ID ARES Digital Comms.Key
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Efficient Multi-Carrier Communication on the Digital Subscriber Loop
Efficient Multi-Carrier Communication on the Digital Subscriber Loop Donnacha Daly Department of Electrical and Electronic Engineering Faculty of Engineering and Architecture University College Dublin National University of Ireland A thesis presented to the National University of Ireland Faculty of Engineering and Architecture in fulfillment of the requirements for the degree of Doctor of Philosophy May 2003 Research Supervisors: Dr. C. Heneghan Prof. A. D. Fagan Head of Department: Prof. T. Brazil Abstract This thesis explores three distinct philosophies for improving the efficiency of multi-carrier com- munication on the digital subscriber loop. The first topic discussed is impulse response shortening for discrete multitone transceivers. The minimum mean-squared error impulse response shortener is reformulated to allow near-optimal rate performance. It is demonstrated that the best existing eigen-filter designed channel shortener is a particular case of the proposed reformulation. An adap- tive time-domain LMS algorithm is provided as an alternative to eigen-decomposition. The next part of the thesis examines bit- and power- loading algorithms for multitone systems. The problem of rate-optimal loading has already been solved. It is shown, however, that the rate-optimal solu- tion does not give best value for complexity, and that near optimal schemes can perform very well at a fraction of the computational cost. The final section of the thesis is a brief exposition of the use of wavelet packets to achieve multi-carrier communication. It is proposed that the non-uniform spectral decomposition afforded by wavelet packet modulation allows reduced inter-symbol inter- ference effects in a dispersive channel. -
FLDIGI Users Manual 3.23
FLDIGI Users Manual 3.23 Generated by Doxygen 1.8.10 Sat Sep 26 2015 10:39:34 Contents 1 FLDIGI Users Manual - Version 3.231 1.1 Fldigi Configuration and Operational Instructions........................... 1 2 Configuration 3 2.1 User Interface configuration...................................... 3 2.2 Windows Specific Install / Config................................... 3 2.3 Other Configuration options...................................... 3 2.4 Command Line Switches ....................................... 4 2.5 Modem Configuration Options..................................... 4 2.6 Configure Operator .......................................... 5 2.7 Sound Card Configuration....................................... 6 2.7.1 Right Channel Audio Output ................................. 9 2.7.2 WAV File Sample Rate.................................... 10 2.7.3 Multiple sound cards ..................................... 10 2.8 Rig Control .............................................. 12 2.8.1 Rig Configuration....................................... 13 2.8.2 RigCAT control........................................ 15 2.8.3 Hamlib CAT control...................................... 16 2.8.4 Xml-Rpc CAT......................................... 16 2.9 New Installation............................................ 17 2.10 Configure ARQ/KISS I/O ....................................... 20 2.10.1 I/O Configuration....................................... 22 2.10.1.1 ARQ I/O ...................................... 22 2.10.1.2 KISS I/O...................................... 23 -
Replacing 1200 Baud AFSK FM with PSK and Deploying DTN Iain Young [email protected]
Replacing 1200 Baud AFSK FM with PSK and Deploying DTN Iain Young [email protected] Agenda ● Introductions ● AX.25 Link Established! ● Exactly What Are We ● Adding TCP/UDP/IP Planning To Replace ? ● Adding DTN ● Why Replace It ? ● Results ● Computer Network Theory ● Conclusions ● How We Replaced It ● Future Experiments – Tools and Utilities Needed ● Acknowledgements – RF Setup and Maps Introductions ● Two major areas of focus – Replacing AX.25 1200 baud AFSK FM with PSK – Deploying DTN ● Who ? – Iain Young, G7III, MAXPAK Chairman – Dave Madew, M0DCM, MAXPAK Committee Member ● MAXPAK – Formed as a dedicated AX.25 Packet group for the Midlands – Constitution changed a couple of years ago, to include all digital modes So What Are We Replacing, And What Are We Not Replacing ? ● The AX.25 Physical Layer – In “Network” Parlance, Layer 1 – We mean the 1200 baud AFSK FM transmissions ● We are not replacing what the network world would call “Layer 2” or “The Data Link Layer” where you send and receive AX.25 frames to and from AX.25 addresses ● The mode we are all familiar with could be more formally described as AX.25 over 1200 baud AFSK FM ● The mode we will be creating could be more formally described as AX.25 over PSK Why Do This ? (1) ● 1200 baud AFSK FM is not exactly well known for it's effeciency, especially with regards to: – Spectrum usage, – Power requirements – Link budget ● Even it's 300 baud cousin is not particularly well thought of on HF, can be improved on and that's only a quarter the throughput! Why Do This ? (2) ● Plenty have claimed -
