Classification of SENSE PERCEPTION

Total Page:16

File Type:pdf, Size:1020Kb

Classification of SENSE PERCEPTION 1 Archives (Morra, Carlos Collection) August 24, 2017 Classification of SENSE PERCEPTION CHANGES IN INTENSITY OF STIMULI HYPERESTHESIA HYPERACUSIA HYPERGEUSIA HYPEROSMIA HYPERALGESIA OXYESTHESIA HYPOESTHESIA HYPOALGESIA HYPOACUSIA HYPOOSMIA HYPOGEUSIA ANESTHESIA AGEUSIA ANACUSIS (DEAFNESS) ANOSMIA AMAUROSIS (BLINDNESS) PERSISTANCE OF STIMULI PALINOPSIA PALINACOUSIA PALINOSMIA PALINGEUSIA PALINESTHESIA PALINKINESIA PALINPAROUSIA 2 INTEGRITY OF STIMULI SPLITTING OF PERCEPTION CONCOMITANT PERCEPTION, CROSSED PERCEPTION (SYNESTHESIA) DISTORTION OF STIMULI METAMORPHOPSIA DYSMORPHOPSIAS PROSOPOMETAMORPHOPSIA HEAUTOMETAMORPHOPSIA DYSMEGALOPSIAS MICROPSIA MACROPSIA PORROPSIA PELOPSIA DISCHROMATOPSIAS XANTHOPSIA CHLOROPSIA ERYTHROPSIA CYANOPSIA POLYCHROMATOPSIA ALTERATIONS IN THE IDENTIFICATION OF THE STIMULUS AGNOSIAS: VISUAL AGNOSIAS OBJECT AGNOSIA PROSOPAGNOSIA COLOUR AGNOSIA (ACHROMATOPSIA) CATHEGORY SPECIFIC AGNOSIA TOPOGRAPHICAL AGNOSIA PURE ALEXIA SIMULTAGNOSIA AUDITORY AGNOSIA 3 SOUND AGNOSIA AUDITORY VERBAL AGNOSIA AMUSIA (MUSIC AGNOSIA) ANTON´S SYNDROME TACTILE AGNOSIA GUSTATORY AGNOSIA OLFACTORY AGNOSIA AUTOTOPAGNOSIA MISINTERPRETATION OF STIMULI ILLUSIONS MOTOR ILLUSIONS OF AMPUTEES (PHANTOM LIMB) PERCEPTION WITHOUT STIMULUS HALLUCINATIONS AUDITORY HALLUCINATIONS AKOASMAS (ELEMENTARY HALLUCINATIONS) TINNITUS MUSICAL HALLUCINATIONS PHONEMIC HALLUCINATIONS (VERBAL HALLUCINATIONS) SPECIAL FORMS OF PHONEMIC HALLUCINATIONS TELEOLOGICAL HALLUCINATIONS VOICES CONVERSING WITH ONE ANOTHER VOICE OR VOICES COMENTING ON ACTIONS: VISUAL HALLUCINATIONS ELEMENTARY VISUAL HALLUCINATIONS VERBAL VISUAL HALLUCINATIONS LILIPUTIAN HALLUCINATIONS NEGATIVE HALLUCINATIONS AUTOSCOPY (OR HEAUSTOSCOPY). POLYOPIC HEAUTOSCOPY DEUTEROSCOPY 4 NEGATIVE AUTOSCOPY SCENIC HALLUCINATIONS (PANORAMIC HALLUCINATIONS) SPECIAL HALLUCINATIONS IN VISUAL DISORDERS CHARLES BONNET SYNDROME VISUAL HALLUCINATIONS OF OCULAR DISORDERS (MICRO- OCULAR HALLUCINATIONS WITH POSITIVE SCOTOMA) VISUAL HALLUCINATION IN THE HEMIANOPIC FIELD OLFACTORY HALLUCINATIONS GUSTATORY HALLUCINATIONS TACTILE HALLUCINATIONS (HAPTIC) COENESTHETIC HALLUCINATIONS: GENITAL HALLUCINATIONS VESTIBULAR HALLUCINATIONS (KINESTHETIC): HYPNAGOGIC HALLUCINATIONS HYPNOPOMPIC HALLUCINATIONS EXTRACAMPINE HALLUCINATIONS HALLUCINATIONS OF PRESENCE TRANSPORTED HALLUCINATIONS OR REFLEX HALLUCINATIONS ASSOCIATED AND MIXED HALLUCINATIONS PSYCHIC HALLUCINATIONS (PSEUDOHALLUCINATIONS). SPECIAL CONDITIONS´ HALLUCINATIONS HALLUCINATIONS OF THE SENSORY DEPRIVED August 24, 2017 .
