiki/Swarm_behaviour) SWARM behaviour, or swarming, is a collective behaviour exhibited by animals of similar size which aggregate together, perhaps milling Early studies of swarmabout behavior the same spotemployed or perhaps mathematical moving en masse or models migrating into some simulate direction. As a term, swarming is applied particularly to insects, and understand the behavior.but can also Thebe applied simplest to any other mathematical animal that exhibits models swarm of behaviour. animal The term flocking is usually used to refer specifically to swarm behaviour in birds, herding to refer to swarm behaviour in quadrupeds, shoaling or schooling to refer to swarm behaviour in fish. swarms generally represent individual animals as following three rules: 1. Separation: Move in the same direction as your neighbors SWARM INTELLIGENCE2. Alignment: IN Remain ARCHITECTURE close to your neighborsDESIGN 3. Cohesion: AvoidBOIDS collisions is an artificial with your life program, neighbors developed by Craig Reynolds in 1986, which simulates the flocking behaviour of birds. His paper on this topic was published in 1987 in the proceedings of the ACM SIGGRAPH conference.The name “boid” corresponds to a shortened version of “bird-oid object”, which refers to a bird-like object SWARM behaviour, or swarming, is a collective behaviour exhibited by animals of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. As a term, swarming is applied particularly to insects, but can also be applied to any other animal that exhibits swarm behaviour. The term flocking is usually used to refer specifically to swarm behaviour in birds, herding to refer to swarm behaviour in quadrupeds, shoaling or schooling to refer to swarm behaviour in fish. SWARM INTELLIGENCE IN ARCHITECTUREBOIDS is an artificial life DESIGN program, developed by Craig Reynolds in 1986, which simulates the flocking behaviour of birds. His paper on this topic was published in 1987 in the proceedings of the ACM SIGGRAPH conference.The name “boid” corresponds to a shortened version of “bird-oid object”, which refers to a bird-likeSEPARATION object ALIGNMENT COHESION Steer to avoid crowding Steer towards the av- Steer to move toward the local flockmates erage heading of local average position (center flockmates of mass) of local flock- mates SWARM behaviour, or swarming, is a collective behaviour exhibited by animals of similar size which aggregate together, perhaps milling about the same spot or perhaps moving en masse or migrating in some direction. As a term, swarming is applied particularly to insects, but can also be applied to any other animal that exhibits swarm behaviour. The term flocking is usually used to refer specifically to swarm behaviour in birds, herding to refer to swarm behaviour in quadrupeds, shoaling or schoolingSWARM to refer INTELLIGENCE to swarm behaviour (SI) in is fish. the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. SI systems consist typically of a population of simple agents or boids interacting locally with one another and with their environment. The inspiration often comes from nature, especially biological systems. The agents follow very simple rules, and although there is no BOIDS is an artificial life program, developed by Craig Reynolds in 1986, which simulates centralizedthe flocking control behaviour structure of birds. dictating His paper how individual agents should behave, local, and to a certain degree random, interactions between on this topic was published in 1987 in the proceedingsSEPARATION of the ACM SIGGRAPH conference.TheALIGNMENTsuch name agents “boid” lead corresponds to the emergence to a shortened of “intelligent” COHESION global behavior, unknown to the individual agents. Examples in natural systems of version of “bird-oid object”, which refers to a bird-likeSteer to object avoid crowding SteerSI include towards ant the colonies, av- bird flocking, animal herding,Steer to move bacterial toward growth, the and fish schooling. The definition of swarm intelligence is still local flockmates eragenot quite heading clear. of In local principle, it should be a multi-agentaverage position system (center that has self-organized behaviour that shows some intelligent behaviour. flockmates of mass) of