HF Digital Mode Primer
HF Digital Mode Primer By Val Campbell K7HCP INTRODUCTION Getting started using the Amateur Radio Digital Modes of communications can be confusing and frustrating at times but it doesn’t have to be that way. The purpose of this primer is to introduce you to the basics of using this fun to use mode of communication and to provide you with the understanding of the processes to setting up your hardware and software to easily and quickly start copying and later to start sending digital communications on the amateur radio HF shortwave bands. The minimum hardware requirements to receive or copy HF digital communications are a personal computer (PC) with a standard sound card and a short wave or ham radio receiver with SSB mode. A receiver with digital tuning display is preferred but a receiver with analog tuning can work also. You may have heard about various digital modes such as RTTY, SSTV, PACTOR, PSK31, and of course, CW. CW or Morse Code, as it is more commonly known, was the original digital mode used in communications; however few thought of it as digital until recently. Just like our old wristwatches were analog watches, we didn’t think of them as such until digital watches came into existence. PSK31 has become by far the most popular digital mode used by amateur radio operators lately. PSK31 stands for Phase Shift Keying with a bandwidth of only 31 hertz. That’s really all you need to know to use this mode of communications. The program does the rest for you. The ARRL has the following to say about PSK31 : Since the spring of 1999, PSK31 has taken off like wildfire. -
Overview of Ham Radio Software
OVERVIEW OF SOFTWARE FOR DIGITAL HAM RADIO Where to download free software: (often there are helpful help files also, so you might want to peruse around a bit more than just download) FLDIGI https://sourceforge.net/projects/fldigi/files/fldigi/fldigi- 3.23.15_setup.exe/download https://sourceforge.net/projects/fldigi/files/fldigi/ Downloading FLDIGI can be a bit tricky. Try going to the above page and then selecting (for Windows) the file ending with “setup.exe”. WINLINK EXPRESS http://www.winlink.org/sites/default/files/downloads/winlink_express_insta ll_1-4-2-0.zip UZ7HO http://uz7.ho.ua/modem_beta/soundmodem95.zip is the actual download. SOUNDMODEM.EXE WINDOWS BPQ http://www.cantab.net/users/john.wiseman/Downloads/LastestInstaller/ is the directory http://www.cantab.net/users/john.wiseman/Downloads/LastestInstaller/BPQ 32_6.0.13.1_20160927.exe is the actual download link Malware Detection Software: Many commercial virus checkers and malware detectors will consider very rare software to be automatically suspect, and delete or refuse to run or load it. You will have to find out how to tell your malware detection software to accept these quite- respectable programs. Every malware detection program works differently, so read your instructions! Digital Ham Radio has many facets. Characters from a computer become some version of “tones” going to a transmitter microphone input; audio from a receiver speaker output gets transformed into characters in a computer and possibly visible on the screen to a user. Software & hardware combine to make this magic happen. This paper will attempt to categorize the major software required to accomplish several communications. -
16.1 Digital “Modes”
Contents 16.1 Digital “Modes” 16.5 Networking Modes 16.1.1 Symbols, Baud, Bits and Bandwidth 16.5.1 OSI Networking Model 16.1.2 Error Detection and Correction 16.5.2 Connected and Connectionless 16.1.3 Data Representations Protocols 16.1.4 Compression Techniques 16.5.3 The Terminal Node Controller (TNC) 16.1.5 Compression vs. Encryption 16.5.4 PACTOR-I 16.2 Unstructured Digital Modes 16.5.5 PACTOR-II 16.2.1 Radioteletype (RTTY) 16.5.6 PACTOR-III 16.2.2 PSK31 16.5.7 G-TOR 16.2.3 MFSK16 16.5.8 CLOVER-II 16.2.4 DominoEX 16.5.9 CLOVER-2000 16.2.5 THROB 16.5.10 WINMOR 16.2.6 MT63 16.5.11 Packet Radio 16.2.7 Olivia 16.5.12 APRS 16.3 Fuzzy Modes 16.5.13 Winlink 2000 16.3.1 Facsimile (fax) 16.5.14 D-STAR 16.3.2 Slow-Scan TV (SSTV) 16.5.15 P25 16.3.3 Hellschreiber, Feld-Hell or Hell 16.6 Digital Mode Table 16.4 Structured Digital Modes 16.7 Glossary 16.4.1 FSK441 16.8 References and Bibliography 16.4.2 JT6M 16.4.3 JT65 16.4.4 WSPR 16.4.5 HF Digital Voice 16.4.6 ALE Chapter 16 — CD-ROM Content Supplemental Files • Table of digital mode characteristics (section 16.6) • ASCII and ITA2 code tables • Varicode tables for PSK31, MFSK16 and DominoEX • Tips for using FreeDV HF digital voice software by Mel Whitten, KØPFX Chapter 16 Digital Modes There is a broad array of digital modes to service various needs with more coming. -
HF Digital Communications