Recommended publications
  • Taste Alteration in COVID-19: a Rapid Review with Data Synthesis Reveals Significant Geographical Differences
    medRxiv preprint doi: https://doi.org/10.1101/2020.09.11.20192831; this version posted September 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Taste alteration in COVID-19: a rapid review with data synthesis reveals significant geographical differences By Nicola Cirillo Melbourne Dental School, The University of Melbourne, 3053 Carlton, Victoria, Australia *Address for Correspondence: Prof. Dr. Nicola Cirillo Melbourne Dental School The University of Melbourne 720 Swanston Street, Carlton 3053 Victoria, AUS Tel/fax. +61 03 9341 1473 e-mail: [email protected] NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice. medRxiv preprint doi: https://doi.org/10.1101/2020.09.11.20192831; this version posted September 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license . Abstract To facilitate a timely understanding of the differences in the prevalence of gustatory disturbances (GD) in individuals infected with SARS-CoV-2, we undertook a rapid systematic review of articles published in the repository of the National Library of Medicine (MEDLINE/PubMed) and medRxiv from their inception until September 3, 2020. The minimum requirements for completing a restricted systematic review were met.
    [Show full text]
  • Evaluation of Antibiotic-Induced Taste and Smell Disorders Using the FDA
    www.nature.com/scientificreports OPEN Evaluation of antibiotic‑induced taste and smell disorders using the FDA adverse event reporting system database Yusuke Kan1,2, Junko Nagai1 & Yoshihiro Uesawa1* Adverse efects can occur owing to anorexia, which can reduce treatment compliance and worsen the patients overall condition. One such side efect, namely drug‑induced taste and smell disorders, reduces patients quality of life. Although antibiotics can cause taste and smell disorders, a few studies have examined antibiotic‑induced taste and smell disorders. Therefore, this study comprehensively analyzed the relationship between taste and smell disorders and antibiotic usage. The side efects of antibiotics were investigated using the FDA Adverse Event Reporting System database (FAERS). The reporting odds ratios between the listed drugs and taste and smell disorders P values were comprehensively calculated. Adjusted odds ratios were calculated to account for patient background. Furthermore, to clarify the feature of this adverse efect, shape parameters indicating the expression pattern were calculated. Signals that induced taste and smell disorders were detected for six antibiotics, including drugs for which this event is not described in the package insert in Japan. Multiple logistic regression analysis suggested an association of taste and smell disorders with gender, hypertension, mental disorder, and cancer. The median time to onset of antibiotic‑induced taste and smell disorders was 2–5 days. Six antibiotics could be analyzed, and four of these drugs matched those with detected signals. Our study supported previous fndings on gender and age. Furthermore, antibiotic‑induced taste and smell disorders are likely to develop in the early stage of treatment.