local flock- mates SWARM INTELLIGENCE (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. SI systems consist typically of a population of simple agents or boids interacting locally with one another and with their environment. The inspiration often comes from nature, especially biological systems. The agents follow very simple rules, and although there is no centralized control structure dictating how individual agents should behave, local, and to a certain degree random, interactions between such agents lead to the emergence of “intelligent” global behavior, unknown to the individual agents. Examples in natural systems of SEPARATION ALIGNMENTSI include ant colonies, bird flocking, animal herding,COHESION bacterial growth, and fish schooling. The definition of swarm intelligence is still Steer to avoid crowding Steernot quite towards clear. the In avprinciple,- it should be a multi-agentSteer to move system toward that the has self-organized behaviour that shows some intelligent behaviour. local flockmates erage heading of local average position (center flockmates of mass) of local flock- mates 6 SWARM INTELLIGENCE (SI) is the collective behavior of decentralized, self-organized systems, natural or artificial. The concept is employed in work on artificial intelligence. SI systems consist typically of a population of simple agents or boids interacting locally with one another and with their environment. The inspiration often comes from nature, especially biological systems. The agents follow very simple rules, and although there
Recommended publications
  • Relatedness, Parentage, and Philopatry Within a Natterer's Bat
    Population Ecology (2018) 60:361–370 https://doi.org/10.1007/s10144-018-0632-7 ORIGINAL ARTICLE Relatedness, parentage, and philopatry within a Natterer’s bat (Myotis nattereri) maternity colony David Daniel Scott1 · Emma S. M. Boston2 · Mathieu G. Lundy1 · Daniel J. Buckley2 · Yann Gager1 · Callum J. Chaplain1 · Emma C. Teeling2 · William Ian Montgomery1 · Paulo A. Prodöhl1 Received: 20 April 2017 / Accepted: 26 September 2018 / Published online: 10 October 2018 © The Author(s) 2018 Abstract Given their cryptic behaviour, it is often difficult to establish kinship within microchiropteran maternity colonies. This limits understanding of group formation within this highly social group. Following a concerted effort to comprehensively sample a Natterer’s bat (Myotis nattereri) maternity colony over two consecutive summers, we employed microsatellite DNA profiling to examine genetic relatedness among individuals. Resulting data were used to ascertain female kinship, parentage, mating strategies, and philopatry. Overall, despite evidence of female philopatry, relatedness was low both for adult females and juveniles of both sexes. The majority of individuals within the colony were found to be unrelated or distantly related. How- ever, parentage analysis indicates the existence of a number of maternal lineages (e.g., grandmother, mother, or daughter). There was no evidence suggesting that males born within the colony are mating with females of the same colony. Thus, in this species, males appear to be the dispersive sex. In the Natterer’s bat, colony formation is likely to be based on the benefits of group living, rather than kin selection. Keywords Chiroptera · Kinship · Natal philopatry · Parentage assignment Introduction of the environment (Schober 1984).
    [Show full text]
  • Dispersal, Philopatry, and the Role of Fissionfusion Dynamics In
    MARINE MAMMAL SCIENCE, **(*): ***–*** (*** 2012) C 2012 by the Society for Marine Mammalogy DOI: 10.1111/j.1748-7692.2011.00559.x Dispersal, philopatry, and the role of fission-fusion dynamics in bottlenose dolphins YI-JIUN JEAN TSAI and JANET MANN,1 Reiss Science Building, Rm 406, Department of Biology, Georgetown University, Washington, DC 20057, U.S.A. ABSTRACT In this quantitative study of locational and social dispersal at the individual level, we show that bottlenose dolphins (Tursiops sp.) continued to use their na- tal home ranges well into adulthood. Despite substantial home range overlap, mother–offspring associations decreased after weaning, particularly for sons. These data provide strong evidence for bisexual locational