HF Digital Communications How to work those strange sounds you hear on the air John Clements KC9ON Stephen H. Smith WA8LMF Joe Miller KJ8O John Mathieson AC8JW Brian Johnston W8TFI 1 May 2014 Contents Introductions Why Digital? Digital Modes of Operation Hardware : Radio, Computer, and interfaces Contents Software Tips and Tricks Q&A Introductions John Clements KC9ON Licensed in 1979 at age 16 Retired from electronics manufacturing and IT systems Active experimenter and home brewer [email protected] Introductions Stephen Smith WA8LMF Land-Mobile-Radio Systems & Field Engineer Ham since 1964 [email protected] Introductions Joe Miller KJ8O SWL since 1967, first licensed in 2006 and collects QSL cards President of OCARS (W8TNO) Certified Public Accountant [email protected] Introductions Brian Johnston W8TFI Licensed in 1976 Computer operator for a major newspaper Avid experimenter and home brewer [email protected] Introductions John Mathieson AC8JW Licensed since about 2005 Active in CW and digital modes [email protected] Why Digital? Send and receive text, images, data, and audio Some modes work very well in noisy and weak signal environments If you can’t hear them you can’t work them is no longer true! Why Digital? Some modes can provide error free or reduced error transmissions. Good for Emergency Communications Why Digital? Many modes use smaller bandwidths than voice 97.1(b) contribute to the advancement of the radio art. 97.313(a) use the minimum transmitter power necessary to carry out the desired -
DM-780 Users Guide Ham Radio Deluxe V6.0
HRD Software LLC DM-780 Users Guide Ham Radio Deluxe V6.0 By Tim Browning (KB3NPH) 2013 HRD Software LLC DM-780 Users Guide Table of Contents Overview ....................................................................................................................................................... 3 Audio Interfacing........................................................................................................................................... 4 Program Option Descriptions ....................................................................................................................... 8 Getting Started ............................................................................................................................................ 10 QSO Tag and My Station Set up .............................................................................................................. 11 My Station Set Up ................................................................................................................................... 12 Default Display ............................................................................................................................................ 14 Main Display with Waterfall ................................................................................................................... 14 Main Display with ALE and Modes Panes ............................................................................................... 15 Modes, Tags and Macros Panes ............................................................................................................. -
Digital Mode Presentation
Digital Mode Presentation General Knowledge Digital communication is the exchange of digital data over the air • Email, Digital files, Keyboard-to-keyboard (chat), and others Protocols on today’s menu • RTTY, PACTOR, JT9/65, PSK31, FSQCall, Olivia Communication = digital mode if info is exchanged as individual characters encoded as digital bits. Example: A = ASCII 01000001 Some consider CW a digital mode. (an A = di-dah) Some modes are old, like radio-teletype, invented in the 1930’s. Some modes are new, like FSQ, invented in the mid-2015’s. Where? • Look at an amateur band chart (80 meters and 20 meters) • Look at a band plan (2-4, 2-17, 6-2) • Show CW, PSK31 (3.570 & 14.070) and RTTY • Look at http://bandplans.com Definitions Air Link – the part of the communication system involving radio transmissions and reception of signals. Bit – fundamental unit of data; a 0 or 1 in binary Bit rate – number of bits per second sent from one system to another. Symbol – signal characteristics that make up each distinct state of the transmitted signal • CW symbols = on and off • RTTY symbols are tones • Baudot or ASCII (simple methods) encode one bit in each symbol • Sophisticated codes use complex audio signals to carry the data and encode more than one bit in each symbol Baud – number of symbols per second that are sent from one system to another. Duty cycle – ratio of transmitting to total on/off time • Important to know duty cycle of mode because most transmitters are not designed to operate at full power for extended periods of time. -
(12) United States Patent (10) Patent No.: US 6,665,546 B2 Slaughter Et Al