    [Show full text]
  • SPRAVATO® Esketamine Hydrochloride DATA SHEET
    SPRAVATO® esketamine hydrochloride DATA SHEET 1. PRODUCT NAME SPRAVATO® esketamine hydrochloride 32.3mg (equivalent to 28mg esketamine) nasal spray 2. QUALITATIVE AND QUANTITATIVE COMPOSITION Each single use nasal spray device delivers two sprays, one spray into each nostril. Total volume of drug product per device to be delivered is 0.2 mL containing a total of 32.3 mg of esketamine hydrochloride (equivalent to 28 mg of esketamine). For the full list of excipients, see Section 6.1 List of Excipients. 3. PHARMACEUTICAL FORM Nasal spray, solution. Clear, colourless, aqueous solution. 4. CLINICAL PARTICULARS 4.1 Therapeutic Indications SPRAVATO in conjunction with an oral antidepressant, is indicated for: - treatment resistant depression (Major Depressive Disorder in adults who have not responded adequately to at least two different antidepressants of adequate dose and duration to treat the current depressive episode). - rapid reduction of depressive symptoms in patients with Major Depressive Disorder who have acute suicidal ideation or behaviour. SPRAVATO is not indicated to prevent suicide or in reducing suicidal ideation or behaviour (see section 4.4. Special Warnings And Precautions For Use) 4.2 Dose and method of administration In patients with TRD, SPRAVATO should be administered in conjunction with a newly initiated oral antidepressant (AD) therapy. In patients with MDSI, SPRAVATO should be administered in conjunction with standard of care therapy. During the Phase III MDSI clinical program, standard of care oral AD treatment (either AD monotherapy or AD plus augmentation therapy) was initiated or optimised. Important Considerations Prior to Initiating and During Therapy SPRAVATO must be administered under the direct supervision of a healthcare provider.
    [Show full text]
  • Second Edition
    COVID-19 Evidence Update COVID-19 Update from SAHMRI, Health Translation SA and the Commission on Excellence and Innovation in Health Updated 4 May 2020 – 2nd Edition “What is the prevalence, positive predictive value, negative predictive value, sensitivity and specificity of anosmia in the diagnosis of COVID-19?” Executive Summary There is widespread reporting of a potential link between anosmia (loss of smell) and ageusia (loss of taste) and SARS-COV-2 infection, as an early sign and with sudden onset predominantly without nasal obstruction. There are calls for anosmia and ageusia to be recognised as symptoms for COVID-19. Since the 1st edition of this briefing (25 March 2020), there has been a significant expansion of literature on this topic, including 3 systematic reviews. Predictive value: The reported prevalence of anosmia/hyposmia and ageusia/hypogeusia in SARS-COV-2 positive patients are in the order of 36-68% and 33-71% respectively. There are reports of anosmia as the first symptom in some patients. Estimates from one study for hyposmia and hypogeusia: • Positive likelihood ratios: 4.5 and 5.8 • Sensitivity: 46% and 62% • Specificity: 90% and 89% The US Centres for Disease Control and Prevention (CDC) has added new loss or taste or smell to its list of recognised symptoms for SARS-COV-2 infection. To date, the World Health Organization has not. Conclusion: There is sufficient evidence to warrant adding loss of taste and smell to the list of symptoms for COVID-19 and promoting this information to the public. Context • Early detection of COVID-19 is key to the ongoing management of the pandemic.
    [Show full text]
  • Taste and Smell Disorders in Clinical Neurology
    TASTE AND SMELL DISORDERS IN CLINICAL NEUROLOGY OUTLINE A. Anatomy and Physiology of the Taste and Smell System B. Quantifying Chemosensory Disturbances C. Common Neurological and Medical Disorders causing Primary Smell Impairment with Secondary Loss of Food Flavors a. Post Traumatic Anosmia b. Medications (prescribed & over the counter) c. Alcohol Abuse d. Neurodegenerative Disorders e. Multiple Sclerosis f. Migraine g. Chronic Medical Disorders (liver and kidney disease, thyroid deficiency, Diabetes). D. Common Neurological and Medical Disorders Causing a Primary Taste disorder with usually Normal Olfactory Function. a. Medications (prescribed and over the counter), b. Toxins (smoking and Radiation Treatments) c. Chronic medical Disorders ( Liver and Kidney Disease, Hypothyroidism, GERD, Diabetes,) d. Neurological Disorders( Bell’s Palsy, Stroke, MS,) e. Intubation during an emergency or for general anesthesia. E. Abnormal Smells and Tastes (Dysosmia and Dysgeusia): Diagnosis and Treatment F. Morbidity of Smell and Taste Impairment. G. Treatment of Smell and Taste Impairment (Education, Counseling ,Changes in Food Preparation) H. Role of Smell Testing in the Diagnosis of Neurodegenerative Disorders 1 BACKGROUND Disorders of taste and smell play a very important role in many neurological conditions such as; head trauma, facial and trigeminal nerve impairment, and many neurodegenerative disorders such as Alzheimer’s, Parkinson Disorders, Lewy Body Disease and Frontal Temporal Dementia. Impaired smell and taste impairs quality of life such as loss of food enjoyment, weight loss or weight gain, decreased appetite and safety concerns such as inability to smell smoke, gas, spoiled food and one’s body odor. Dysosmia and Dysgeusia are very unpleasant disorders that often accompany smell and taste impairments.