philopatry and mother–son avoidance in bottlenose dolphins. While bisexual locational philopatry offers the benefits of familiar social networks and foraging habitats, the costs of philopatry may be mitigated by reduced mother–offspring association, in which the risk of mother–daughter resource competition and mother–son mating is reduced. Our study highlights the advantages of high fission–fusion dynamics and longitudinal studies, and emphasizes the need for clarity when describing dispersal in this and other species. Key words: bottlenose dolphin, Tursiops sp., association, juvenile, philopatry, locational dispersal, mother-offspring, ranging, site fidelity, social dispersal. Dispersal is a key life history process that affects population demography, spatial distribution, and genetic structure, as well as individual
    [Show full text]
  • Swarming (Bulletin #404) (PDF)
    Swarming Apiculture Bulletin #404 Updated: 10/15 Swarming is a natural method of honeybee colonies to reproduce, resulting in the creation of a new honeybee colony in addition to the established colony. Contributing factors to swarming • Crowding - too many bees, food stores and no cell space for the queen to lay eggs in. • Poor air circulation • April-May is swarming season and healthy colonies develop strong swarm impulse. • Inclement weather - crowded bees confined by cold, wet weather will build queen cells and swarm out on the first sunny, warm day. All colonies in similar condition will swarm as soon as weather becomes favorable. • Large amount of drone brood in early spring is a precursor to strong swarm impulse. Catching the swarm A swarm generally emerges from the hive between 11:00AM and 1:00PM and settles close to the apiary for several hours. Allow the swarm to cluster for at least 30 minutes before placing the swarm in a single super with frames, bottom board and hive cover. Leave the hive for the remainder of the day to allow all the bees to enter, before moving to a permanent location. Examine the new colony after a week and then every two weeks from mid May to late June. Look for disease, brood abundance, brood pattern and overall condition of the colony. Add room where necessary, cut queen cells, or divide, to prevent other swarms to develop. Hived swarms have no stored food reserves and may go hungry when there is little forage. When feeding sugar syrup, add antibiotics as a precautionary measure.
    [Show full text]
  • An Overview of Mutation Strategies in Bat Algorithm
    (IJACSA) International Journal of Advanced Computer Science and Applications, Vol. 9, No. 8, 2018 An Overview of Mutation Strategies in Bat Algorithm 3 Waqas Haider Bangyal1 Hafiz Tayyab Rauf Member IEEE SMC Department of Computer Science, Department of Computer Science, University of Gujrat, Iqra University, Islamabad, Pakistan Gujrat, Pakistan 4 Jamil Ahmad2 Sobia Pervaiz Senior Member IEEE, Professor Computer Science Department of Software Engineering, Department of Computer Science, University of Gujrat, Kohat University of Science and Technology (KUST), Gujrat, Pakistan Kohat, Pakistan Abstract—Bat algorithm (BA) is a population based stochastic embedding the qualities of social insects’ behavior in the form search technique encouraged from the intrinsic manner of bee of swarms such as bees, wasps and ants, and flocks of fishes swarm seeking for their food source. BA has been mostly used to and birds. SI first inaugurated by Beni [4] in cellular robotics resolve diverse kind of optimization problems and one of major system. Researchers are attracted with the behavior of flocks of issue faced by BA is frequently captured in local optima social insects from many years. The individual member of meanwhile handling the complex real world problems. Many these flocks can achieve hard tasks with the help of authors improved the standard BA with different mutation collaboration among others [5]; however, such colonies behave strategies but an exhausted comprehensive overview about without any centralized control. SI is very famous in bio- mutation strategies is still lacking. This paper aims to furnish a inspired algorithms, computer science, and computational concise and comprehensive study of problems and challenges that intelligence.
