DAY THREE EWEA OFFSHORE FRANKFURT 2013 Ewea.Org | Rechargenews.Com Produced by RECHARGE
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Scott Urquhart, Stiesdal Offshore Technologies
Stiesdal Stiesdal Offshore Technologies Tetra foundation concept Industrialized Offshore Wind Turbine Foundations Scott Urquhart, April 10, 2019 © Stiesdal A/S 2019, All Rights Reserved 1 Stiesdal Founder – Henrik Stiesdal Former CTO of Siemens Wind Power, retired end 2014 Key Achievements • Wind power pioneer, built first test turbine 1976, and first commercial turbine 1978; licensed wind turbine design to Vestas 1979, kick-starting modern Danish wind industry • Served as technical manager of Bonus Energy A/S from 1988, ran company together with CEO until Siemens acquisition 2004, then took position as CTO of Siemens Wind Power • Installed world’s first offshore wind farm (1991) and world’s first floating wind turbine (2009) • Invented and implemented key technologies, including Siemens proprietary blade manufacturing, low-weight direct- drive turbines, variable-speed operation, energy storage, etc. • Holds more than 800 patents Post-Siemens activities include work on low-cost offshore infrastructure, high-capacity energy storage and carbon- negative fuels © Stiesdal A/S 2019, All Rights Reserved 2 Stiesdal Framework Stiesdal A/S Company Structure • Climate technology Stiesdal Offshore Stiesdal Storage Stiesdal Fuel company with Technologies A/S Technologies A/S Technologies A/S focused Project Tetra GridScale SkyClean subsidiaries Target Unlimited low- Unlimited share Carbon capture Purpose cost offshore of renewables and • Combat climate wind energy on grid sequestration change by Means Industrialized Storage system Carbon-negative -
Patents to Climate Rescue: How Intellectual Property Rights Are Fundamental to the Development of Renewable Energy
Patents to climate rescue: how intellectual property rights are fundamental to the development of renewable energy Arielle Aberdeen October 2020 4iP Council is a European research council dedicated todeveloping high quality academic insight and empirical evidence on topics related to intellectual property and innovation. Our research is multi-industry,cross sector and technology focused. We work with academia, policy makers and regulators to facilitate a deeper understanding of the invention process and of technology investment decision-making. www.4ipcouncil.com Suggested citation Aberdeen, Arielle, Patents to climate rescue: how intellectual property rights are fundamental to the development of renewable energy. (October 2020). 4iP Council. Patents to Climate Rescue: How intellectual property rights are fundamental to the development of renewable energy. Abstract This is a brief overview of the role of patents in renewable energy technologies. It is designed to provide the reader with an introduction on the concept and importance of renewable energy production; the role patents are playing in the development of these technologies; a statistical snapshot of the patents trends and global output of renewable energy; various governmental policies; and case study highlights. With the latter showcasing how two successful companies have used their IP in this area from the perspective of a large company and an SME. This is the first introductory article which will delve into different aspects of the renewable technology sector and intellectual property. Introduction Climate change is the most pressing global challenge and with the international commitment to reduce greenhouse gas emissions under the Paris Agreement,1 there needs to be a global energy revolution and transition.2 This is where innovative technology can help meet the challenge of reducing our dependency on finite natural capital resources. -
Modeling and Simulation of an Hvdc Network for Offshore Wind Farms”
Project Report – Budget TREBALL DE FI DE GRAU “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) Project Report “MODELING AND SIMULATION OF AN HVDC NETWORK FOR OFFSHORE WIND FARMS” TFG presentat per optar al títol de GRAU en ENGINYERIA DE L’ENERGIA per Joan-Bartomeu Pons Perelló Barcelona, 09 de Juny de 2015 Director: Arnau Dòria Cerezo Codirector: Sergio Zlotnik Departament d’Enginyeria Elèctrica (EE – 709) Universitat Politècnica de Catalunya (UPC) TABLE OF CONTENTS TABLE OF CONTENTS i List of Figures . iii List of Tables . v Abstract . vii Resum . vii Resumen . vii Chapter 1: Introduction 1 1.1 Aim and goals of this project . 1 1.2 Context and motivation . 1 1.2.1 Wind power and offshore wind farms . 2 1.2.2 HVDC transmission . 4 1.3 Project Report outline . 6 Chapter 2: Modeling of an HVDC network 7 2.1 Analytical model . 7 2.1.1 HVDC lines . 7 2.1.2 Voltage Source Converters . 9 2.1.3 General model . 10 2.1.4 Wind energy conversion model . 11 2.1.5 Control scheme: Droop control . 14 2.2 Case Studies . 16 2.2.1 Case Study 1: 4-terminal, 3-line system . 16 2.2.2 Case Study 2: 5-terminal, 6-line system . 17 2.2.3 Case Study 3: North Sea Transnational Grid . -