USOO6665546B2 (12) United States Patent (10) Patent No.: US 6,665,546 B2 Slaughter et al. (45) Date of Patent: *Dec. 16, 2003 (54) HIGH SPEED, POINT-TO-POINT, (56) References Cited MILLIMETER WAVE DATED COMMUNICATION SYSTEM U.S. PATENT DOCUMENTS 5,701,591 A * 12/1997 Wong .......................... 455/63 (75) Inventors: Louis Slaughter, Weston, MA (US); 5,890.055 A * 3/1999 Chu et al...................... 455/23 Jon Hill, Socorro, NM (US); Thomas 5.936,578 A * 8/1999 Driessen et al. .............. 455/65 Lambert, Makawao, HI (US); Huan Nguyen, Annandale, VA (US); Randall (List continued on next page.) Olsen, Carlsbad, CA (US); John Lovberg, San Diego, CA (US); Primary Examiner William Trost Kenneth Y. Tang, Alpine, CA (US); ASSistant Examiner Rafael Perez-Gutierrez Vladimir Kolinko, San Diego, CA (74) Attorney, Agent, or Firm John R. Ross; John R. Ross, (US) III (73) Assignee: Trex Enterprises Corporation, San (57) ABSTRACT Diego, CA (US) A point-to-point, wireless, millimeter wave trunk line com (*) Notice: Subject to any disclaimer, the term of this munications link at high data rates in excess of 1 Gbps and patent is extended or adjusted under 35 at ranges of Several miles during normal weather conditions. U.S.C. 154(b) by 0 days. This link is combined with an Ethernet network to provide high Speed digital data communication among a large num This patent is Subject to a terminal dis ber of users. In a preferred embodiment a trunk line com claimer. munication link operates within the 92 to 95 GHZ portion of the millimeter spectrum. -
Lessons from Telco & Wireless Providers
LESSONS FROM TELCO & WIRELESS PROVIDERS: EXTENDING THE LIFE OF THE HFC PLANT WITH NEW TECHNOLOGIES Tom Cloonan, Ayham Al-Banna, Mike Emmendorfer, Zoran Maricevic, Frank O’Keeffe, John Ulm ARRIS Group, Inc. Abstract BACKGROUND This paper draws on lessons from the past (within the telecommunications space) to Introduction predict some of the new technologies that may be considered by Multiple System Operators Correctly predicting the future is a difficult, (MSOs) as they move forward into a service but critical task for any company. This is provider world of the future. It is a future that especially true when an industry is facing a will undoubtedly demand more and more time when transitions in technologies are bandwidth to be offered to subscribers over being considered- with the potential end-of- time. life for one technology approaching and prospects for the birth of a new technology After presenting some historical data on the looming in the foreseeable future. Are there evolution of telecommunications systems and ways to extend the life of the existing some new traffic engineering information on technology? Are those extensions beneficial bandwidth growth trends, the paper will or not? If a transition is to take place, when attempt to identify the life-span of the current should it take place? Should the transition be Hybrid Fiber/Coax (HFC) infrastructure done quickly or gradually? Which through which most Voice, Video, and Data technologies should be used during the services will be provided in the future. transition? Which of many available Potential techniques for extending that life- technologies should carry the load in the span will also be explored. -
Ethics and Operating Procedures for the Radio Amateur 1
EETTHHIICCSS AANNDD OOPPEERRAATTIINNGG PPRROOCCEEDDUURREESS FFOORR TTHHEE RRAADDIIOO AAMMAATTEEUURR Edition 3 (June 2010) By John Devoldere, ON4UN and Mark Demeuleneere, ON4WW Proof reading and corrections by Bob Whelan, G3PJT Ethics and Operating Procedures for the Radio Amateur 1 PowerPoint version: A PowerPoint presentation version of this document is also available. Both documents can be downloaded in various languages from: http://www.ham-operating-ethics.org The PDF document is available in more than 25 languages. Translations: If you are willing to help us with translating into another language, please contact one of the authors (on4un(at)uba.be or on4ww(at)uba.be ). Someone else may already be working on a translation. Copyright: Unless specified otherwise, the information contained in this document is created and authored by John Devoldere ON4UN and Mark Demeuleneere ON4WW (the “authors”) and as such, is the property of the authors and protected by copyright law. Unless specified otherwise, permission is granted to view, copy, print and distribute the content of this information subject to the following conditions: 1. it is used for informational, non-commercial purposes only; 2. any copy or portion must include a copyright notice (©John Devoldere ON4UN and Mark Demeuleneere ON4WW); 3. no modifications or alterations are made to the information without the written consent of the authors. Permission to use this information for purposes other than those described above, or to use the information in any other way, must be requested in writing to either one of the authors. Ethics and Operating Procedures for the Radio Amateur 2 TABLE OF CONTENT Click on the page number to go to that page The Radio Amateur's Code .............................................................................