    [Show full text]
  • Flocks and Crowds
    Flocks and Crowds Flocks and crowds are other essential concepts we'll be exploring in this book. amount of realism to your simulation in just a few lines of code. Crowds can be a bit more complex, but we'll be exploring some of the powerful tools that come bundled with Unity to get the job done. In this chapter, we'll cover the following topics: Learning the history of flocks and herds Understanding the concepts behind flocks Flocking using the Unity concepts Flocking using the traditional algorithm Using realistic crowds the technology being the swarm of bats in Batman Returns in 1992, for which he won an and accurate, the algorithm is also very simple to understand and implement. [ 115 ] Understanding the concepts behind As with them to the real-life behaviors they model. As simple as it sounds, these concepts birds exhibit in nature, where a group of birds follow one another toward a common on the group. We've explored how singular agents can move and make decisions large groups of agents moving in unison while modeling unique movement in each Island. This demo came with Unity in Version 2.0, but has been removed since Unity 3.0. For our project. the way, you'll notice some differences and similarities, but there are three basic the algorithm's introduction in the 80s: Separation: This means to maintain a distance with other neighbors in the flock to avoid collision. The following diagram illustrates this concept: Here, the middle boid is shown moving in a direction away from the rest of the boids, without changing its heading [ 116 ] Alignment: This means to move in the same direction as the flock, and with the same velocity.
    [Show full text]
  • Evolving Behaviour Trees for Supervisory Control of Robot Swarms
    Evolving Behaviour Trees for Supervisory Control of Robot Swarms Elliott Hogg1y, Sabine Hauert1, David Harvey, Arthur Richards1 1Bristol Robotics Laboratory, University of Bristol, UK. E-mail: [email protected], [email protected] Abstract: Supervisory control of swarms is essential to their deployment in real world scenarios to both monitor their operation and provide guidance. We explore mechanisms by which humans might provide supervisory control to swarms and improve their performance. Rather than have humans guess the correct form of supervisory control, we use artificial evolution to learn effective human-readable strategies to help human operators understanding and performance when con- trolling swarms. These strategies can be thoroughly tested and can provide knowledge to be used in the future in a variety of scenarios. Behaviour trees are applied to represent human readable decision strategies which are produced through evolution. We investigate a simulated set of scenarios where a swarm of robots have to explore varying environments and reach sets of objectives. Effective supervisory control strategies are evolved to explore each environment using different local swarm behaviours. The evolved behaviour trees are animated alongside swarm simulations to enable clear under- standing of the supervisory strategies. We conclude by identifying the strengths in accelerated testing and the benefits of this approach for scenario exploration and training of human operators. Keywords: Human Swarm Interaction; Swarm; Artificial Evolution; Supervisory Control; Behaviour Trees 1. INTRODUCTION • Parametric: Adjusting the characteristics of an emer- gent behaviour [6, 12]. Growing interest in the use of swarm systems has led • Environmental: The operator highlights points of inter- to new questions regarding effective design for real-world est within an environment [8, 26].
    [Show full text]
  • An Improved Bees Algorithm Local Search Mechanism for Numerical Dataset
    An Improved Bees Algorithm Local Search Mechanism for Numerical dataset Prepared By: Aras Ghazi Mohammed Al-dawoodi Supervisor: Dr. Massudi bin Mahmuddin DISSERTATION SUBMITTED TO THE AWANG HAD SALLEH GRADUATE SCHOOL OF COMPUTING UUM COLLEGE OF ARTS AND SCIENCES UNIVERSITI UTARA MALAYSIA IN PARITIAL FULFILLMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER IN (INFORMATION TECHNOLOGY) 2014 - 2015 Permission to Use In presenting this dissertation report in partial fulfilment of the requirements for a postgraduate degree from University Utara Malaysia, I agree that the University Library may make it freely available for inspection. I further agree that permission for the copying of this report in any manner, in whole or in part, for scholarly purpose may be granted by my supervisor(s) or, in their absence, by the Dean of Awang Had Salleh Graduate School of Arts and Sciences. It is understood that any copying or publication or use of this report or parts thereof for financial gain shall not be allowed without my written permission. It is also understood that due recognition shall be given to me and to University Utara Malaysia for any scholarly use which may be made of any material from my report. Requests for permission to copy or to make other use of materials in this project report, in whole or in part, should be addressed to: Dean of Awang Had Salleh Graduate School of Arts and Sciences UUM College of Arts and Sciences University Utara Malaysia 06010 UUM Sintok i Abstrak Bees Algorithm (BA), satu prosedur pengoptimuman heuristik, merupakan salah satu teknik carian asas yang berdasarkan kepada aktiviti pencarian makanan lebah.