1 2020 Wind Energy Update 1. Introduction 2. Grand Challenges
2020 Wind Energy Update By John Benson January 2020 1. Introduction The last papers I published with similar subjects to this one were in August and September of last year (2019). I have listed these below with links and brief descriptions, just in case some readers are looking for specific content that might be covered in one of these. California Offshore Wind: This paper covers early-stage activity on the California coast. https://www.energycentral.com/c/cp/california-offshore-wind Recent Developments in Storage, Wind and PV: This post focused on large PV, wind and storage projects in the U.S. Also, recent news that impacts the cost of battery energy storage systems (BESS), and we started this paper with this subject. https://www.energycentral.com/c/cp/recent-developments-storage-wind-and-pv Off-Shore Wind Update: This two-part series where the first part focused on the positive political moves in many states on the U.S. East Coast, and part 2 focused on off-shore projects in this region, the latest turbine designs. https://www.energycentral.com/c/cp/shore-wind-update-%E2%80%93-part-1 https://www.energycentral.com/c/cp/shore-wind-update-%E2%80%93-part-2 This paper contains several subjects. It starts with some “grand challenges” that wind power will face in the future. Following that we will briefly review technology improvements that have been made to small wind turbines. Finally we will review major projects throughout the world. This paper has gone over my normal 3,000 word limit, but not so much that I would consider splitting it. -
EWEA Offshore Report 2009
Oceans of Opportunity Harnessing Europe’s largest domestic energy resource A report by the European Wind Energy Association Oceans of opportunity Europe’s offshore wind potential is enormous and able to power Europe seven times over. Huge developer interest Over 100 GW of offshore wind projects are already in various stages of planning. If realised, these projects would produce 10% of the EU’s electricity whilst avoiding 200 million tonnes of CO2 emissions each year. Repeating the onshore success EWEA has a target of 40 GW of offshore wind in the EU by 2020, implying an average annual market growth of 28% over the coming 12 years. The EU market for onshore wind grew by an average 32% per year in the 12-year period from 1992-2004 – what the wind energy industry Oceans of Opportunity has achieved on land can be repeated at sea. Building the offshore grid EWEA’s proposed offshore grid builds on the 11 offshore grids currently operating and 21 offshore grids currently being considered by the grid operators in the Baltic and North Seas to give Europe a truly pan-European electricity super highway. Realising the potential Strong political support and action from Europe’s policy-makers will allow a new, multi-billion euro industry to be built. EWEA Results that speak for themselves This new industry will deliver thousands of green collar jobs and a new About EWEA renewable energy economy and establish Europe as world leader in EWEA is the voice of the wind industry, actively promoting the utilisation of offshore wind power technology. -
Offshore Technology Yearbook
Offshore Technology Yearbook 2 O19 Generation V: power for generations Since we released our fi rst offshore direct drive turbines, we have been driven to offer our customers the best possible offshore solutions while maintaining low risk. Our SG 10.0-193 DD offshore wind turbine does this by integrating the combined knowledge of almost 30 years of industry experience. With 94 m long blades and a 10 MW capacity, it generates ~30 % more energy per year compared to its predecessor. So that together, we can provide power for generations. www.siemensgamesa.com 2 O19 20 June 2019 03 elcome to reNEWS Offshore Technology are also becoming more capable and the scope of Yearbook 2019, the fourth edition of contracts more advanced as the industry seeks to Wour comprehensive reference for the drive down costs ever further. hardware and assets required to deliver an As the growth of the offshore wind industry offshore wind farm. continues apace, so does OTY. Building on previous The offshore wind industry is undergoing growth OTYs, this 100-page edition includes a section on in every aspect of the sector and that is reflected in crew transfer vessel operators, which play a vital this latest edition of OTY. Turbines and foundations role in servicing the industry. are getting physically larger and so are the vessels As these pages document, CTVs and their used to install and service them. operators are evolving to meet the changing needs The growing geographical spread of the sector of the offshore wind development community. So is leading to new players in the fabrication space too are suppliers of installation vessels, cable-lay springing up and players in other markets entering vessels, turbines and other components. -
European Power List 2021