    [Show full text]
  • Unifying the Motor & Non-Motor Features of Parkinson's Disease
    Unifying the Motor & Non-motor Features of Parkinson’s Disease Ali Shalash Professor of Neurology Chair of Ain Shams Movement Disorders Group Department of Neurology, Ain Shams Univeristy Cairo, Egypt AGENDA 1. Motor and non-motor Symptoms 2. Pathophysiology of Motor & NMS 3. Relation To Disease Course 4. NMS in motor subtypes 5. Motor & NMS fluctuation 6. Treatment of Motor & NMS: links Parkinson’s Disease • PD prevalence 1 % of populations older than 65 years (Abbas et al., 2018) • From 1990 to 2015, the number of with PD patients doubled to over 6 million, and double again to over 12 million by 2040 (Dorsey et al, 2018) • Aging populations, increasing longevity, decreasing smoking rates, and the by- products of industrialization MDS Clinical Diagnostic Criteria for PD Postuma et al 2015 MDS Clinical Diagnostic Criteria for PD Postuma et al 2015 Non-motor Symptoms of PD • Neuropsychiatric symptoms • Autonomic dysfunction • Depression up to 50-70 % • Drooling • Anxiety up to 60 % • Orthostatic hypotension 30–58% • Apathy 60 % • Urinary dysfunction • Psychosis up to 40% • Erectile dysfunction • Impulse control and related disorders • Gastrointestinal dysfunction 25–67% • Dementia, 24% to 40%. • Excessive sweating • Cognitive impairment 20-25% (other • Others than dementia mainly mild cognitive impairment) • Pain 30–85% • Fatigue 50% • Disorders of sleep and wakefulness • Olfactory dysfunction 90% • • Sleep fragmentation and insomnia Ophthalmologic dysfunction • Rapid eye movement sleep behavior disorder 65 % • Excessive daytime sleepiness Pathophysiology of Motor & NMS Neuropathology of PD: Motor Symptoms Two major pathologic processes: (a) premature selective loss of dopamine neurons: 30–70% cell loss ⇢ motor symptoms. (b) the accumulation of Lewy bodies, composed of α-synuclein Poewe, W.
    [Show full text]
  • Loss of Taste and Smell After Brain Injury
    Loss of taste and smell after brain injury Introduction Following a brain injury many people report that their senses of taste and/or smell have been affected. This may be as a consequence of injury to the nasal passages, damage to the nerves in the nose and mouth, or to areas of the brain itself. Loss or changes to smell and taste are particularly common after severe brain injury or stroke and, if the effects are due to damage to the brain itself, recovery is rare. The effects are also often reported after minor head injuries and recovery in these cases is more common. If recovery does occur, it is usually within a few months of the injury and recovery after more than two years is rare. Sadly, there are no treatments available for loss of taste and smell, so this factsheet is designed to provide practical suggestions on how you can compensate. It provides information on health, safety and hygiene issues, suggestions to help you to maintain a healthy, balanced diet, information on psychological effects and some other issues to consider. How are taste and smell affected by brain injury? The two senses can both be affected in a number of different ways and some definitions of the terms for the different conditions are provided below: Disorders of smell Anosmia Total loss of sense of smell Hyposmia Partial loss of sense of smell Hyperosmia Enhanced sensitivity to odours Phantosmia/Parosmia ‘False’ smells – Perceiving smells that aren’t there Dysosmia Distortion in odour perception Disorders of taste Dysgeusia Distortion or decrease in the sense of taste Ageusia Total loss of sense of taste Dysgensia Persistent abnormal taste Parageusia Perceiving a bad taste in the mouth 1 The two senses are connected and much of the sensation of taste is due to smell, so if the sense of smell is lost then the ability to detect flavour will be greatly affected.