    [Show full text]
  • The Influence of Density in Population Dynamics with Strong and Weak Allee Effect
    Keya et al. J Egypt Math Soc (2021) 29:4 https://doi.org/10.1186/s42787-021-00114-x Journal of the Egyptian Mathematical Society ORIGINAL RESEARCH Open Access The infuence of density in population dynamics with strong and weak Allee efect Kamrun Nahar Keya1, Md. Kamrujjaman2* and Md. Shafqul Islam3 *Correspondence: [email protected] Abstract 2 Department In this paper, we consider a reaction–difusion model in population dynamics and of Mathematics, University of Dhaka, Dhaka 1000, study the impact of diferent types of Allee efects with logistic growth in the hetero- Bangladesh geneous closed region. For strong Allee efects, usually, species unconditionally die out Full list of author information and an extinction-survival situation occurs when the efect is weak according to the is available at the end of the article resource and sparse functions. In particular, we study the impact of the multiplicative Allee efect in classical difusion when the sparsity is either positive or negative. Nega- tive sparsity implies a weak Allee efect, and the population survives in some domain and diverges otherwise. Positive sparsity gives a strong Allee efect, and the popula- tion extinct without any condition. The infuence of Allee efects on the existence and persistence of positive steady states as well as global bifurcation diagrams is presented. The method of sub-super solutions is used for analyzing equations. The stability condi- tions and the region of positive solutions (multiple solutions may exist) are presented. When the difusion is absent, we consider the model with and without harvesting, which are initial value problems (IVPs) and study the local stability analysis and present bifurcation analysis.
    [Show full text]
  • Research Underway: Bangarang Data Entry Program ~ Users' Manual
    RU: Bangarang 1.0 Users Manual Keen 2013 Research Underway: Bangarang Data Entry Program ~ Users’ Manual Developed by Eric Keen Scripps Institution of Oceanography Summer 2013 [email protected] CONTENTS_________________________________________________________________________________________ Introduction ………………………………………. 1 Where to Download………………………………. 1 Getting Started……………………………………. 1 Output: Overview………………………………… 3 Output: Standard Fields……………………....... 4 Output: Event Details ………………………….. 5 Appendix 1: Example output………………........ 24 Appendix 2: RUB Abbreviations……………….. 25 INTRODUCTION____________________________________________________________________________________ RU Bangarang (RUB) is a data entry program designed specifically for my dissertation work in the northern Great Bear Fjordland. It is designed to be an easily viewed, intuitive, button-based way of entering observations while letting the computer take care of associating each entry with the necessary but intensive logistical data (time, gps coordinates, current conditions, observers on board, effort status, etc.). The forms are designed to be navigated by using the mouse, using the tab key, or using the touch screen. It is also designed to output these data in a single file that can serve as both a raw record of the day's work and a single source from which to draw certain types of data (e.g. locations of hydrophone recordings and the locations of sighted whales). These, at least, were my intentions. The program was written in Visual Basic 2010 Express and published as a stand-alone executable file (.exe) for Windows. The program outputs text files to a folder it creates on the C directory of your computer. In addition to making this program available to others, I have provided the project files for the program, as well as my R scripts for analyzing the output text files, on my website.