SPECIAL REPORT EUROPEAN POWER LIST 2021 THE PEOPLE AND TRENDS AT THE LEADING EDGE OF EUROPEAN WIND / TOP 100 PEOPLE IN EUROPEAN WIND / 5 TRENDS THAT SHAPED THE TOP 100 / JOIN US AT FINANCING WIND EUROPE 2021 Contents Welcome 3 How we did it 4 Our criteria 5 Our judges 6 What does the European Power List tell us about the market? 8 Our top 100 profiles 18 Q&A Interview: Nigel Slater 20 The European Power List 2021 in full 26 The European Power List 2021 is proudly sponsored by: SUPPORTING SPONSORS Copyright © Tamarindo Group / A Word About Wind / Energy Storage Report. This report or any part thereof should not be distributed or reproduced without the express permission of Tamarindo Group / A Word About Wind / Energy Storage Report. Please contact [email protected] for all enquiries including distribution, reproduction and membership. EUROPEAN POWER LIST 2021 Welcome It is ten years since we started ranking the top These leaders now face a major challenge. They people in European wind. will all play crucial roles in making sure that wind is key to the ‘green recovery’ from Covid-19. Since then, we have published seven top 100 lists This will not be easy. We see major obstacles to with a European focus. First, we did this in our the rollout of wind across Europe. annual Top 100 Power People. Now we do this regularly in the European Power List. Over the For example, last month WindEurope warned years we have featured a total of 337 of wind’s wind installations of 14.7GW in Europe in 2020 most influential people in these reports, and ten are not enough to meet long-term carbon from that first list still feature today. -
Integration of Wave and Offshore Wind Energy in a European Offshore Grid
Aalborg Universitet Integration of Wave and Offshore Wind Energy in a European Offshore Grid Chozas, Julia Fernandez; Sørensen, H. C.; Korpås, M. Published in: Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Publication date: 2010 Document Version Publisher's PDF, also known as Version of record Link to publication from Aalborg University Citation for published version (APA): Chozas, J. F., Sørensen, H. C., & Korpås, M. (2010). Integration of Wave and Offshore Wind Energy in a European Offshore Grid. In Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference: Beijing, China, June 20-25, 2010 (Vol. I, pp. 926-933). International Society of Offshore & Polar Engineers. International Offshore and Polar Engineering Conference Proceedings Vol. 20 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research. ? You may not further distribute the material or use it for any profit-making activity or commercial gain ? You may freely distribute the URL identifying the publication in the public portal ? Take down policy If you believe that this document breaches copyright please contact us at [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Downloaded from vbn.aau.dk on: September 24, 2021 Proceedings of the Twentieth (2010) International Offshore and Polar Engineering Conference Beijing, China, June 2025, 2010 Copyright © 2010 by The International Society of Offshore and Polar Engineers (ISOPE) ISBN 978-1-880653-77-7 (Set); ISSN 1098-6189 (Set); www.isope.org Integration of Wave and Offshore Wind Energy in a European Offshore Grid J. -
Energy Infrastructure
MJ-30-10-705- EN -C Energy infrastructure PRIORITIES FOR 2020 AND BEYOND ─ A BLUEPRINT FOR AN INTEGRATED EUROPEAN ENERGY NETWORK Energy infrastructure PRIORITIES FOR 2020 AND BEYOND ─ A BLUEPRINT FOR AN INTEGRATED EUROPEAN ENERGY NETWORK This illustrated brochure comprises the text of the European Commission’s communication ‘Energy infrastructure priorities for 2020 and beyond — A Blueprint for an integrated European energy network’ (COM(2010) 677 final of 17 November 2010) and a foreword by Commissioner Günther Oettinger. Europe Direct is a service to help you find answers to your questions about the European Union Freephone number (*): 00 800 6 7 8 9 10 11 (*) Certain mobile telephone operators do not allow access to 00 800 numbers or these calls may be billed. More information on the European Union is available on the Internet (http://europa.eu). Luxembourg: Publications Office of the European Union, 2011 ISBN 978-92-79-18877-0 doi:10.2833/78572 © European Union, 2011 Reproduction is authorised provided the source is acknowledged. Photos courtesy of: European Commission; European Parliament; iStockphoto; Patrick Mascart/European Commission; Shutterstock; Siemens/EWEA. Printed in Belgium FOREWORD Europe is at an unprecedented crossroads for its energy future. We are currently going through a paradigm shift in the way we produce, transmit, distribute and trade energy, as we try to reduce the carbon footprint of the energy sector as a whole. This shift will increase the role of electricity compared to other energy vectors. We will have to get the most promising renewable energy sources where they are, while further integrating the European energy market. -
Expansion Planning of the North Sea Offshore Grid: Simulation of Integrated Governance Constraints