    [Show full text]
  • COVID-19 Psychosis: a Potential New Neuropsychiatric Condition Triggered by Novel Coronavirus Infection and the Inflammatory Response?
    Journal Articles 2020 COVID-19 Psychosis: A Potential New Neuropsychiatric Condition Triggered by Novel Coronavirus Infection and the Inflammatory Response? S. J. Ferrando L. Klepacz Northwell Health, [email protected] S. Lynch M. Tavakkoli R. Dornbush See next page for additional authors Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Psychiatry Commons Recommended Citation Ferrando SJ, Klepacz L, Lynch S, Tavakkoli M, Dornbush R, Baharani R, Smolin Y, Bartell A. COVID-19 Psychosis: A Potential New Neuropsychiatric Condition Triggered by Novel Coronavirus Infection and the Inflammatory Response?. 2020 Jan 01; 61(5):Article 6623 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/6623. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. For more information, please contact [email protected]. Authors S. J. Ferrando, L. Klepacz, S. Lynch, M. Tavakkoli, R. Dornbush, R. Baharani, Y. Smolin, and A. Bartell This article is available at Donald and Barbara Zucker School of Medicine Academic Works: https://academicworks.medicine.hofstra.edu/articles/6623 Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID- 19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source.
    [Show full text]
  • The Effect of Radiotherapy on Taste Sensation in Head and Neck Cancer
    Asif et al. Radiation Oncology (2020) 15:144 https://doi.org/10.1186/s13014-020-01578-4 RESEARCH Open Access The effect of radiotherapy on taste sensation in head and neck cancer patients – a prospective study Michal Asif1†, Assaf Moore1,2*† , Noam Yarom3,4 and Aron Popovtzer1,2 Abstract Background: One of the main side effects of head and neck (H&N) radiation therapy (RT) is alteration in taste sensation. It causes significant morbidity and has a major effect on quality of life (QoL). The aim of this study was to prospectively define the effect of RT on taste sensation (general, and four basic tastes) and correlate these findings with changes in saliva secretion and QoL questionnaires. Methods: Patients with H&N cancer treated with RT, in which the oral cavity was expected to receive a mean dose of 30 Gray (Gy). Patients were evaluated by Whole-Saliva Sialometry, validated Taste Strips and European Organization for Research and Treatment of Cancer H&N QoL questionnaires prior to RT (T0), mid-point of radiotherapy dose (T1), at the end of radiotherapy (T2) and 1 (T3), 3 (T4) and 12 months (T5) after completion of treatment course. Results: Twenty-eight patients were recruited, and 21 patients completed study procedures and were analyzed. Median age was 66 years (range 18–90). The most common tumor site was the oral cavity. The median prescribed radiation dose to the high dose volume was 66 (range 60–70). The median mean and max dose to the oral cavity were 25.1 (range 14–69) and 64.9 (range 30–70), respectively.
    [Show full text]
  • COVID-19 Mrna Pfizer- Biontech Vaccine Analysis Print
    COVID-19 mRNA Pfizer- BioNTech Vaccine Analysis Print All UK spontaneous reports received between 9/12/20 and 22/09/21 for mRNA Pfizer/BioNTech vaccine. A report of a suspected ADR to the Yellow Card scheme does not necessarily mean that it was caused by the vaccine, only that the reporter has a suspicion it may have. Underlying or previously undiagnosed illness unrelated to vaccination can also be factors in such reports. The relative number and nature of reports should therefore not be used to compare the safety of the different vaccines. All reports are kept under continual review in order to identify possible new risks. Report Run Date: 24-Sep-2021, Page 1 Case Series Drug Analysis Print Name: COVID-19 mRNA Pfizer- BioNTech vaccine analysis print Report Run Date: 24-Sep-2021 Data Lock Date: 22-Sep-2021 18:30:09 MedDRA Version: MedDRA 24.0 Reaction Name Total Fatal Blood disorders Anaemia deficiencies Anaemia folate deficiency 1 0 Anaemia vitamin B12 deficiency 2 0 Deficiency anaemia 1 0 Iron deficiency anaemia 6 0 Anaemias NEC Anaemia 97 0 Anaemia macrocytic 1 0 Anaemia megaloblastic 1 0 Autoimmune anaemia 2 0 Blood loss anaemia 1 0 Microcytic anaemia 1 0 Anaemias haemolytic NEC Coombs negative haemolytic anaemia 1 0 Haemolytic anaemia 6 0 Anaemias haemolytic immune Autoimmune haemolytic anaemia 9 0 Anaemias haemolytic mechanical factor Microangiopathic haemolytic anaemia 1 0 Bleeding tendencies Haemorrhagic diathesis 1 0 Increased tendency to bruise 35 0 Spontaneous haematoma 2 0 Coagulation factor deficiencies Acquired haemophilia