    [Show full text]
  • Swarm Intelligence
    Swarm Intelligence Leen-Kiat Soh Computer Science & Engineering University of Nebraska Lincoln, NE 68588-0115 [email protected] http://www.cse.unl.edu/agents Introduction • Swarm intelligence was originally used in the context of cellular robotic systems to describe the self-organization of simple mechanical agents through nearest-neighbor interaction • It was later extended to include “any attempt to design algorithms or distributed problem-solving devices inspired by the collective behavior of social insect colonies and other animal societies” • This includes the behaviors of certain ants, honeybees, wasps, cockroaches, beetles, caterpillars, and termites Introduction 2 • Many aspects of the collective activities of social insects, such as ants, are self-organizing • Complex group behavior emerges from the interactions of individuals who exhibit simple behaviors by themselves: finding food and building a nest • Self-organization come about from interactions based entirely on local information • Local decisions, global coherence • Emergent behaviors, self-organization Videos • https://www.youtube.com/watch?v=dDsmbwOrHJs • https://www.youtube.com/watch?v=QbUPfMXXQIY • https://www.youtube.com/watch?v=M028vafB0l8 Why Not Centralized Approach? • Requires that each agent interacts with every other agent • Do not possess (environmental) obstacle avoidance capabilities • Lead to irregular fragmentation and/or collapse • Unbounded (externally predetermined) forces are used for collision avoidance • Do not possess distributed tracking (or migration)
    [Show full text]
  • Make Robots Be Bats: Specializing Robotic Swarms to the Bat Algorithm
    © <2019>. This manuscript version is made available under the CC- BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc- nd/4.0/ Accepted Manuscript Make robots Be Bats: Specializing robotic swarms to the Bat algorithm Patricia Suárez, Andrés Iglesias, Akemi Gálvez PII: S2210-6502(17)30633-8 DOI: 10.1016/j.swevo.2018.01.005 Reference: SWEVO 346 To appear in: Swarm and Evolutionary Computation BASE DATA Received Date: 24 July 2017 Revised Date: 20 November 2017 Accepted Date: 9 January 2018 Please cite this article as: P. Suárez, André. Iglesias, A. Gálvez, Make robots Be Bats: Specializing robotic swarms to the Bat algorithm, Swarm and Evolutionary Computation BASE DATA (2018), doi: 10.1016/j.swevo.2018.01.005. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT Make Robots Be Bats: Specializing Robotic Swarms to the Bat Algorithm Patricia Su´arez1, Andr´esIglesias1;2;:, Akemi G´alvez1;2 1Department of Applied Mathematics and Computational Sciences E.T.S.I. Caminos, Canales y Puertos, University of Cantabria Avda. de los Castros, s/n, 39005, Santander, SPAIN 2Department of Information Science, Faculty of Sciences Toho University, 2-2-1 Miyama 274-8510, Funabashi, JAPAN :Corresponding author: [email protected] http://personales.unican.es/iglesias Abstract Bat algorithm is a powerful nature-inspired swarm intelligence method proposed by Prof.
    [Show full text]
  • Robot Swarm Based on Ant Foraging Hypothesis with Adaptive Lèvy Flights
    Robot Swarm based on Ant Foraging Hypothesis with Adaptive Lèvy Flights A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirements of the degree of Master of Science in the Department of Mechanical and Materials Engineering of the College of Engineering and Applied Sciences by Aditya Milind Deshpande B.E. University of Pune August 2014 Committee Chair: Dr. Manish Kumar, Ph.D. Abstract Robot Swarm based on Ant Foraging Hypothesis with Adaptive Levy´ Flights by Aditya Milind Deshpande Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Department of Mechanical and Materials Engineering University of Cincinnati June 2017 Design of robot swarms inspired by self-organization in social insect groups is currently an active research area with a diverse portfolio of potential applications. This thesis is focused on the development of control laws for swarm of robots inspired by ant foraging. Particularly, this work presents control laws for efficient area coverage by a robot swarm in a 2D spatial domain, inspired by the unique dynamical characteristics of ant foraging. The novel idea pursued in the effort is that dynamic, adaptive switching between Brownian motion and Levy´ flight in the stochastic component of the search increases the efficiency of the search and area coverage. The study is motivated by behaviors of certain biological studies who exhibit searching patterns modeled using Levy´ flight. Influence of different pheromone (the virtual chemotactic agent that drives the foraging) threshold values for switching between Levy´ flights and Brownian motion is studied using two performance metrics - area coverage and visit entropy.
    [Show full text]