Energy Economics 72 (2018) 376–392 Contents lists available at ScienceDirect Energy Economics journal homepage: www.elsevier.com/locate/eneeco Expansion planning of the North Sea offshore grid: Simulation of integrated governance constraints João Gorenstein Dedecca a,⁎, Sara Lumbreras b, Andrés Ramos b,RudiA.Hakvoorta, Paulien M. Herder a a Faculty of Technology, Policy and Management, Delft University of Technology, Jaffalaan 5, 2628BX Delft, The Netherlands b Institute for Research in Technology, Comillas Pontifical University, Santa Cruz de Marcenado 26, 28015 Madrid, Spain article info abstract Article history: The development of offshore transmission and wind power generation in the North Sea of Europe is advancing Received 15 October 2017 fast, but there are significant barriers to an integrated offshore grid in the region. This offshore grid is a multi- Received in revised form 18 April 2018 level, multi-actor system requiring a governance decision-making approach, but there is currently no proven Accepted 23 April 2018 governance framework for it, or for the expansion planning of the European power system in general. In addition, Available online 25 April 2018 existing offshore expansion planning models do not endogenously include governance considerations, such as JEL classification: country vetoes to integrated lines. We develop a myopic Mixed-Integer Linear Programming model of offshore C63 generation and transmission expansion planning to study the effect of integrated governance constraints. D7 These constraints limit investments in integrated lines: non-conventional lines linking offshore wind farms to L5 other countries or to other farms. Each constraint affects the system (including the main transmission corridors), L94 transmission technologies and welfare distribution differently. -
Commission Staff Working Document Impact Assessment Accompanying the Document Communication from the Commission to the European
COUNCIL OF Brussels, 21 January 2014 THE EUROPEAN UNION 5526/14 ADD 2 ENER 19 RECH 24 ENV 48 COVER NOTE from: Secretary-General of the European Commission, signed by Mr Jordi AYET PUIGARNAU, Director date of receipt: 20 January 2014 to: Mr Uwe CORSEPIUS, Secretary-General of the Council of the European Union No Cion doc.: SWD(2014) 13 final Subject: Commission Staff Working Document Impact Assessment Accompanying the document Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Ocean Energy Action needed to deliver on the potential of ocean energy in European seas and oceans by 2020 and beyond Delegations will find attached Commission document SWD(2014) 13 final. ________________________ Encl.: SWD(2014) 13 final 5526/14 ADD 2 JPD/st 1 DG E EN EUROPEAN COMMISSION Brussels, 20.1.2014 SWD(2014) 13 final COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT Accompanying the document Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions Ocean Energy Action needed to deliver on the potential of ocean energy by 2020 and beyond {COM(2014) 8 final} {SWD(2014) 12 final} EN EN TABLE OF CONTENTS COMMISSION STAFF WORKING DOCUMENT IMPACT ASSESSMENT ......................... 1. Introduction .................................................................................................................. 5 2. Procedural Issues and Consultation of Interested Parties -
TEN-E Financed Projects 1995-2013 for Europa.Xls P Rojec T Referenc E Dec Is Ion 2006 Guidelines Referenc E P Rojec T P Riority
2013 TEN-E financed projects 1995-2013 for Europa.xls Member Company Description State(s) Decision Priority axe Priority Project reference Project Project priority (*) priority Project Financing by TEN Financing 2006 guidelines reference2006 guidelines E341/13 13-E341/13EL.9 PEI EL.9 IT DII GmbH 206.225 € (GERMANY) + Feasibility study on a submarine electricity interconnection between Italy and North EuropaGrid Africa (Algeria, Tunisia, Libya) for the exchange of renewable electricity between Transmission Europe and North Africa Services Ltd (IRELAND) E344/13 13-E344 EL.7 PEI EL.7 DK Energinet 1.100.000 € Kasso-Tjele Monopiles (DENMARK) E345/13 13-E345 2.23 PCI, PEI DK Energinet 400.000 € Oresund - two new 132 kV interconnectors from Denmark to Sweden (DENMARK) E346/13 13-E346 EL.7 PEI EL.7 DK Energinet 1.100.000 € Synchronous condensers in Fraugde and Herslev (DENMARK) E348/13 13-E348 4.1 PCI IT Feasibility study for a new electrical interconnection through the northern cross border 251.910 € CIE, CVA, SAV, between Italy and Switzerland, by means of the under-construction Gran San Bernardo SITRASB (ITALY) safety gallery and existing highway infrastructures E351/13 13-E351 3.55 PCI BE ELIA Asset 2.000.000 € Offshore Grid and Interconnection Enabler: Stevin Project (BELGIUM) E352/13 13-E352 EL.7 PEI EL.7 LT LITGRID AB Oversight of design and build contract of HVDC back-to-back station interconnecting 50.000 € (LITHUANIA) Lithuanian and Polish power grids in LitPol Link Project E353/13 13-E353 EL.8 PEI EL.8 SK Slovenska 2.338.779 € elektrizacna