    [Show full text]
  • Let's Talk About . . . Migraine and Dizziness
    LET’S TALK ABOUT . MIGRAINE AND DIZZINESS Migraine is almost as common as high blood Key points pressure in the Canadian population. It is more • A migraine is a severe headache. common than asthma or diabetes. An estimated 300,000 Canadians suffer needlessly because they • Of over 300 types of migraine, dizziness is have either been misdiagnosed or not diagnosed a symptom of two: migraine with brainstem with chronic migraine. aura and vestibular migraine. • See a doctor who specialized in headaches for accurate diagnosis. What are the symptoms of migraine with dizziness? • Lifestyle changes may help prevent or lessen the occurrence of migraine. Common symptoms include: • Medication may help prevent migraine. • Visual aura – you may see flashes of light or have blind spots in your vision. • Localized pain behind or near the eye on one Note: Concussion also causes migraine-type side of your head. dizziness – concussion sufferers can substitute the • Light, sound (hyperacusis) and odor sensitivity word “concussion” for “migraine” in the information (hyperosmia). You may have some sensitivity below. daily and increased sensitivity when you have migraine. • Visual vestibular mismatch (the brain’s What is migraine? hypersensitivity to motion) is common in Migraine is a neurovascular headache, meaning it migraine-type brains both episodically and can be triggered by annoyance or disturbance to chronically. Sometimes it will occur without the nerves or blood vessels in the brain. All headache and you may feel “off” for an hour or migraines are caused by the same type of two. neurotransmitter dysregulation and respond to the • Vertigo (spinning sensation) – it may start same treatments.
    [Show full text]
  • Abadie's Sign Abadie's Sign Is the Absence Or Diminution of Pain Sensation When Exerting Deep Pressure on the Achilles Tendo
    A.qxd 9/29/05 04:02 PM Page 1 A Abadie’s Sign Abadie’s sign is the absence or diminution of pain sensation when exerting deep pressure on the Achilles tendon by squeezing. This is a frequent finding in the tabes dorsalis variant of neurosyphilis (i.e., with dorsal column disease). Cross References Argyll Robertson pupil Abdominal Paradox - see PARADOXICAL BREATHING Abdominal Reflexes Both superficial and deep abdominal reflexes are described, of which the superficial (cutaneous) reflexes are the more commonly tested in clinical practice. A wooden stick or pin is used to scratch the abdomi- nal wall, from the flank to the midline, parallel to the line of the der- matomal strips, in upper (supraumbilical), middle (umbilical), and lower (infraumbilical) areas. The maneuver is best performed at the end of expiration when the abdominal muscles are relaxed, since the reflexes may be lost with muscle tensing; to avoid this, patients should lie supine with their arms by their sides. Superficial abdominal reflexes are lost in a number of circum- stances: normal old age obesity after abdominal surgery after multiple pregnancies in acute abdominal disorders (Rosenbach’s sign). However, absence of all superficial abdominal reflexes may be of localizing value for corticospinal pathway damage (upper motor neu- rone lesions) above T6. Lesions at or below T10 lead to selective loss of the lower reflexes with the upper and middle reflexes intact, in which case Beevor’s sign may also be present. All abdominal reflexes are preserved with lesions below T12. Abdominal reflexes are said to be lost early in multiple sclerosis, but late in motor neurone disease, an observation of possible clinical use, particularly when differentiating the primary lateral sclerosis vari- ant of motor neurone disease from multiple sclerosis.
    [Show full text]